
STB9NK60ZD

Datasheet - production data

N-channel 600 V, 0.85 Ω typ., 7 A Zener-protected SuperFREDMESH[™] Power MOSFET (with fast diode) in D²PAK

Figure 1. Internal schematic diagram

Features

Order code	V_{DS}	R _{DS(on) max} .	I _D	P _{TOT}
STB9NK60ZDT4	600 V	0.95 Ω	7 A	125 W

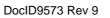
- Extremely high dv/dt capability
- Zener-protected
- 100% avalanche tested
- Gate charge minimized
- Low intrinsic capacitances
- Fast internal recovery diode

Applications

- Switching applications
- Fast internal recovery diode

Description

The device is developed using the revolutionary SuperFREDMesh[™] technology. It associates all advantages of reduced on-resistance, Zener gate protection and very high dv/dt capability with a fast body-drain recovery diode. Such series complements the "FDmesh[™]" advanced technology.


Table 1. Device summary

Order code	Order code Marking		Packaging	
STB9NK60ZDT4	B9NK60ZD	D ² PAK	Tape and reel	

This is information on a product in full production.

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
	2.1 Electrical characteristics (curves)	6
3	Test circuits	8
4	Package mechanical data	9
5	Packaging mechanical data	11
6	Revision history	13

1

Electrical ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	600	V
V _{GS}	Gate-source voltage	±30	V
I _D	Drain current (continuous) at $T_C = 25 \text{ °C}$	7	А
۱ _D	Drain current (continuous) at $T_C = 100 \ ^{\circ}C$	4.3	А
I _{DM} ⁽¹⁾	Drain current (pulsed)	28	А
D	Total dissipation at $T_C = 25 \text{ °C}$	125	W
P _{TOT}	Derating factor	1	W/°C
V _{ESD(G-S)}	Gate-source ESD (HBM-C=100 pF, R=1.5 kΩ)	4000	V
dv/dt ⁽²⁾	Peak diode recovery voltage slope	15	V/ns
Тj	Max. operating junction temperature	- 55 to 150	℃
T _{stg}	Storage temperature	- 55 10 150	

Table 2. Absolute maximum ratings

1. Pulse width limited by safe operating area.

2. $I_{SD} \leq$ 7 A, di/dt \leq 500 A/µs; V_{DD} = 80% $V_{(BR)DSS}$.

Table 3. Thermal data

Symbol	ymbol Parameter Value		Unit
R _{thj-case}	Thermal resistance junction-case max.	1	°C/W
R _{thj-pcb}	Thermal resistance junction-pcb max. ⁽¹⁾	30	°C/W

1. When mounted on 1 inch² FR-4, 2 Oz copper board.

Table 4. Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not repetitive (pulse width limited by $T_{jmax})$	7	А
E _{AS}	Single pulse avalanche energy (starting T _j =25 °C, I _D = I _{AR} ; V _{DD} = 50)	235	mJ

Electrical characteristics 2

(T_C = 25 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	I _D = 1 mA, V _{GS} = 0	600			V
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V _{DS} = 600 V V _{DS} = 600 V, T _C = 125 °C			1 50	μA μA
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	V _{GS} = ± 20 V			±10	μA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_D = 100 \ \mu A$	2.5	3.5	4.5	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 3.5 A		0.85	0.95	Ω

Table	5.	On	/off	states
-------	----	----	------	--------

Table 6. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
g _{fs} ⁽¹⁾	Forward transconductance	V _{DS} = 15 V, I _D = 3.5 A	-	5.3		S
C _{iss}	Input capacitance		-	1110		pF
C _{oss}	Output capacitance	V _{DS} = 25 V, f = 1 MHz, V _{GS} = 0	-	135		pF
C _{rss}	Reverse transfer capacitance		-	30		pF
C _{oss eq.} ⁽²⁾	Equivalent output capacitance	$V_{DS} = 0$ to 480 V, $V_{GS} = 0$	-	72		pF
Qg	Total gate charge		-	41	53	nC
Q _{gs}	Gate-source charge	V _{DD} = 480 V, I _D = 11 A, V _{GS} = 10 V (see <i>Figure 15</i>)	-	8.7		nC
Q _{gd}	Gate-drain charge		-	21		nC

1. Pulsed: pulse duration= $300 \ \mu$ s, duty cycle 1.5%.

2. $C_{oss \ eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS} .

