

N-channel TrenchMOS standard level FET

Rev. 01 — 1 July 2010

**Product data sheet** 

## 1. Product profile

### 1.1 General description

Standard level gate drive N-channel enhancement mode Field-Effect Transistor (FET) in a plastic package using advanced TrenchMOS technology. This product has been designed and qualified to the appropriate AEC standard for use in high performance automotive applications.

### **1.2 Features and benefits**

- AEC Q101 compliant
- Avalanche robust

### **1.3 Applications**

- 12V Motor, lamp and solenoid loads
- High performance automotive power systems

- Suitable for standard level gate drive
- Suitable for thermally demanding environment up to 175°C rating
- High performance Pulse Width Modulation (PWM) applications

nexperia

### 1.4 Quick reference data

#### Table 1. Quick reference data

| $\begin{array}{c c c c c c c } V_{DS} & drain-source \\ voltage \\ \hline \end{tabular} V_{GS} & figure \\ \hline \end{tabular} V_{MD} & figure \\ \hline \end{tabular} V_{GS} & figure \\ \hline \end{tabular} V_{G$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |                   |                                                         |            |     |     |     |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------|---------------------------------------------------------|------------|-----|-----|-----|------|
| voltageVIpdrain currentVVGS = 10 V; Tj = 25 °C;[1]Ptottotal power<br>dissipationTTmb = 25 °C; see Figure 2<br>dissipationStatic characteristicsRDSondrain-source<br>on-state<br>resistanceVGS = 10 V; Ip = 25 A;<br>resistance3.84.5rAvalanche ruggednessEDS(AL)Snon-repetitive<br>drain-source<br>avalanche energyIp = 75 A; VSubscienceIp = 75 A; V329rOgpgate-drain chargeVVGS = 10 V; Ip = 25 A;<br>Tj(init) = 25 °C; unclamped21-rrOgpgate-drain chargeVVGS = 10 V; Ip = 25 °C;-2121-r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Symbol               | Parameter         | Conditions                                              |            | Min | Тур | Max | Unit |
| $\begin{array}{c c c c c c c } \hline & \text{see Figure 1} \\ \hline & \text{Ptot} & \text{total power} & \text{T}_{mb} = 25 ^{\circ}\text{C};  \text{see Figure 2} & - & - & 157 ^{\circ}\text{V} \\ \hline & \text{sissipation} \\ \hline & \text{Static characteristics} \\ \hline & \text{R}_{DSon} & \text{drain-source} & V_{GS} = 10 ^{\circ}\text{V}; ^{I}\text{I}\text{D} = 25 ^{\circ}\text{C};  \text{see Figure 12}; \\ & \text{on-state} & \text{T}_{j} = 25 ^{\circ}\text{C};  \text{see Figure 12}; \\ & \text{resistance} & \text{see Figure 13} \\ \hline & \text{Avalanche ruggedness} \\ \hline & \text{E}_{DS(AL)S} & \text{non-repetitive} & \text{I}_{D} = 75 ^{\circ}\text{A}; ^{\vee}\text{V}_{SS} = 10 ^{\vee}\text{V}; ^{\circ}\text{G} = 10 ^{\vee}\text{V}; \\ & \text{drain-source} & \text{R}_{GS} = 50 ^{\circ}\text{C}; ^{\circ}\text{uclamped} \\ \hline & \text{Dynamic characteristics} \\ \hline & \text{Q}_{GD} & \text{gate-drain charge} & \text{V}_{GS} = 10 ^{\vee}\text{V}; ^{I}\text{I}\text{D} = 25 ^{\circ}\text{C}; \\ \hline & \text{V}_{DS} = 24 ^{\vee}\text{V}; ^{I}\text{J} = 25 ^{\circ}\text{C}; \\ \hline & \text{C}_{S} = 10 ^{\vee}\text{C}; \\ \hline & \text{C}_{S} = 10 ^{\vee}\text{C}; ^{\circ}\text{C}; \\ \hline & \text{C}_{S} = 10 ^{\circ}\text{C}; \\ \hline & \text{C}_{S} = 24 ^{\vee}\text{V}; ^{I}\text{J} = 25 ^{\circ}\text{C}; \\ \hline & \text{C}_{S} = 24 ^{\vee}\text{C}; ^{\circ}\text{C}; \\ \hline & \text{C}_{S} = 24 ^{\vee}\text{C}; ^{\circ}\text{C}; \\ \hline & \text{C}_{S} = 25 ^{\circ}\text{C}; \\ \hline & \text{C}_{S} = 10 ^{\circ}\text{C}; \\ \hline & \text{C}_{S} = 24 ^{\circ}\text{C}; \\ \hline & \text{C}_{S} = 25 ^{\circ}\text{C}; \\ \hline & \text{C}_{S} = 24 ^{\circ}\text{C}; \\ \hline & \text{C}_{S} = 25 ^{\circ}\text{C}; \\ \hline & \text{C}_{S} = 10 ^{\circ}\text{C}; \\ \hline & \text{C}_{S} = 25 ^{$ | V <sub>DS</sub>      |                   | T <sub>j</sub> ≥ 25 °C; T <sub>j</sub> ≤ 175 °C         |            | -   | -   | 30  | V    |
