

N-Channel Enhancement Mode Power MOSFET

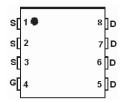
Description

The RM35N30DN uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

(2) D (1) G (3) S

Schematic diagram

General Features


V_{DS} =30V,I_D =35A

 $R_{DS(ON)} < 5.5 m\Omega$ @ $V_{GS} = 10V$ $R_{DS(ON)} < 9.5 m\Omega$ @ $V_{GS} = 4.5V$

- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Marking and pin assignment

DFN 3x3 EP top view

Application

- Secondary side synchronous rectifier
- High side switch in POL DC/DC converter
- Halogen-free

100% UIS TESTED!

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
35N30	RM35N30DN	DFN 3x3 EP	-	-	-

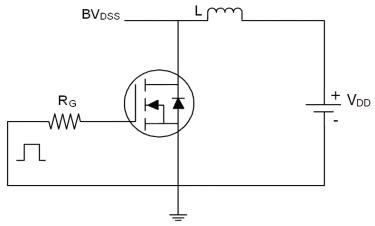
Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	30	V
Gate-Source Voltage	V _G s	±20	V
Drain Current-Continuous	I _D	35	А
Pulsed Drain Current	I _{DM}	120	Α
Maximum Power Dissipation	P _D	35	W
Derating factor		0.28	W/℃
Single pulse avalanche energy (Note 5)	E _{AS}	150	mJ
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 150	$^{\circ}$

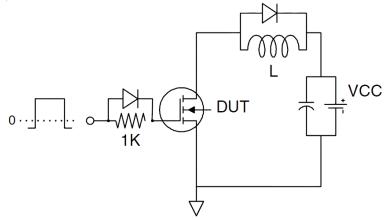
Thermal Characteristic

Electrical Characteristics (TC=25°C unless otherwise noted)

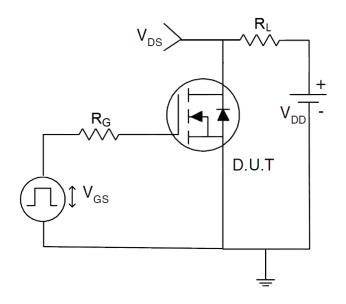
Parameter	Symbol	Condition	Min	Тур	Max	Unit	
Off Characteristics	•		•	•		•	
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	30	33	-	V	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =30V,V _{GS} =0V	-	-	1	μΑ	
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA	
On Characteristics (Note 3)			•				
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS},I_{D}=250\mu A$	1	1.6	3	V	
Dunin Course On State Besietenes	Б	V _{GS} =10V, I _D =12A	-	4.8	5.5	mΩ	
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =4.5V, I _D =10A	-	8.2	9.5		
Forward Transconductance	g FS	V _{DS} =10V,I _D =12A	30	-	-	S	
Dynamic Characteristics (Note4)	•		•	•		•	
Input Capacitance	C _{lss}	V 45VV 0V	-	1265	-	PF	
Output Capacitance	Coss	$V_{DS}=15V, V_{GS}=0V,$ F=1.0MHz	-	600	-	PF	
Reverse Transfer Capacitance	C _{rss}	F=1.UIVIHZ	-	130	-	PF	
Switching Characteristics (Note 4)			•				
Turn-on Delay Time	t _{d(on)}		-	18	-	nS	
Turn-on Rise Time	t _r	V _{DD} =15V,I _D =12A	-	10	-	nS	
Turn-Off Delay Time	t _{d(off)}	$V_{GS}=10V,R_{GEN}=6\Omega$	-	34	-	nS	
Turn-Off Fall Time	t _f		-	10	-	nS	
Total Gate Charge	Qg	\/ 45\/ 1.404	-	19	-	nC	
Gate-Source Charge	Q _{gs}	$V_{DS}=15V,I_{D}=12A,$ $V_{GS}=10V$	-	2.7	-	nC	
Gate-Drain Charge	Q_{gd}	V _{GS} =10V	-	2.5	-	nC	
Drain-Source Diode Characteristics	•		•	•		•	
Diode Forward Voltage (Note 3)	V_{SD}	V _{GS} =0V,I _S =12A	-	0.85	1.2	V	
Diode Forward Current (Note 2)	Is		-	-	25	А	
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF = 12A	-	-	47	nS	
Reverse Recovery Charge	Qrr	di/dt = 100A/µs(Note3)	-	-	25	nC	
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)					


