## STN3P6F6



# P-channel -60 V, 0.13 Ω typ., -3 A STripFET™ F6 Power MOSFET in a SOT-223 package

Datasheet - production data

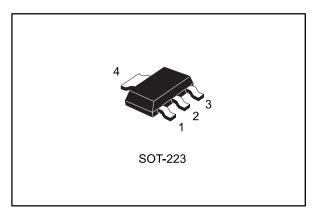
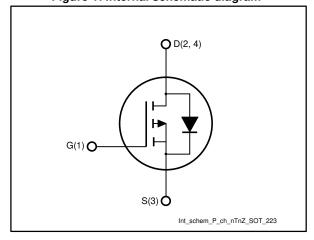




Figure 1: Internal schematic diagram



### **Features**

| Order code | V <sub>DS</sub> | R <sub>DS(on)</sub> max. | ΙD   |  |
|------------|-----------------|--------------------------|------|--|
| STN3P6F6   | STN3P6F6 -60 V  |                          | -3 A |  |

- Very low on-resistance
- Very low gate charge
- High avalanche ruggedness
- Low gate drive power loss

### **Applications**

Switching applications

### **Description**

This device is a P-channel Power MOSFET developed using the STripFET $^{\text{TM}}$  F6 technology, with a new trench gate structure. The resulting Power MOSFET exhibits very low  $R_{\text{DS(on)}}$  in all packages.

Table 1: Device summary

| Order code | Marking | Package | Packing       |
|------------|---------|---------|---------------|
| STN3P6F6   | 3P6F6   | SOT-223 | Tape and reel |

Contents STN3P6F6

## Contents

| 1 | Electrical ratings |                                     |    |
|---|--------------------|-------------------------------------|----|
| 2 | Electric           | cal characteristics                 | 4  |
|   | 2.1                | Electrical characteristics (curves) | 6  |
| 3 | Test cir           | rcuits                              | 9  |
| 4 | Packag             | je information                      | 10 |
| 5 | Revisio            | on history                          | 12 |

STN3P6F6 Electrical ratings

# 1 Electrical ratings

Table 2: Absolute maximum ratings

| Symbol                          | Parameter                                               | Value       | Unit |
|---------------------------------|---------------------------------------------------------|-------------|------|
| V <sub>DS</sub>                 | Drain-source voltage                                    | -60         | V    |
| $V_{GS}$                        | Gate-source voltage                                     | ± 20        | V    |
| l <sub>D</sub>                  | Drain current (continuous) at T <sub>pcb</sub> = 25 °C  | -3          | Α    |
| I <sub>D</sub>                  | Drain current (continuous) at T <sub>pcb</sub> = 100 °C | -2          | Α    |
| I <sub>DM</sub>                 | Drain current (pulsed)                                  | -12         | Α    |
| P <sub>TOT</sub> <sup>(1)</sup> | Total dissipation at T <sub>pcb</sub> = 25 °C           | 2.6         | W    |
| Tj                              | Operating junction temperature range                    | 55 to 175   | °C   |
| T <sub>stg</sub>                | Storage temperature range                               | - 55 to 175 | °C   |

### Notes:

Table 3: Thermal data

| Symbol                                                              | Parameter | Value | Unit |
|---------------------------------------------------------------------|-----------|-------|------|
| R <sub>thj-pcb</sub> <sup>(1)</sup> Thermal resistance junction-pcb |           | 57    | °C/W |

### Notes:

<sup>&</sup>lt;sup>(1)</sup>Pulse width is limited by safe operating area

 $<sup>^{(1)}\!</sup>When$  mounted on FR-4 board of 1 inch², 2 Oz Cu, t<10 s

Electrical characteristics STN3P6F6

## 2 Electrical characteristics

(T<sub>C</sub>= 25 °C unless otherwise specified)

