

DATA SHEET

SURFACE MOUNT MULTILAYER CERAMIC CAPACITORS

Automotive grade Array

NPO/X7R |6 V TO 50 V sizes 0508 (4 x 0402) / 0612 (4 x 0603)

RoHS compliant & Halogen Free

YAGEO

YAGEO

Surface-Mount Ceramic Multilayer Capacitors Automotive Array NP0/X7R 16 V to 50 V

<u>SCOPE</u>

This specification describes Automotive grade NP0/X7R series chip capacitors with lead-free terminations and used for automotive equipments.

APPLICATIONS

- Professional electronics
- High density consumer electronics

FEATURES

- AEC-Q200 qualified
- MSL class: MSL I
- AC series soldering is compliant with J-STD-020D
- 0508 (4x0402) / 0612 (4x0603) capacitors (of the same capacitance value) per array
- Less than 50% board space of an equivalent discrete component
- Increased throughout, by time saved in mounting
- RoHS compliant & Halogen free
- The capacitors are 100% performed by automatic optical inspection prior to taping.

ORDERING INFORMATION - GLOBAL PART NUMBER

All part numbers are identified by the series, size, tolerance, TC material, packing style, voltage, process code, termination and capacitance value.

YAGEO BRAND ordering code GLOBAL PART NUMBER (PREFERRED)

AC <u>xxxx</u> <u>x</u> <u>x</u> <u>xxx</u> <u>x</u> B <u>x</u> <u>xxx</u> (1) (2) (3) (4) (5) (6) (7)

(I) SIZE - INCH BASED (METRIC)

0508 (1220) 0612 (1632)

(2) TOLERANCE

- J = ±5%
- $K = \pm 10\%$
- $M = \pm 20\%$

(3) PACKING STYLE

- R = Paper/PE taping reel; Reel 7 inch
- P = Paper/PE taping reel; Reel 13 inch

(4) TC MATERIAL

NPO

X7R

(5) RATED VOLTAGE

 $7 = 16 \vee$ $8 = 25 \vee$

9 = 50 V

(6) PROCESS

N = NP0B = class 2 material, X7R

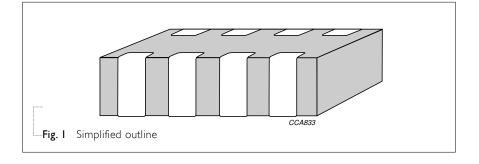
(7) CAPACITANCE VALUE

2 significant digits+number of zeros

The 3rd digit signifies the multiplying factor, and letter R is decimal point

Example: $|2| = |2 \times |0| = |20 \text{ pF}$

YAGEO


Surface-Mount Ceramic Multilayer Capacitors Automotive Array NP0/X7R 16 V to 50 V

CONSTRUCTION

The capacitor consists of a rectangular block of ceramic dielectric in which a number of interleaved metal electrodes are contained. This structure gives rise to a high capacitance per unit volume.

The inner electrodes are connected to the two end terminations and finally covered with a layer of plated tin (NiSn).

The terminations are lead-free. An outline of the structure is shown in Fig. I.

OUTLINES

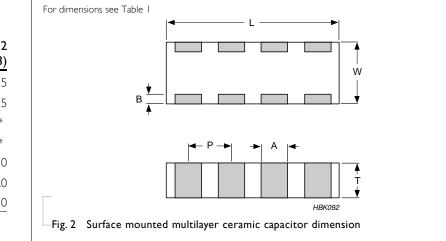


Table I For outlines see fig. 2

ТҮРЕ	0508 (4 X 0402)	0612 (4 X 0603)
L (mm)	2.0 ±0.15	3.2 ±0.15
W (mm)	1.25 ±0.15	1.60 ±0.15
T _{min.} (mm)	*	*
T _{max.} (mm)	*	*
A (mm)	0.28 ±0.10	0.4 ±0.10
B (mm)	0.2 ±0.10	0.3 ±0.20
P (mm)	0.5 ±0.10	0.8 ±0.10

