

Schottky Barrier Rectifier

Qualified per MIL-PRF-19500/554

Qualified Levels: JAN, JANTX, and JANTXV

DESCRIPTION

This schottky barrier diode provides low forward voltage and offers military grade qualifications for high-reliability applications. This rugged DO-213AA rectifier is ideal for extreme environments. It is applicable as a free-wheeling diode, for reverse battery protection, and power supplies and converters.

DO-213AA (DO-5) Package

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- Internal solder bond construction.
- Hermetically sealed (welded).
- 1000 Amps surge rating.
- JAN, JANTX, and JANTXV qualifications are available per MIL-PRF-19500/554.
- RoHS compliant devices available by adding "e3" suffix (commercial grade only).

APPLICATIONS / BENEFITS

- Metal and glass construction.
- · Reverse energy tested.
- Fast recovery.

MAXIMUM RATINGS @ T_A = +25 °C unless otherwise stated

Parameters/Test Conditions	Symbol	Value	Unit
Junction and Storage Temperature	T_J and T_{STG}	-55 to +175	°C
Thermal Resistance Junction-to-Case	Rejc	1.0	°C/W
Reverse Voltage, Repetitive Peak and Working Peak Reverse Voltage (1)	V _{RRM} and V _{RWM}	45	V
Reverse Voltage, Nonrepetitive Peak	V_{RSM}	54	V
Reverse Voltage (1)	V_{R}	45	V
Surge Peak Forward Current @ 8.3 ms half-sine wave	I _{FSM}	1000	Α
Average Forward Current 50% duty cycle square wave @ $T_C = +115 {}^{\circ}\!$	I _{FM}	60	Α
Average Rectified Output Current @ T _C = +115 °C (3)	I _O	54	Α
Solder Pad Temperature @ 10 s		260	ōС

- NOTES: 1. Full rated V_{RRM} and V_{RWM} with 50% duty cycle is applicable over the range of $T_C = -55^{\circ}C$ to +173°C for $I_{FM} = 0$. Full rated continuous V_R (dc) is applicable over the temperature range of $T_C = -55$ to +166°C. When $V_R = 45$ V and $T_C = +166^{\circ}C$, then $T_J = 175$ °C.
 - Average current with a 50 percent duty cycle square wave including reverse amplitude equal to the magnitude of full rated V_{RWM}. (See <u>Figure 4</u>)
 - Average current with an applied sine wave peak value equal to the magnitude of full rated V_{RWM}. For temperature-current derating curves, see <u>Figure 4</u>.

MSC - Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 (978) 620-2600 Fax: (978) 689-0803

MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:

www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Hermetically sealed metal and glass case body.
- TERMINALS: Tin-lead plated or RoHS compliant matte-tin (commercial grade only) on nickel.
- MARKING: Part number.
- POLARITY: Cathode to stud.
- MOUNTING HARDWARE: Nut, flat steel washer and lock washer available upon request.
- WEIGHT: Approximately 14 grams.
- See Package Dimensions on last page.

PART NOMENCLATURE

	SYMBOLS & DEFINITIONS					
Symbol	Definition					
f	Frequency					
I _{FM}	Forward Current: The current flowing from the external circuit into the anode terminal. Also see first page ratings and test conditions for I _{FM} with 50% duty cycle square wave.					
I _{FSM}	Surge Peak Forward Current: The forward current including all nonrepetitive transient currents but excluding all repetitive transients (ref JESD282-B).					
Io	Average Rectified Forward Current: The output current averaged over a full cycle with a 50 Hz or 60 Hz sine-wave input and a 180 degree conduction angle.					
V_{FM}	Maximum Forward Voltage					
V_R	Reverse Voltage: A positive dc cathode-anode voltage below the breakdown region.					
V_{RRM}	Repetitive Peak Reverse Voltage: The peak reverse voltage including all repetitive transient voltages but excluding all non-repetitive transient voltages.					
V_{RSM}	Non-Repetitive Peak Inverse Voltage: The peak reverse voltage including all non-repetitive transient voltages but excluding all repetitive transient voltages.					
V _{RWM}	Working Peak Reverse Voltage: The peak voltage excluding all transient voltages (ref JESD282-B). Also sometimes known historically as PIV.					