Table 7. Switching times									
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit			
t _{d(on)}	Turn-on delay time		-	11.4	-	ns			
t _r	Rise time	$V_{DD} = 300 \text{ V}, I_D = 3.5 \text{ A},$ $R_G = 4.7 \Omega, V_{GS} = 10 \text{ V} (see Figure 14 and Figure 19)$	-	13.6	-	ns			
t _{d(off)}	Turn-off delay time		-	23.1	-	ns			
t _f	Fall time		-	15	-	ns			
t _{r(Voff)}	Off-voltage rise time	V _{DD} = 480 V, I _D = 7 A,	-	11	-	ns			
t _f	Fall time	$R_{G} = 4.7 \Omega$, $V_{GS} = 10 V$ (see	-	8	-	ns			
t _c	Cross-overtime	Figure 14 and Figure 19)	-	20	-	ns			

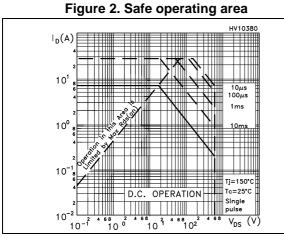
Table 7. Switching times

Table	8.	Source -	drain	diode
-------	----	----------	-------	-------

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		7	А
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		28	А
V _{SD} ⁽²⁾	Forward on voltage	$I_{SD} = 7 \text{ A}, V_{GS} = 0$	-		1.6	V
t _{rr}	Reverse recovery time		-	130		ns
Q _{rr}	Reverse recovery charge	I _{SD} = 7 A, di/dt = 100 A/μs V _{DD} = 30 V (see <i>Figure 16</i>)	-	550		nC
I _{RRM}	Reverse recovery current		-	8.4		А
t _{rr}	Reverse recovery time	I _{SD} = 7 A, di/dt = 100 A/µs	-	176		ns
Q _{rr}	Reverse recovery charge	$V_{DD} = 30 \text{ V}, \text{ T}_{j} = 150 \text{ °C}$ (see	-	880		nC
I _{RRM}	Reverse recovery current	Figure 16)	-	10		А

1. Pulse width limited by safe operating area.

2. Pulsed: pulse duration= 300 μ s, duty cycle 1.5%.


Table 9. Gate - source Zener diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
BV _{GSO} ⁽¹⁾	Gate-source breakdown voltage	lgs= ± 1 mA (open drain)	30			V

 The built-in back-to-back Zener diodes have specifically been designed to enhance not only the device's ESD capability, but also to make them safely absorb possible voltage transients that may occasionally be applied from gate to source. In this respect, the Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device's integrity. These integrated Zener diodes thus avoid the usage of external components.

Electrical characteristics (curves) 2.1

Figure 4. Output characteristics

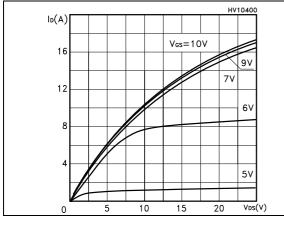
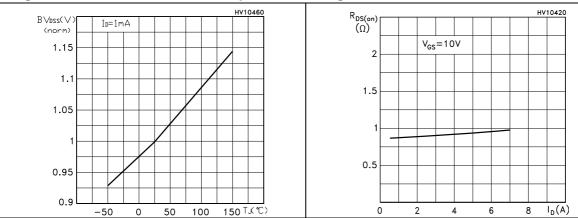



Figure 6. Normalized BVDSS vs temperature

 10^{-3} Figure 5. Transfer characteristics

0.01

SINGLE PULSE

10-4

 $Z_{th} = k R_{thJ-c}$

 10^{-1} $t_p(s)$

 $\delta = t_p / \tau$

 10^{-2}

Figure 3. Thermal impedance

к

 10^{-1}

10⁻²

10⁻⁵

 $\delta = 0.5$

0.2

0.