| dissipationStatic characteristics $R_{DSon}$ drain-source<br>on-state<br>resistance $V_{GS} = 10 \text{ V}; \text{ I}_D = 25 \text{ A};$<br>$T_j = 25 °C; \text{ see Figure 12};$<br>resistance-3.84.5rAvalanche ruggedness $E_{DS(AL)S}$ non-repetitive<br>drain-source<br>avalanche energyID<br>T = 75 A; $V_{sup} \le 30 \text{ V};$<br>$T_{j(init)} = 25 °C;$ unclamped329rDynamic characteristics $Q_{GD}$ gate-drain charge $V_{GS} = 10 \text{ V};$<br>$V_{DS} = 24 \text{ V};$<br>$T_j = 25 °C;$ -21-r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I <sub>D</sub>       | drain current     | ,                                                       | <u>[1]</u> | -   | -   | 75  | A    |
| $ \begin{array}{c} R_{DSon} & \mbox{drain-source} & V_{GS} = 10 \ V; \ I_D = 25 \ A; & - & 3.8 & 4.5 \ r \\ \hline r_j = 25 \ ^\circ C; \ see \ \overline{Figure} \ 12; \\ resistance & see \ \overline{Figure} \ 13 \end{array} \\ \begin{array}{c} \textbf{Avalanche ruggedness} \\ \hline \textbf{Avalanche ruggedness} \\ \hline \textbf{E}_{DS(AL)S} & \ non-repetitive & \ I_D = 75 \ A; \ V_{sup} \le 30 \ V; & - & - & 329 \ r \\ \ drain-source & \ R_{GS} = 50 \ \Omega; \ V_{GS} = 10 \ V; \\ avalanche energy & \ T_{j(\text{init})} = 25 \ ^\circ C; \ unclamped \end{array} \\ \begin{array}{c} \textbf{Dynamic characteristics} \\ \hline \textbf{Q}_{GD} & \ gate-drain charge & \ V_{GS} = 10 \ V; \ I_D = 25 \ A; \\ \ V_{DS} = 24 \ V; \ T_j = 25 \ ^\circ C; \end{array} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P <sub>tot</sub>     |                   | T <sub>mb</sub> = 25 °C; see <u>Figure 2</u>            |            | -   | -   | 157 | W    |
| $\begin{array}{c} \text{on-state} & \text{T}_{j} = 25 \ ^{\circ}\text{C}; \ \text{see} \ \overline{Figure \ 12}; \\ \text{resistance} & \text{see} \ \overline{Figure \ 13} \end{array}$ $\begin{array}{c} \textbf{Avalanche ruggedness} \\ \hline \textbf{Avalanche ruggedness} \\ \hline \textbf{E}_{DS(AL)S} & \text{non-repetitive} & \textbf{I}_{D} = 75 \ \text{A}; \ V_{sup} \le 30 \ \text{V}; & - & - & 329 \ \text{r} \\ \text{drain-source} & \textbf{R}_{GS} = 50 \ \Omega; \ V_{GS} = 10 \ \text{V}; \\ \text{avalanche energy} & \textbf{T}_{j(\text{init})} = 25 \ ^{\circ}\text{C}; \ \text{unclamped} \end{array}$ $\begin{array}{c} \textbf{Dynamic characteristics} \\ \hline \textbf{Q}_{GD} & \text{gate-drain charge} & V_{GS} = 10 \ \text{V}; \ \textbf{I}_{D} = 25 \ \text{C}; \\ V_{DS} = 24 \ \text{V}; \ \textbf{T}_{j} = 25 \ ^{\circ}\text{C}; \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Static cha           | racteristics      |                                                         |            |     |     |     |      |
| $ \begin{array}{c} E_{DS(AL)S} & \mbox{non-repetitive} & \mbox{I}_D = 75 \ A; \ V_{sup} \leq 30 \ V; & - & - & 329 \ rr \\ & \mbox{drain-source} & & \mbox{R}_GS = 50 \ \Omega; \ V_GS = 10 \ V; \\ & \mbox{avalanche energy} & \mbox{T}_{j(\text{init})} = 25 \ ^\circC; \ unclamped \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R <sub>DSon</sub>    | on-state          | $T_j = 25 \text{ °C}; \text{ see } Figure 12;$          |            | -   | 3.8 | 4.5 | mΩ   |
| $\begin{array}{c} \mbox{drain-source} & R_{GS} = 50 \ \Omega; \ V_{GS} = 10 \ V; \\ \mbox{avalanche energy} & T_{j(init)} = 25 \ ^{\circ}C; \ unclamped \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Avalanche            | e ruggedness      |                                                         |            |     |     |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E <sub>DS(AL)S</sub> | drain-source      | $R_{GS} = 50 \Omega; V_{GS} = 10 V;$                    |            | -   | -   | 329 | mJ   |
| $V_{\rm DS} = 24 \text{ V}; \text{ T}_{\rm j} = 25 \text{ °C};$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dynamic o            | characteristics   |                                                         |            |     |     |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Q <sub>GD</sub>      | gate-drain charge | $V_{DS} = 24 \text{ V}; \text{ T}_{j} = 25 \text{ °C};$ |            | -   | 21  | -   | nC   |

N-channel TrenchMOS standard level FET

[1] Continuous current is limited by package.