Notes:

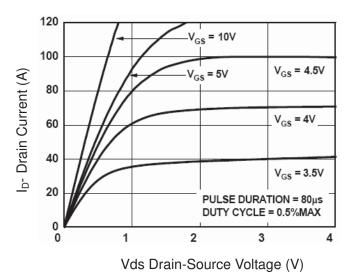
- $\textbf{1.} \ \ \textbf{Repetitive Rating: Pulse width limited by maximum junction temperature.}$
- **2.** Surface Mounted on FR4 Board, $t \le 10$ sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition: Tj=25 $^{\circ}\text{C}$,VDD=15V,VG=10V,L=0.1mH,Rg=25 Ω



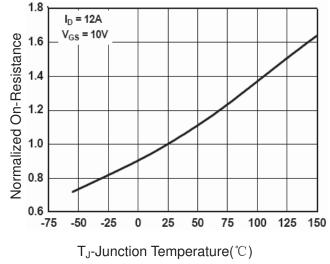
Test Circuit


1) E_{AS} Test Circuits

2) Gate Charge Test Circuit



3) Switch Time Test Circuit



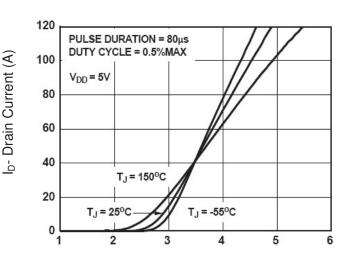

RATING AND CHARACTERISTICS CURVES (RM35N30DN)


Figure 1 Output Characteristics

Figure 4 Rdson-Junction Temperature

Vgs Gate-Source Voltage (V)

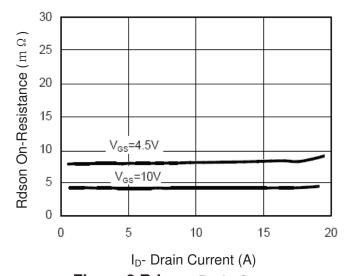
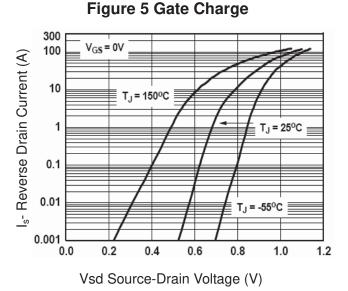
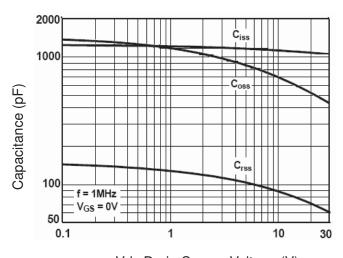
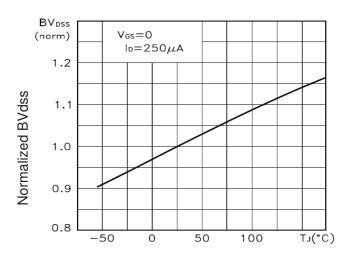


Figure 3 Rdson- Drain Current


Figure 6 Source- Drain Diode Forward

RATING AND CHARACTERISTICS CURVES (RM35N30DN)

Vds Drain-Source Voltage (V)

T_J-Junction Temperature(°C)

