

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

SN54178 . . . J OR W PACKAGE

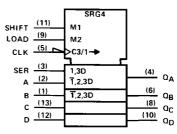
- Typical Maximum Clock Frequency . . . 39 MHz
- Three Operating Modes:

Synchronous Parallel Load Right Shift Hold (Do Nothing)

- Negative-Edge-Triggered Clocking
- D-C Coupling Symplifies System Designs

description

These shift registers utilize fully d-c coupled storage elements and feature synchronous parallel inputs and parallel outputs.

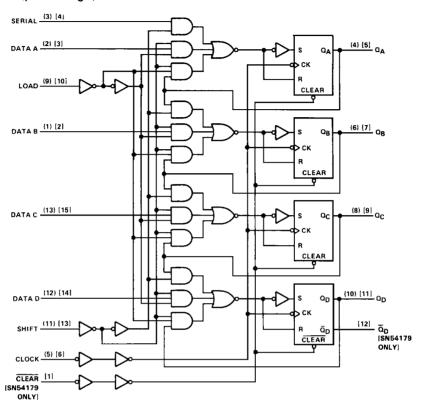

Parallel loading is accomplished by taking the shift input low, applying the four bits of data, and taking the load input high. The data is loaded into the associated flip-flop synchronously and appears at the outputs after a high-to-low transition of the clock. During loading, serial data flow is inhibited.

Shift right is also accomplished on the falling edge of the clock pulse when the shift input is high regardless of the level of the load input. Serial data for this mode is entered at the serial data input.

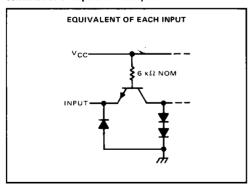
When both the shift and load inputs are low, clocking of the register can continue; however, data appearing at each output is fed back to the flip-flop input creating a mode in which the data is held unchanged. Thus, the system clock may be left free-running without changing the contents of the register.

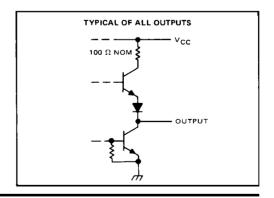
(TOP VIEW) ď١ 14D VCC 13D C Α SER □3 12D D Q_{A} 11 SHIFT CLK ∏5 10 QD Q_{R} 9 LOAD GND ФC

logic symbol†


[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12

FUNCTION TABLE


INPUTS						OUTPUTS					
SHIFT	SHIFT LOAD CLOCK SERIAL PARALLEL		٥.	0-		0-					
SHIFT	LUAD	CLOCK	SERIAL	Α	В	С	D	QΑ	σB	ОC	αD
X	Х	н	×	×	х	Х	Х	QAO	Q _{B0}	σco	σDO
L	Ļ	1	х	х	Х	Х	Х	QAO	σ^{B0}	a_{CO}	a_{DO}
L	Н	Ţ	x	а	b	С	d	а	ь	С	d
н	×	1	н	х	Х	Х	Х	н	Q_{An}	α_{Bn}	Q_{Cn}
Н	X	4	L	×	Х	X	Х	L	q_{An}	α_{Bn}	a C⊓


- H = high level (steady state), L = low level (steady state)
- X = irrelevant (any input, including transitions)
- 1 = transition from high to low level
- a, b, c, d = the level of steady state input at inputs A, B, C, or D, respectively.
- Q_{AO} , Q_{BO} , Q_{CO} , Q_{DO} = the level of Q_{A} , Q_{B} , Q_{C} , or \overline{Q}_{D} , respectively, before the indicated steady-state input conditions were established.
- Q_{An} , Q_{Bn} , Q_{Cn} = the level of Q_{A} , Q_{B} , or Q_{C} , respectively, before the most-recent \downarrow transition of the clock.