## 2. Pinning information

| Table 2. | Pinning | information                       |                    |                |
|----------|---------|-----------------------------------|--------------------|----------------|
| Pin      | Symbol  | Description                       | Simplified outline | Graphic symbol |
| 1        | G       | gate                              |                    | -              |
| 2        | D       | drain <sup>[1]</sup>              | mb                 |                |
| 3        | S       | source                            |                    |                |
| mb       | D       | mounting base; connected to drain |                    | mbb076 S       |
|          |         |                                   | SOT428 (DPAK)      |                |

[1] It is not possible to make connection to pin 2.

## 3. Ordering information

#### Table 3.Ordering information

| Type number  | Package |                                                                                 |         |
|--------------|---------|---------------------------------------------------------------------------------|---------|
|              | Name    | Description                                                                     | Version |
| BUK724R5-30C | DPAK    | plastic single-ended surface-mounted package (DPAK); 3 leads (one lead cropped) | SOT428  |

N-channel TrenchMOS standard level FET

## 4. Limiting values

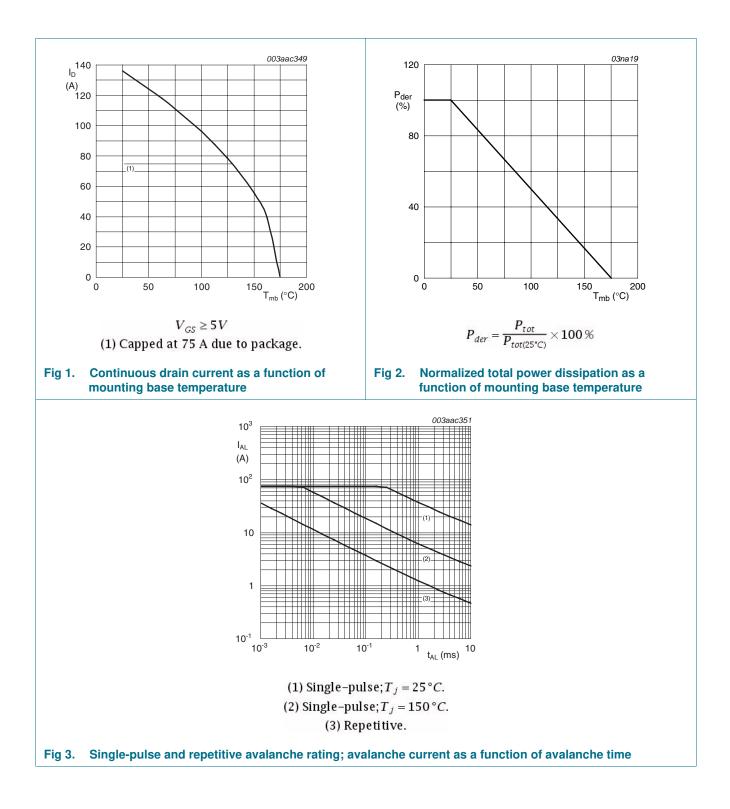
#### Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

| Symbol               | Parameter                                          | Conditions                                                                                                                                                                                       |                  | Min | Тур | Max | Unit |
|----------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----|-----|-----|------|
| V <sub>DS</sub>      | drain-source voltage                               | T <sub>j</sub> ≥ 25 °C; T <sub>j</sub> ≤ 175 °C                                                                                                                                                  |                  | -   | -   | 30  | V    |
| V <sub>DGR</sub>     | drain-gate voltage                                 | R <sub>GS</sub> = 20 kΩ                                                                                                                                                                          |                  | -   | -   | 30  | V    |
| V <sub>GS</sub>      | gate-source voltage                                |                                                                                                                                                                                                  |                  | -20 | -   | 20  | V    |
| I <sub>D</sub>       | drain current                                      | $V_{GS}$ = 10 V; T <sub>j</sub> = 25 °C; see <u>Figure 1</u> ;<br>see <u>Figure 4</u>                                                                                                            | <u>[1]</u>       | -   | -   | 136 | A    |
|                      |                                                    | $T_{mb}$ = 100 °C; $V_{GS}$ = 10 V; see Figure 1                                                                                                                                                 | [2]              | -   | -   | 75  | А    |
|                      |                                                    | $V_{GS}$ = 10 V; T <sub>j</sub> = 25 °C; see <u>Figure 1</u>                                                                                                                                     | [2]              | -   | -   | 75  | А    |
| I <sub>DM</sub>      | peak drain current                                 | t <sub>p</sub> ≤ 10 μs; pulsed; T <sub>j</sub> = 25 °C;<br>see <u>Figure 4</u>                                                                                                                   |                  | -   | -   | 543 | A    |
| P <sub>tot</sub>     | total power dissipation                            | T <sub>mb</sub> = 25 °C; see <u>Figure 2</u>                                                                                                                                                     |                  | -   | -   | 157 | W    |
| T <sub>stg</sub>     | storage temperature                                |                                                                                                                                                                                                  |                  | -55 | -   | 175 | °C   |
| Tj                   | junction temperature                               |                                                                                                                                                                                                  |                  | -55 | -   | 175 | °C   |
| Source-drain         | diode                                              |                                                                                                                                                                                                  |                  |     |     |     |      |
| I <sub>S</sub>       | source current                                     | T <sub>mb</sub> = 25 °C                                                                                                                                                                          | [2]              | -   | -   | 75  | А    |
|                      |                                                    |                                                                                                                                                                                                  | [1]              | -   | -   | 136 | А    |
| I <sub>SM</sub>      | peak source current                                | $t_p \le 10 \ \mu s$ ; pulsed; $T_{mb} = 25 \ ^{\circ}C$                                                                                                                                         |                  | -   | -   | 543 | А    |
| Avalanche rug        | ggedness                                           |                                                                                                                                                                                                  |                  |     |     |     |      |
| E <sub>DS(AL)S</sub> | non-repetitive<br>drain-source<br>avalanche energy | $\label{eq:ID} \begin{array}{l} I_D = 75 \text{ A}; \ V_{sup} \leq 30 \text{ V}; \ R_{GS} = 50 \ \Omega; \\ V_{GS} = 10 \text{ V}; \ T_{j(init)} = 25 \ ^\circ\text{C}; \ unclamped \end{array}$ |                  | -   | -   | 329 | mJ   |
| E <sub>DS(AL)R</sub> | repetitive drain-source avalanche energy           | see Figure 3                                                                                                                                                                                     | <u>[3][4][5]</u> | -   | -   | -   | J    |