ELECTRICAL CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Тур.	Unit
Forward Voltage $I_{FM} = 120 \text{ A}, T_C = 25 \text{ °C *}$ $I_{FM} = 60 \text{ A}, T_C = 25 \text{ °C *}$ $I_{FM} = 10 \text{ A}, T_C = 25 \text{ °C *}$	V _{FM}		0.82 0.68 0.51		V
Reverse Current Leakage $V_{RM}=45~V,~T_J=25~^{\circ}C$ $V_{RM}=45~V,~T_J=175~^{\circ}C~^{*}$ $V_{RM}=45~V,~T_J=125~^{\circ}C~^{*}$ $V_{RM}=45~V,~T_C=-55~^{\circ}C~^{*}$	I _{RM}		2.0 200 60 400		mA
Junction Capacitance $V_R = 5 \text{ V}, f = 1 \text{ MHz}, 100 \text{ KHz} \le f \le 1 \text{ MHz}$	Сл		3000		pF

^{*}Pulse test: pulse width 300 μsec , duty cycle 2%

GRAPHS

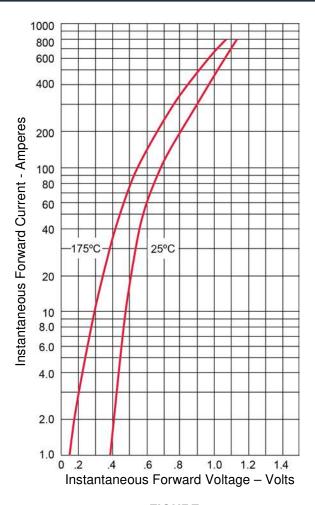


FIGURE 1
Typical Forward Characteristics

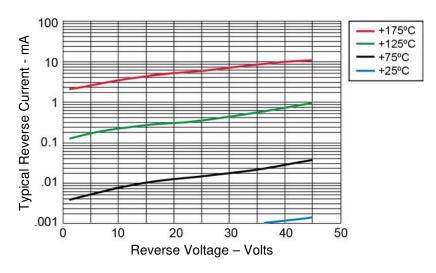


FIGURE 2
Typical Reverse Characteristics

GRAPHS

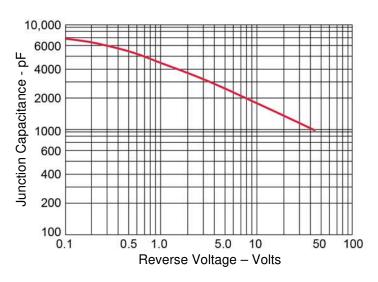
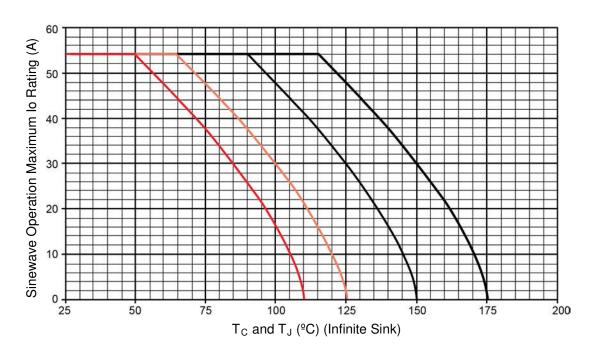
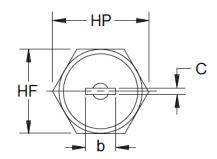
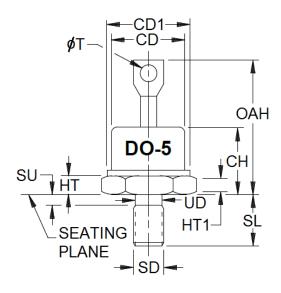



FIGURE 3
Typical Junction Capacitance


FIGURE 4


Temperature Current Derating Curve

(Derate design curve constrained by the maximum rated junction temperature ($T_J \le 175^{\circ}\text{C}$) and current rating specified. Derate design curves chosen at $T_J \le 150^{\circ}\text{C}$, 125 °C, and 110 °C to show current rating where most users want to limit T_J in their application.)

PACKAGE DIMENSIONS

	Dimensions				
Ltr	Inch		Millimeters		Notes
	Min	Max	Min	Max	
С	-	0.375	ı	9.53	7
C1	0.025	0.080	0.64	2.03	
CD	-	0.667	-	16.94	
СН	-	0.450	-	11.43	
HF	0.669	0.688	17.00	17.48	
HT1	0.115	0.200	2.92	5.08	
HT2	0.060	-	1.52	-	6
OAH	0.750	1.00	19.05	25.40	
SD	-	-	-	-	5
SL	0.422	0.453	10.72	11.51	
SU	-	0.090	-	2.29	4
UD	0.220	0.249	5.59	6.32	
ΦТ	0.140	0.175	3.56	4.45	

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for information only.
- 3. Units must not be damaged by torque of 30 inch-pound applied to .25-28 UNF-2B nut assembled on thread.
- 4. Length of incomplete or undercut threads of UD.
- 5. Maximum pitch diameter of plated threads shall be basic pitch diameter 0.2268 inch (5.76 mm) reference (FED-STD-H28, "Screw-Thread Standards for Federal Services").
- 6. A chamfer or undercut on one or both ends of the hex portion is optional; minimum base diameter at seating plane 0.600 inch (15.24 mm).
- 7. The angular orientation and peripheral configuration of terminal 1 is undefined, however, the major surfaces over dimensions C and C1 shall be flat and the minimum cross-sectional area from the hole to any point on the periphery shall be 0.0025 in² (1.59 mm²).
- 8. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.