Table 4: On/off states

| Symbol              | Parameter                                           | Test conditions                                        | Min. | Тур. | Max. | Unit |
|---------------------|-----------------------------------------------------|--------------------------------------------------------|------|------|------|------|
| $V_{(BR)DSS}$       | Drain-source breakdown voltage(V <sub>GS</sub> = 0) | I <sub>D</sub> = -250 μA                               | -60  |      |      | ٧    |
| 1                   | Zero gate voltage Drain current                     | V <sub>DS</sub> = -60 V                                |      |      | -1   | μΑ   |
| I <sub>DSS</sub>    | (V <sub>GS</sub> = 0)                               | $V_{DS} = -60 \text{ V}, T_{C} = 125 \text{ °C}^{(1)}$ |      |      | -10  | μΑ   |
| I <sub>GSS</sub>    | Gate-body leakage current                           | $V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$      |      |      | ±100 | nA   |
| V <sub>GS(th)</sub> | Gate threshold voltage                              | $V_{DS} = V_{GS}, I_D = -250 \mu A$                    | -2   |      | -4   | V    |
| R <sub>DS(on)</sub> | Static drain-source on-<br>resistance               | V <sub>GS</sub> = -10 V, I <sub>D</sub> = -1.5 A       |      | 0.13 | 0.16 | Ω    |

#### Notes:

Table 5: Dynamic

| Symbol   | Parameter                                                                     | Test conditions                                 | Min. | Тур. | Max. | Unit |
|----------|-------------------------------------------------------------------------------|-------------------------------------------------|------|------|------|------|
| Ciss     | Input capacitance                                                             |                                                 | -    | 340  | -    | pF   |
| Coss     | Output capacitance $V_{DS} = -48 \text{ V, f} = 1 \text{ MHz,} $ $V_{GS} = 0$ |                                                 | -    | 40   | -    | pF   |
| Crss     | Reverse transfer capacitance                                                  |                                                 |      | 20   | -    | pF   |
| Qg       | Total gate charge                                                             | $V_{DD} = -48 \text{ V}, I_{D} = -3 \text{ A},$ | -    | 6.4  | -    | nC   |
| $Q_{gs}$ | Gate-source charge                                                            | V <sub>GS</sub> = -10 V                         | -    | 1.7  | -    | nC   |
| $Q_{gd}$ | Gate-drain charge                                                             | (see Figure 14: "Gate charge test circuit")     | -    | 1.7  | -    | nC   |

Table 6: Switching times

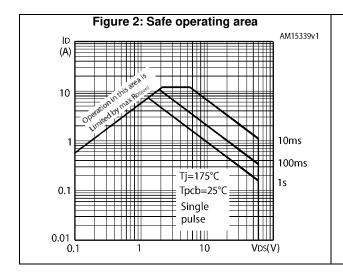
| <b>gg</b>           |                     |                                                                                        |      |      |      |      |
|---------------------|---------------------|----------------------------------------------------------------------------------------|------|------|------|------|
| Symbol              | Parameter           | Test conditions                                                                        | Min. | Тур. | Max. | Unit |
| t <sub>d(on)</sub>  | Turn-on delay time  | $V_{DD} = -48 \text{ V}, I_D = -1.5 \text{ A},$                                        | -    | 6.4  | -    | ns   |
| tr                  | Rise time           | R <sub>G</sub> = 4.7 $\Omega$ , V <sub>GS</sub> = -10 V<br>(see Figure 13: "Switching" | -    | 5.3  | -    | ns   |
| t <sub>d(off)</sub> | Turn-off delay time | times test circuit for                                                                 | -    | 14   | -    | ns   |
| t <sub>f</sub>      | Fall time           | resistive load")                                                                       | -    | 3.7  | -    | ns   |

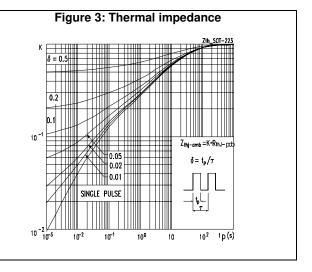
 $<sup>\</sup>ensuremath{^{(1)}}\mbox{Defined}$  by design, not subject to production test.