[1] Current is limited by power dissipation chip rating.

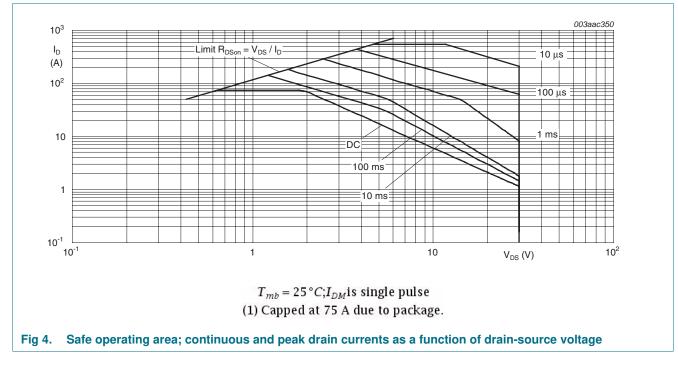
[2] Continuous current is limited by package.


[3] Single-pulse avalanche rating limited by maximum junction temperature of 175 °C.

[4] Repetitive avalanche rating limited by average junction temperature of 170 °C.

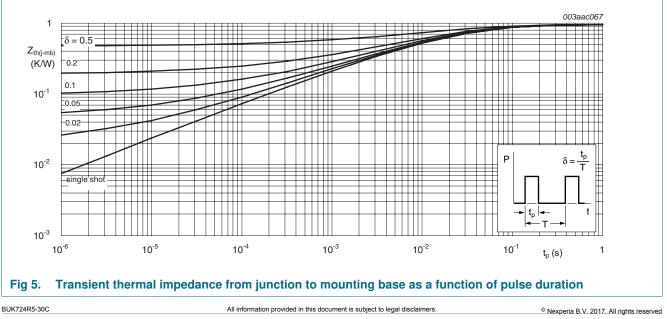
[5] Refer to application note AN10273 for further information.

# BUK724R5-30C


#### N-channel TrenchMOS standard level FET



BUK724R5-30C


# BUK724R5-30C

### N-channel TrenchMOS standard level FET



## 5. Thermal characteristics

| Table 5.              | Thermal characteristics                                 |                     |     |      |      |      |
|-----------------------|---------------------------------------------------------|---------------------|-----|------|------|------|
| Symbol                | Parameter                                               | Conditions          | Min | Тур  | Max  | Unit |
| $R_{\text{th(j-mb)}}$ | thermal resistance<br>from junction to<br>mounting base | see <u>Figure 5</u> | -   | 0.65 | 0.95 | K/W  |
| R <sub>th(j-a)</sub>  | thermal resistance<br>from junction to<br>ambient       |                     | -   | 70   | -    | K/W  |