0.05

0.02

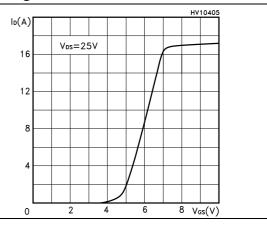


Figure 7. Static drain-source on-resistance

Figure 8. Gate charge vs gate-source voltage

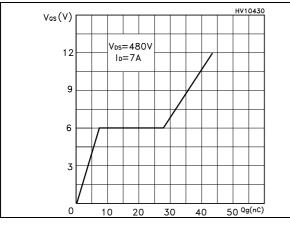


Figure 10. Normalized gate threshold voltage vs temperature

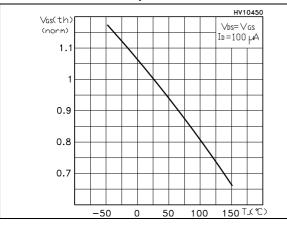


Figure 12. Source-drain diode forward characteristics

3

4

5

Isd(A)

2

HV10480

T_=-50 ℃

25°C

150 °C

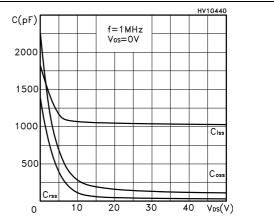


Figure 11. Normalized on-resistance vs temperature

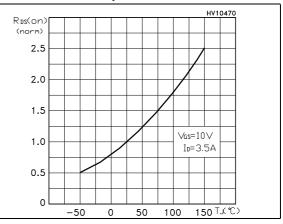
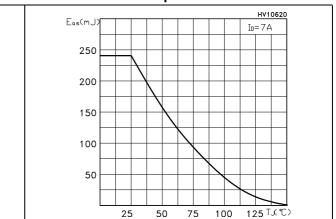
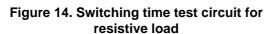



Figure 13. Maximum avalanche energy vs temperature

Vsd(V)

0.8

0.6


0.4

0.2

0

1

3 Test circuits

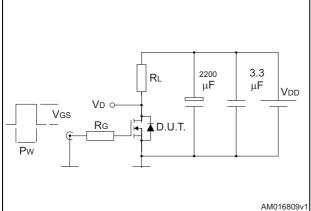
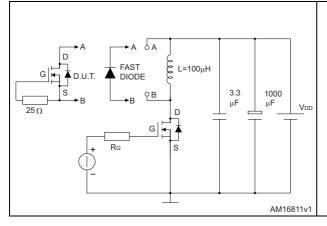
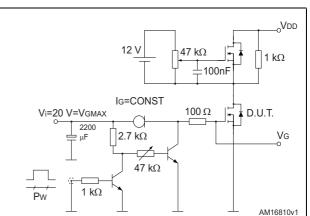
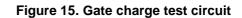


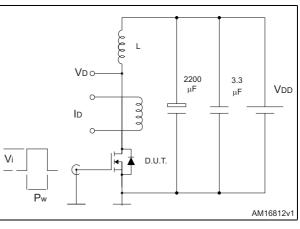
Figure 16. Test circuit for inductive load switching and diode recovery times