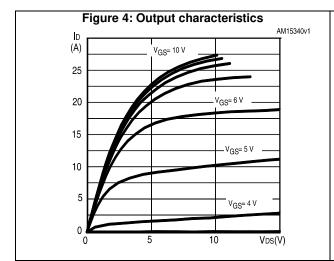
Table 7: Source drain diode

| Symbol                          | Parameter                                                      | Test conditions                                                                          | Min. | Тур. | Max. | Unit |
|---------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------|------|------|------|------|
| I <sub>SD</sub>                 | Source-drain current                                           |                                                                                          | -    |      | -3   | Α    |
| I <sub>SDM</sub> <sup>(1)</sup> | Source-drain current (pulsed)                                  |                                                                                          | -    |      | -12  | Α    |
| V <sub>SD</sub> (2)             | Forward on voltage I <sub>SD</sub> = -3 A, V <sub>GS</sub> = 0 |                                                                                          | -    |      | -1.1 | ٧    |
| trr                             | Reverse recovery time                                          | I <sub>SD</sub> = -5 A,                                                                  | -    | 20   |      | ns   |
| Qrr                             | Reverse recovery charge                                        | se recovery charge di/dt = 100 A/µs, V <sub>DD</sub> = -<br>16 V,T <sub>i</sub> = 150 °C |      | 17.8 |      | nC   |
| I <sub>RRM</sub>                | Reverse recovery current                                       | (see Figure 15: "Test circuit for inductive load switching and diode recovery times")    | ı    | -1.8 |      | Α    |

### Notes:


<sup>&</sup>lt;sup>(1)</sup>Pulse width limited by safe operating area.


 $<sup>^{(2)}\</sup>text{Pulse}$  duration = 300  $\mu\text{s},$  duty cycle 1.5%


## 2.1 Electrical characteristics (curves)



For the P-channel Power MOSFET, current polarity of voltages and current have to be reversed .







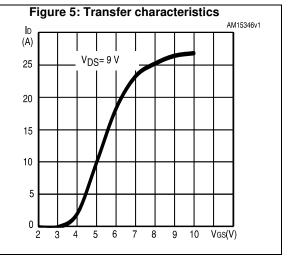



Figure 6: Gate charge vs gate-source voltage

VGS
(V)

10

VDD=30V

10

10

10

10

10

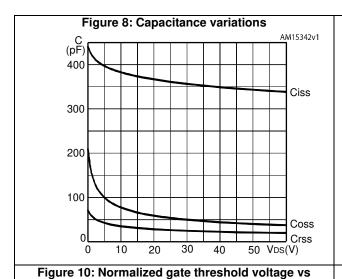
2

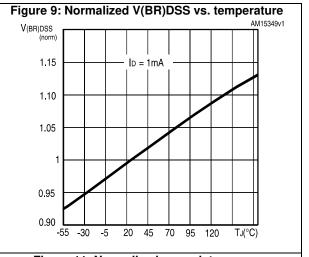
4

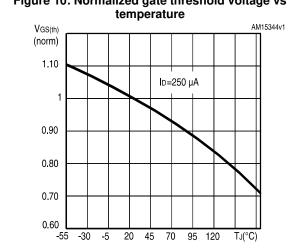
2

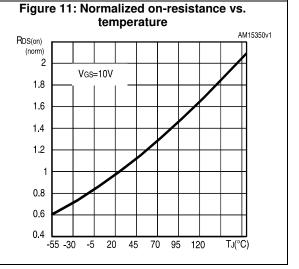
0

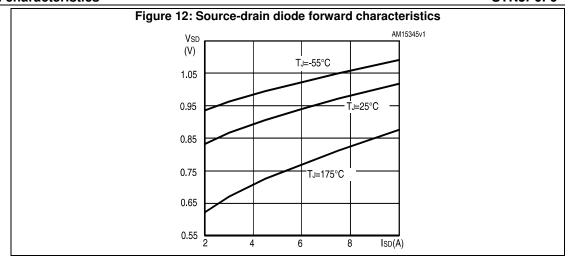
0


2


4


6


Qg(nC)