N-channel TrenchMOS standard level FET

## 6. Characteristics

| Symbol               | Parameter                        | Conditions                                                                                                                                  | Min | Тур  | Max  | Unit |
|----------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----|------|------|------|
| Static chara         | cteristics                       |                                                                                                                                             |     |      |      |      |
| V <sub>(BR)DSS</sub> | drain-source                     | I <sub>D</sub> = 0.25 mA; V <sub>GS</sub> = 0 V; T <sub>i</sub> = 25 °C                                                                     | 30  | -    | -    | V    |
| ()                   | breakdown voltage                | I <sub>D</sub> = 0.25 mA; V <sub>GS</sub> = 0 V; T <sub>i</sub> = -55 °C                                                                    | 27  | -    | -    | V    |
| V <sub>GS(th)</sub>  | gate-source threshold voltage    | $I_D = 1 \text{ mA}; V_{DS} = V_{GS}; T_j = 25 \text{ °C};$<br>see <u>Figure 10</u> ; see <u>Figure 11</u>                                  | 2   | 3    | 4    | V    |
|                      |                                  | I <sub>D</sub> = 1 mA; V <sub>DS</sub> = V <sub>GS</sub> ; T <sub>j</sub> = 175 °C;<br>see <u>Figure 10</u>                                 | 1   | -    | -    | V    |
|                      |                                  | I <sub>D</sub> = 1 mA; V <sub>DS</sub> = V <sub>GS</sub> ; T <sub>j</sub> = -55 °C;<br>see <u>Figure 10</u>                                 | -   | -    | 4.4  | V    |
| I <sub>DSS</sub>     | drain leakage current            | V <sub>DS</sub> = 30 V; V <sub>GS</sub> = 0 V; T <sub>j</sub> = 175 °C                                                                      | -   | -    | 500  | μA   |
|                      |                                  | $V_{DS}$ = 30 V; $V_{GS}$ = 0 V; $T_j$ = 25 °C                                                                                              | -   | 0.02 | 1    | μA   |
| I <sub>GSS</sub>     | gate leakage current             | $V_{DS}$ = 0 V; $V_{GS}$ = 20 V; $T_j$ = 25 °C                                                                                              | -   | 2    | 100  | nA   |
|                      |                                  | V <sub>DS</sub> = 0 V; V <sub>GS</sub> = -20 V; T <sub>j</sub> = 25 °C                                                                      | -   | 2    | 100  | nA   |
| R <sub>DSon</sub>    | drain-source on-state resistance | V <sub>GS</sub> = 10 V; I <sub>D</sub> = 25 A; T <sub>j</sub> = 175 °C;<br>see <u>Figure 12</u>                                             | -   | -    | 8.5  | mΩ   |
|                      |                                  | V <sub>GS</sub> = 10 V; I <sub>D</sub> = 25 A; T <sub>j</sub> = 25 °C;<br>see <u>Figure 12</u> ; see <u>Figure 13</u>                       | -   | 3.8  | 4.5  | mΩ   |
| Dynamic ch           | aracteristics                    |                                                                                                                                             |     |      |      |      |
| Q <sub>G(tot)</sub>  | total gate charge                | $I_D = 25 \text{ A}; V_{DS} = 24 \text{ V}; V_{GS} = 10 \text{ V};$<br>$T_j = 25 \text{ °C}; \text{ see } \frac{\text{Figure } 14}{14}$     | -   | 62   | -    | nC   |
| Q <sub>GS</sub>      | gate-source charge               | I <sub>D</sub> = 25 A; V <sub>DS</sub> = 24 V; V <sub>GS</sub> = 10 V;<br>T <sub>j</sub> 25 °C; see <u>Figure 14</u>                        | -   | 14   | -    | nC   |
| Q <sub>GD</sub>      | gate-drain charge                | I <sub>D</sub> = 25 A; V <sub>DS</sub> = 24 V; V <sub>GS</sub> = 10 V;<br>T <sub>j</sub> = 25 °C; see <u>Figure 14</u>                      | -   | 21   | -    | nC   |
| C <sub>iss</sub>     | input capacitance                | $V_{GS}$ = 0 V; $V_{DS}$ = 25 V; f = 1 MHz;                                                                                                 | -   | 2820 | 3760 | pF   |
| C <sub>oss</sub>     | output capacitance               | $T_j = 25 \text{ °C}; \text{ see } \frac{\text{Figure } 15}{15}$                                                                            | -   | 670  | 804  | pF   |
| C <sub>rss</sub>     | reverse transfer capacitance     |                                                                                                                                             | -   | 422  | 580  | pF   |
| t <sub>d(on)</sub>   | turn-on delay time               |                                                                                                                                             | -   | 24   | -    | ns   |
| t <sub>r</sub>       | rise time                        | $V_{DS} = 25 \text{ V}; \text{ R}_{L} = 1 \Omega; V_{GS} = 10 \text{ V}; \text{ R}_{G(ext)} 10 \Omega; \text{ T}_{j} = 25 ^{\circ}\text{C}$ | -   | 51   | -    | ns   |
| d(off)               | turn-off delay time              | $V_{DS}$ = 25 V; $R_{L}$ = 1 $\Omega$ ; $V_{GS}$ = 10 V;                                                                                    | -   | 85   | -    | ns   |
| f                    | fall time                        | R <sub>G(ext)</sub> = 10 Ω; T <sub>j</sub> = 25 °C                                                                                          | -   | 62   | -    | ns   |
| -D                   | internal drain<br>inductance     | measured from drain to centre of die ; $T_j$ = 25 $^\circ\text{C}$                                                                          | -   | 2.5  | -    | nH   |
| L <sub>S</sub>       | internal source<br>inductance    | measured from source lead to source<br>bond pad ; T <sub>i</sub> = 25 °C                                                                    | -   | 7.5  | -    | nH   |

Symbol

# BUK724R5-30C

Unit

Max

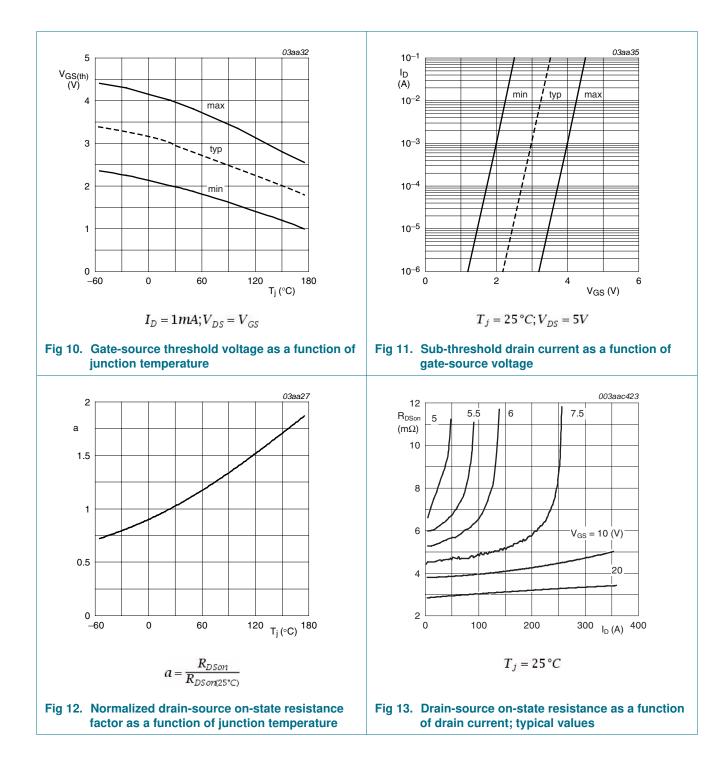
### N-channel TrenchMOS standard level FET