logic diagram (positive logic)

schematics of inputs and outputs

SN54178, SN74178 4-BIT PARALLEL-ACCESS SHIFT REGISTERS

absolute maximum ratings over	er operating free-air temperatur	re range (unless otherwise noted)
-------------------------------	----------------------------------	-----------------------------------

Supply voltage, VCC (see Note 1)		 	 7 V
Input voltage		 	 5.5 V
Operating free-air temperature range:	SN54178	 	 -55°C to 125°C
	SN74178	 	 0°C to 70°C
Storage temperature range		 	 -65°C to 150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

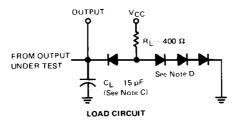
			SN54178			SN74178		
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}			5	5.5	4.75	5	5.25	V
High-level output current, IOH				- 800			-800	μΑ
Low-level output current, IQL				16			16	mA
Clock frequency, f _{clock}				25	0		25	MHz
Width of clock or clear pulse, tw (see	Figure 1)	20			20			ns
Setup time t _{SU} (see Figure 1)	Shift (H or L) or load	35			35			ns
	Data	30			30			
Hold time at any input, th		5			5			ns
Operating free-air temperature, TA		- 55		125	0		70	°C

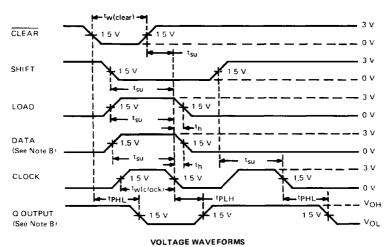
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	DAD 444777.D	TEST CONDITIONS†	SN54178			SN74178			UNIT
PARAMETER		TEST CONDITIONS.	MIN	MIN TYPE MAX MIN		TYP‡ MAX			
VIH	High-level input voltage		2			2			٧
v_{IL}	Low-level input voltage				0.8			0.8	٧
Vik	Input clamp voltage	V _{CC} = MIN, I _I = -12 mA			-1.5			-15	٧
νон	High-level output voltage	V _{CC} = MIN, V _{IH} = 2 V V _{IL} = 0 8 V, I _{OH} = -800 µA	2 4	3.4		2.4	34		V
VOL	Low-level output voltage	V _{CC} = MIN, V _{1H} = 2 V, V _{IL} = 0.8 V, I _{OL} = 16 mA		0 2	0 4		0 2	0 4	٧
Ц	Input current at maximum input voltage	V _{CC} = MAX, V _I = 55 V		_	1			1	mΑ
ЧН	High-level input current	V _{CC} = MAX, V ₁ = 2.4 V	Î		40			40	μА
ЧL	Low-level input current	V _{CC} = MAX, V _I = 0.4 V			-16			-1.6	mA
los	Short-circuit output current §	V _{CC} = MAX	-20		-57	-18		-57	mΑ
¹cc	Supply current	V _{CC} = MAX, See Note 2		46	70		46	75	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommanded operating conditions for the applicable device type.

NOTE 2 ICC is measured as follows:


- a) 4.5 V is applied to serial inputs, load, shift, and clear,
- b) Parallel inputs A through D are grounded.
- c) 4.5 V is momentarily applied to clock which is then grounded



[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C.

Not more than one output should be shorted at a time.

PARAMETER MEASUREMENT INFORMATION

- NOTES: A. Input pulses are supplied by generators having the following characteristics: $t_{TLH} \le 10$ ns, $t_{THL} \le 10$ ns, $z_{out} \approx 50 \Omega$
 - 8. Data input and Q output are any related pair. Serial and other data inputs are at GND. Serial data input is tested in conjunction with QA output in the shift mode.
 - C. C_L includes probe and jig capacitance
 - D. All diodes are 1N3064 or equivalent.

FIGURE 1-SWITCHING TIMES

TTL Devices

[†]f_{max} = Maximum clock frequency

tpHL = Propagation delay time, high-to-low-level output

tpLH = Propagation delay time, low-to-high-level output