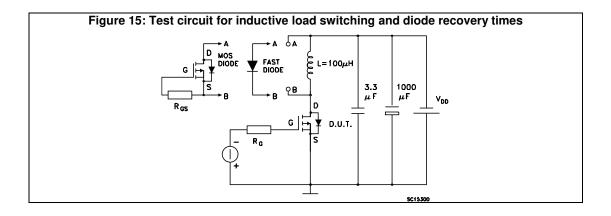

Figure 7: Static drain-source on-resistance RDS(on)  $(m\Omega)$ VGS=10V 180 160 140 120 100 3 4 8 ID(A) 5 6 7 9












STN3P6F6 Test circuits

## 3 Test circuits

Figure 13: Switching times test circuit for resistive load

Figure 14: Gate charge test circuit



Package information STN3P6F6

# 4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

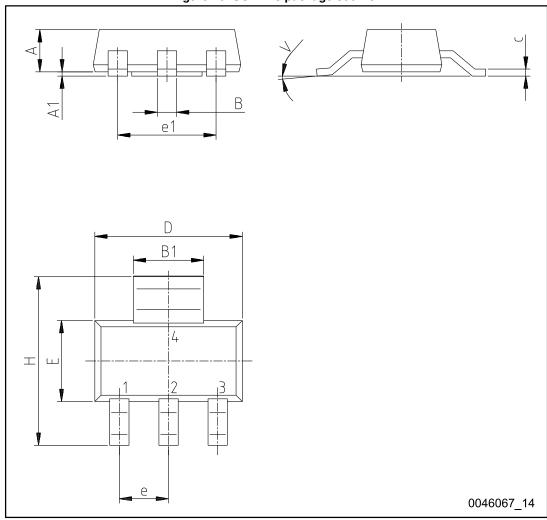
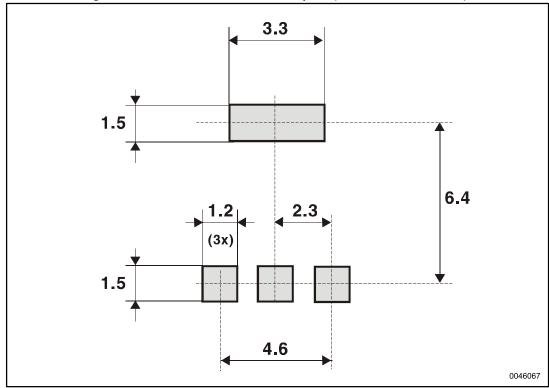




Figure 16: SOT-223 package outline

Table 8: SOT-223 package mechanical data

| Dim.   |      | mm   |      |
|--------|------|------|------|
| Diiii. | Min. | Тур. | Max. |
| A      |      |      | 1.8  |
| A1     | 0.02 |      | 0.1  |
| В      | 0.6  | 0.7  | 0.85 |
| B1     | 2.9  | 3    | 3.15 |
| С      | 0.24 | 0.26 | 0.35 |
| D      | 6.3  | 6.5  | 6.7  |
| е      |      | 2.3  |      |
| e1     |      | 4.6  |      |
| Е      | 3.3  | 3.5  | 3.7  |
| Н      | 6.7  | 7.0  | 7.3  |
| V      |      |      | 10⁰  |

Figure 17: SOT-223 recommended footprint (dimensions are in mm)



**Revision history** STN3P6F6

#### **Revision history** 5

Table 9: Document revision history

| Date        | Revision | Changes                                                                                                                                                                                    |
|-------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31-Oct-2012 | 1        | First release.                                                                                                                                                                             |
| 09-Nov-2012 | 2        | Modified: note 1 in Table 3                                                                                                                                                                |
| 16-Jan-2013 | 3        | Document status promoted from preliminary data to production data                                                                                                                          |
| 14-Mar-2013 | 4        | Modified: Figure 1, 3, Ciss, Coss, Crss typical values in Table 5                                                                                                                          |
| 07-Oct-2016 | 5        | Updated title, features and description in cover page.  Updated silhouette and Figure 1: "Internal schematic diagram".  Updated Figure 16: "SOT-223 package outline".  Minor text changes. |

### **IMPORTANT NOTICE - PLEASE READ CAREFULLY**

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