Тур

Min

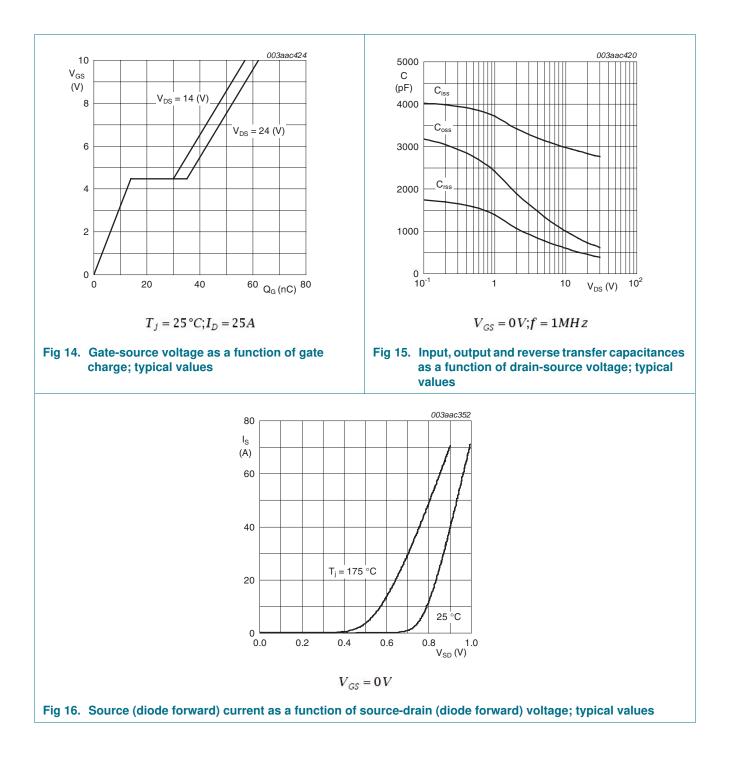
| Source-dra                                                           | ain diada                                             |                                                                      |                                                 |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |            |
|----------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------|
|                                                                      |                                                       | 1 - 20 $(1) - 0)$                                                    | /. T _ 25 °C.                                   |                         | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                     | \ <i>\</i> |
| V <sub>SD</sub>                                                      | source-drain voltage                                  | I <sub>S</sub> = 20 A; V <sub>GS</sub> = 0 \<br>see <u>Figure 16</u> | , 1 <sub>j</sub> = 25°C,                        | -                       | 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.2                    | V          |
| rr                                                                   | reverse recovery time                                 | $I_{S} = 20 \text{ A}; \text{ d}I_{S}/\text{d}t = -2$                | 100 A/µs;                                       | -                       | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                      | ns         |
| Qr                                                                   | recovered charge                                      | V <sub>GS</sub> = -10 V; V <sub>DS</sub> =                           | 25 V; T <sub>j</sub> = 25 °C                    | -                       | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                      | nC         |
|                                                                      |                                                       | 003aac408                                                            |                                                 |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 003aac353              |            |
| 400                                                                  | 15                                                    |                                                                      | 80                                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |            |
|                                                                      | 20                                                    |                                                                      | (A)                                             |                         | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                      |            |
| (A)                                                                  | 10                                                    |                                                                      |                                                 |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |            |
| 300 -                                                                | V <sub>GS</sub> = 7.5 (V)                             |                                                                      | 60                                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |            |
|                                                                      | V <sub>GS</sub> = 7.5 (V)                             |                                                                      |                                                 |                         | +//                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |            |
| 200                                                                  |                                                       | 7                                                                    | 40                                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |            |
| 200                                                                  |                                                       | 6                                                                    | 40                                              | T <sub>i</sub> = 175 °C | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |            |
| -                                                                    |                                                       |                                                                      |                                                 |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |            |
| 100                                                                  |                                                       | 5.5                                                                  | 20                                              |                         | ∕⊥/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |            |
|                                                                      |                                                       | 5                                                                    |                                                 |                         | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | °C                     |            |
| -                                                                    |                                                       | 4.5                                                                  |                                                 |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |            |
| 14                                                                   |                                                       |                                                                      |                                                 |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |            |
| 0                                                                    |                                                       | 8 10                                                                 | 0                                               | 0                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ~                      |            |
| 0                                                                    | 0 2 4 6                                               | 8 10<br>V <sub>DS</sub> (V)                                          | 0                                               | 2                       | 4 V <sub>GS</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (V) 6                  |            |
|                                                                      | $T_j = 25 ^{\circ}C$                                  | 8 10<br>V <sub>DS</sub> (V)                                          | 0                                               |                         | • 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , (V) 6                |            |