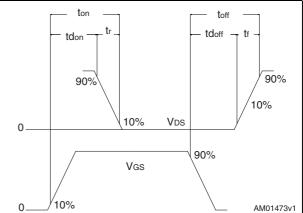



Figure 18. Unclamped inductive waveform


VD

IDM


lр


V(BR)DSS

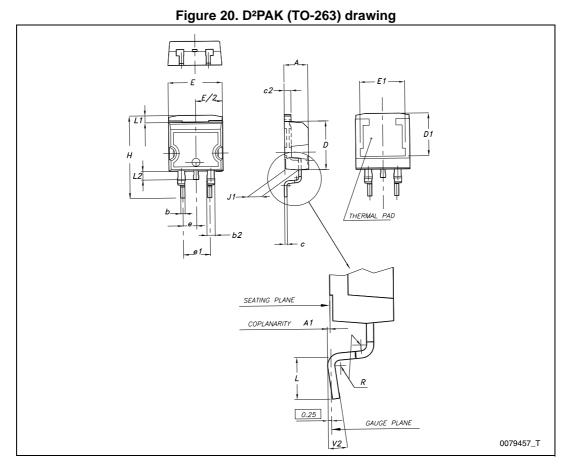
47/

Figure 19. Switching time waveform

Vdd

AM01472v1

Vdd


4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

Dim	mm				
Dim. —	Min.	Тур.	Max.		
A	4.40		4.60		
A1	0.03		0.23		
b	0.70		0.93		
b2	1.14		1.70		
с	0.45		0.60		
c2	1.23		1.36		
D	8.95		9.35		
D1	7.50				
E	10		10.40		
E1	8.50				
е		2.54			
e1	4.88		5.28		
н	15		15.85		
J1	2.49		2.69		
L	2.29		2.79		
L1	1.27		1.40		
L2	1.30		1.75		
R		0.4			
V2	0°		8°		

Table 10. D ² PAK (TO-263) mechanical data

Figure 21. D²PAK footprint^(a)

a. All dimensions are in millimeters.

DocID9573 Rev 9

5 Packaging mechanical data

Table 11. D-PAR (10-203) tabe and feel mechanical data						
Таре				Reel		
Dim	mm		Dim.	mm		
	Min.	Max.	Dim.	Min.	Max.	
A0	10.5	10.7	Α		330	
B0	15.7	15.9	В	1.5		
D	1.5	1.6	С	12.8	13.2	
D1	1.59	1.61	D	20.2		
E	1.65	1.85	G	24.4	26.4	
F	11.4	11.6	N	100		
K0	4.8	5.0	Т		30.4	
P0	3.9	4.1			·	
P1	11.9	12.1		Base qty	1000	
P2	1.9	2.1		Bulk qty	1000	
R	50					
Т	0.25	0.35				
W	23.7	24.3				

Table 11. D²PAK (TO-263) tape and reel mechanical data

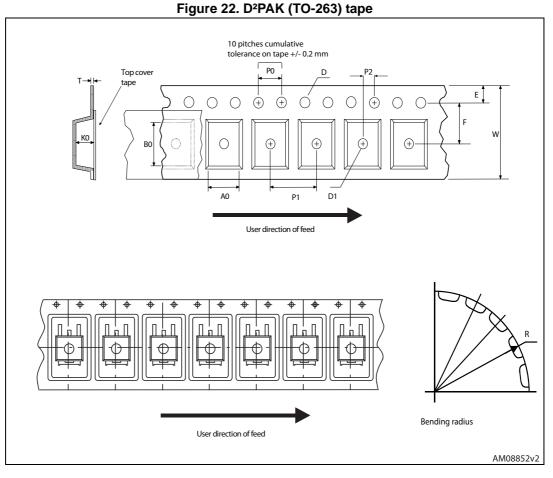
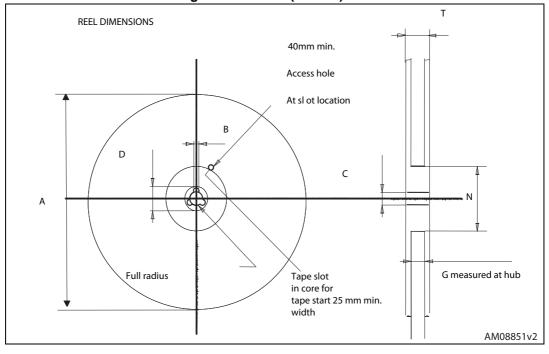



Figure 23. D²PAK (TO-263) reel

DocID9573 Rev 9

A7

6 Revision history

Date	Revision	Changes
29-Sep-2003	6	Data updated.
13-Jun-2006	7	The doc. has been reformatted.
14-Apr-2008	8	Table 8 has been corrected. Package mechanical data updated.
11-Jul-2013	9	 The part numbers: STF9NK60ZD and STP9NK60ZD have been moved to a separate datasheet. Changed the title and <i>Figure 1</i>. Added Zener-protected to the features. Minor text changes.

Table 12. Document revision history

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

> ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

DocID9573 Rev 9