Figure 7 Capacitance vs Vds Figure 9 BV_{DSS} vs Junction Temperature

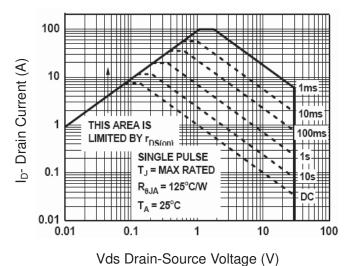
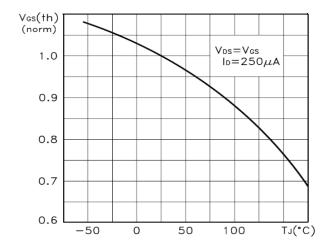
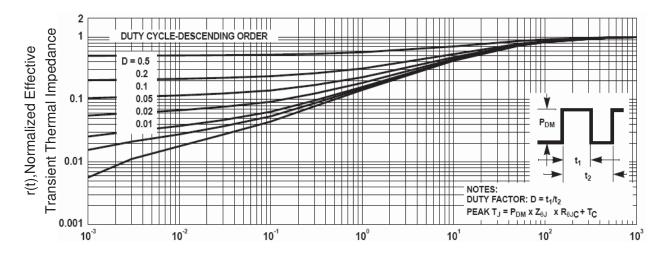
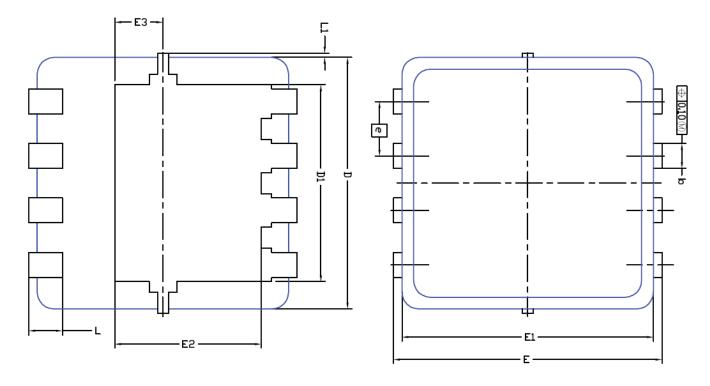




Figure 8 Safe Operation Area

 T_J -Junction Temperature($^{\circ}$ C)

Figure 10 V_{GS(th)} vs Junction Temperature



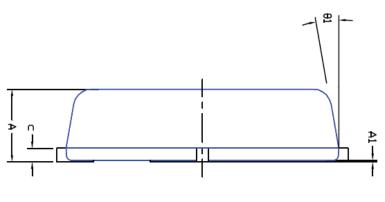

Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance

DFN3X3 EP Package Information

DIM.	MILLIMETERS			INCHES			
יואדת	MIN	NDM	MAX	MIN	NDM	MAX	
Α	0.700	0.80	0.900	0.0276	0.0315	0.0354	
A1	0.00		0.05	0.000		0.002	
b	0,24	0'30	0,35	0,009	0.012	0.014	
С	0,10	0,152	0,25	0,004	0,006	0.010	
D	3.00 BSC			0.118 BSC			
D1	2.35 BSC			0.093 BSC			
Ε	3.20 BSC			0.126 BSC			
E1	3,00 B2C			0.118 BSC			
E2	1.75 BSC			0.069 BSC			
E3	0.575 BSC			0.023 BSC			
е	0.65 BSC			0.026 BSC			
L	0.30	0.40	0.50	0.0118	0.0157	0.0197	
L1	0		0.100	0		0.004	
91	0°	10°	12°	0.	10°	12°	

DISCLAIMER NOTICE

Rectron Inc reserves the right to make changes without notice to any product specification herein, to make corrections, modifications, enhancements or other changes. Rectron Inc or anyone on its behalf assumes no responsibility or liability for any errors or inaccuracies. Data sheet specifications and its information contained are intended to provide a product description only. "Typical" parameters which may be included on RECTRON data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. Rectron Inc does not assume any liability arising out of the application or use of any product or circuit.

Rectron products are not designed, intended or authorized for use in medical, life-saving implant or other applications intended for life-sustaining or other related applications where a failure or malfunction of component or circuitry may directly or indirectly cause injury or threaten a life without expressed written approval of Rectron Inc. Customers using or selling Rectron components for use in such applications do so at their own risk and shall agree to fully indemnify Rectron Inc and its subsidiaries harmless against all claims, damages and expenditures.