| 0                                                                    | $T_j = 25 ^{\circ}C$                                  |                                                                      | 0                                               | $V_{DS} = 25 V$         | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |            |
| 0<br>Fig 6. O                                                        | $T_j = 25 ^{\circ}C$<br>Output characteristics: drain | n current as a                                                       | 0<br>Fig 7. Transfer c                          | $V_{DS} = 25 V_{DS}$    | /<br>: drain c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | current a              |            |
| 0<br>Fig 6. O                                                        | $T_j = 25 ^{\circ}C$                                  | n current as a<br>tage; typical values                               | 0<br>Fig 7. Transfer c                          | $V_{DS} = 25 V$         | /<br>: drain c<br>voltage;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | current a<br>; typical |            |
| 0<br>Fig 6. O                                                        | $T_j = 25 ^{\circ}C$<br>Output characteristics: drain | n current as a                                                       | 0<br>Fig 7. Transfer c<br>function o            | $V_{DS} = 25 V_{DS}$    | /<br>: drain c<br>voltage;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | current a              |            |
| 6 Fig 6. O<br>fu                                                     | $T_j = 25 ^{\circ}C$<br>Output characteristics: drain | n current as a<br>tage; typical values                               | 0<br>Fig 7. Transfer of<br>function o           | $V_{DS} = 25 V_{DS}$    | /<br>: drain c<br>voltage;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | current a<br>; typical |            |
| 0<br>Fig 6. O<br>fu                                                  | $T_j = 25 ^{\circ}C$<br>Output characteristics: drain | n current as a<br>tage; typical values                               | 0<br>Fig 7. Transfer c<br>function o            | $V_{DS} = 25 V_{DS}$    | /<br>: drain c<br>voltage;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | current a<br>; typical |            |
| 6 Fig 6. O<br>fu                                                     | $T_j = 25 ^{\circ}C$<br>Output characteristics: drain | n current as a<br>tage; typical values                               | 0<br><b>Fig 7. Transfer c</b><br>function o     | $V_{DS} = 25 V_{DS}$    | /<br>: drain c<br>voltage;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | current a<br>; typical |            |
| 6<br>Fig 6. O<br>fu                                                  | $T_j = 25 ^{\circ}C$<br>Output characteristics: drain | n current as a<br>tage; typical values                               | 0<br>Fig 7. Transfer c<br>function o            | $V_{DS} = 25 V_{DS}$    | /<br>: drain c<br>voltage;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | current a<br>; typical |            |
| Fig 6. O<br>fu<br>g <sub>fs</sub><br>(S)<br>60                       | $T_j = 25 ^{\circ}C$<br>Output characteristics: drain | n current as a<br>tage; typical values                               | 0<br><b>Fig 7. Transfer c</b><br>function o     | $V_{DS} = 25 V_{DS}$    | /<br>: drain c<br>voltage;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | current a<br>; typical |            |
| 6<br>Fig 6. O<br>fu                                                  | $T_j = 25 ^{\circ}C$<br>Output characteristics: drain | n current as a<br>tage; typical values                               | 0<br>Fig 7. Transfer c<br>function o            | $V_{DS} = 25 V_{DS}$    | /<br>: drain c<br>voltage;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | current a<br>; typical |            |
| Fig 6. O<br>fu<br>g <sub>fs</sub><br>(S)<br>60                       | $T_j = 25 ^{\circ}C$<br>Output characteristics: drain | n current as a<br>tage; typical values                               | 0<br>Fig 7. Transfer c<br>function o            | $V_{DS} = 25 V_{DS}$    | /<br>: drain c<br>voltage;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | current a<br>; typical |            |
| Fig 6. O<br>fu<br>g <sub>fs</sub><br>(S)<br>60<br>40                 | $T_j = 25 ^{\circ}C$<br>Output characteristics: drain | n current as a<br>tage; typical values                               | 0<br>Fig 7. Transfer c<br>function o            | $V_{DS} = 25 V_{DS}$    | /<br>: drain c<br>voltage;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | current a<br>; typical |            |
| Fig 6. O<br>fu<br>g <sub>fs</sub><br>(S)<br>60                       | $T_j = 25 ^{\circ}C$<br>Output characteristics: drain | n current as a<br>tage; typical values                               | 0<br>Fig 7. Transfer c<br>function o            | $V_{DS} = 25 V_{DS}$    | /<br>: drain c<br>voltage;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | current a<br>; typical |            |
| Fig 6. O<br>fu<br>g <sub>fs</sub><br>(S)<br>60<br>40                 | $T_j = 25 ^{\circ}C$<br>Output characteristics: drain | n current as a<br>tage; typical values                               | 0<br>Fig 7. Transfer c<br>function o            | $V_{DS} = 25 V_{DS}$    | /<br>: drain c<br>voltage;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | current a<br>; typical |            |
| Fig 6. O<br>fu<br>g <sub>fs</sub><br>(S)<br>60<br>40<br>20           | $T_j = 25 ^{\circ}C$                                  | 003aac422                                                            | 0<br>Fig 7. Transfer c<br>function o            | V <sub>DS</sub> = 25V   | /<br>contage:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2003aac421             | values     |
| Fig 6. O<br>fu<br>grs<br>(S)<br>60<br>40<br>20                       | $T_j = 25 ^{\circ}C$                                  | n current as a<br>tage; typical values                               | C<br>Fig 7. Transfer c<br>function o            | $V_{DS} = 25 V_{DS}$    | /<br>contage:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | current a<br>; typical | values     |
| Fig 6. O<br>fu<br>g <sub>fs</sub><br>(S)<br>60<br>40<br>20           | $T_j = 25 ^{\circ}C$                                  | 003aac422                                                            | <sup>0</sup><br>Fig 7. Transfer c<br>function o | V <sub>DS</sub> = 25V   | /<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions<br>contractions | 2003aac421             | values     |
| Fig 6. O<br>fu<br>g <sub>fs</sub><br>(S)<br>60<br>40<br>20<br>0<br>0 | $T_j = 25 ^{\circ}C$                                  | 003aac422                                                            | <sup>0</sup><br>Fig 7. Transfer c<br>function o | V <sub>DS</sub> = 25 V  | <pre>// : drain c voltage; //</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2003aac421             | values     |

#### Table 6. Characteristics ...continued


Parameter

Conditions

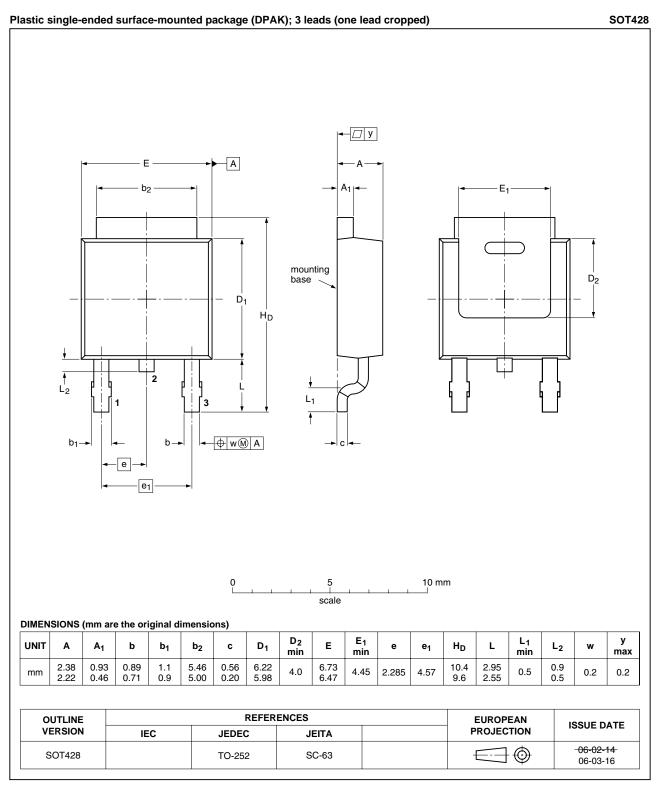
BUK724R5-30C


# BUK724R5-30C

### N-channel TrenchMOS standard level FET



# BUK724R5-30C


#### N-channel TrenchMOS standard level FET



BUK724R5-30C

#### N-channel TrenchMOS standard level FET

## 7. Package outline



#### Fig 17. Package outline SOT428 (DPAK)

BUK724R5-30C Product data sheet

N-channel TrenchMOS standard level FET

## 8. Revision history

| Table 7. Revision his | tory         |                    |               |            |
|-----------------------|--------------|--------------------|---------------|------------|
| Document ID           | Release date | Data sheet status  | Change notice | Supersedes |
| BUK724R5-30C v.1      | 20100701     | Product data sheet | -             | -          |

#### N-channel TrenchMOS standard level FET

## 9. Legal information

### 9.1 Data sheet status

| Document status[1][2]          | Product status <sup>[3]</sup> | Definition                                                                            |
|--------------------------------|-------------------------------|---------------------------------------------------------------------------------------|
| Objective [short] data sheet   | Development                   | This document contains data from the objective specification for product development. |
| Preliminary [short] data sheet | Qualification                 | This document contains data from the preliminary specification.                       |
| Product [short] data sheet     | Production                    | This document contains the product specification.                                     |

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL <u>http://www.nexperia.com</u>.

### 9.2 Definitions

**Draft** — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

**Product specification** — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and

customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

### 9.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

**Right to make changes** — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. **Suitability for use in automotive applications** — This Nexperia product has been qualified for use in automotive

applications. The product is not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia accepts no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

**Applications** — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on a weakness or default in the customer application/use or the application/use of customer's third party customer(s) (hereinafter both referred to as "Application"). It is customer's sole responsibility to check whether the Nexperia product is suitable and fit for the Application planned. Customer has to do all necessary testing for the Application in order to avoid a default of the Application and the product. Nexperia does not accept any liability in this respect.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at <u>http://www.nexperia.com/profile/terms</u>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

**No offer to sell or license** — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Product data sheet

Rev. 01 — 1 July 2010

N-channel TrenchMOS standard level FET

**Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

## **10. Contact information**

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com

#### N-channel TrenchMOS standard level FET

## 11. Contents

| 1   | Product profile1         |
|-----|--------------------------|
| 1.1 | General description1     |
| 1.2 | Features and benefits1   |
| 1.3 | Applications1            |
| 1.4 | Quick reference data1    |
| 2   | Pinning information2     |
| 3   | Ordering information2    |
| 4   | Limiting values          |
| 5   | Thermal characteristics5 |
| 6   | Characteristics6         |
| 7   | Package outline10        |
| 8   | Revision history11       |
| 9   | Legal information        |
| 9.1 | Data sheet status        |
| 9.2 | Definitions12            |
| 9.3 | Disclaimers              |
| 9.4 | Trademarks               |
| 10  | Contact information13    |