NOTE

* Refer to Table 2 ~Table 3

Table 2 Temperature characteristic material from NP0											
		0508 (4 × 0402)	0612 (4 × 0603)								
	CAPACITANCE	50 V	50 V								
	I0 pF	0.6±0.1	0.8±0.1								
	15 pF	0.6±0.1	0.8±0.1								
	18 pF	0.6±0.1	0.8±0.1								
	22 pF	0.6±0.1	0.8±0.1								

CAPACITANCE RANGE & THICKNESS FOR 4C-ARRAY

18 pF	0.6±0.1	0.8±0.1
22 pF	0.6±0.1	0.8±0.1
33 pF	0.6±0.1	0.8±0.1
39 pF	0.6±0.1	0.8±0.1
47 pF	0.6±0.1	0.8±0.1
56 pF	0.6±0.1	0.8±0.1
68 pF	0.6±0.1	0.8±0.1
82 pF	0.6±0.1	0.8±0.1
100 pF	0.6±0.1	0.8±0.1
120 pF		0.8±0.1
150 pF		0.8±0.1
180 pF		0.8±0.1
220 pF		0.8±0.1
270 pF		0.8±0.1
330 pF		0.8±0.1
390 pF		0.8±0.1
470 pF		0.8±0.1
560 pF		
680 pF		
820 pF		
I.0 nF		

ΝΟΤΕ

Values in shaded cells indicate thickness class in mm

CAPACITANCE RANGE & THICKNESS FOR 4C-ARRAY

Table 3 Temperature characteristic material from X7R

CAPACITANCE	0508 (4 × 0402)			0612 (4 × 0603)		
_	16 V	25 V	50 V	16 V	25 V	50 V
I.0 nF	0.6±0.1	0.6±0.1	0.6±0.1	0.8±0.1	0.8±0.1	0.8±0.1
I.5 nF	0.6±0.1	0.6±0.1		0.8±0.1	0.8±0.1	0.8±0.1
2.2 nF	0.6±0.1	0.6±0.1		0.8±0.1	0.8±0.1	0.8±0.1
3.3 nF	0.6±0.1	0.6±0.1		0.8±0.1	0.8±0.1	0.8±0.1
4.7 nF	0.6±0.1	0.6±0.1		0.8±0.1	0.8±0.1	0.8±0.1
6.8 nF	0.6±0.1	0.6±0.1		0.8±0.1	0.8±0.1	0.8±0.1
10 nF	0.6±0.1	0.6±0.1		0.8±0.1	0.8±0.1	0.8±0.1
22 nF	0.6±0.1					
47 nF	0.6±0.1			0.8±0.1	0.8±0.1	
100 nF	0.6±0.1					

ΝΟΤΕ

Values in shaded cells indicate thickness class in mm

Jul. 09, 2021 V.0

THICKNESS CLASSES AND PACKING QUANTITY

Table 4								
SIZE	THICKNESS		TAPE WIDTH Ø180 MM / 7 INCH					
CODE	CLASSIFICATION	QUANTITY PER REEL	Paper	Blister	Paper	Blister		
0508	0.6 ±0.1 mm	8 mm	4,000		20,000			
0612	0.8 ±0.1 mm	8 mm	4,000		15,000			

ELECTRICAL CHARACTERISTICS

NP0/X7R DIELECTRIC CAPACITORS; NI/SIN TERMINATIONS

Unless otherwise specified, all test and measurements shall be made under standard atmospheric conditions for testing as given in 5.3 of IEC 60068-1:

- Temperature: 15 °C to 35 °C
- Relative humidity: 25% to 75%
- Air pressure: 86 kPa to 106 kPa

Before the measurements are made, the capacitor shall be stored at the measuring temperature for a time sufficient to allow the entire capacitor to reach this temperature.

The period as prescribed for recovery at the end of a test is normally sufficient for this purpose.

Table 5		
DESCRIPTION		VALUE
Capacitance range		10 pF to 100 nF
Capacitance tolerance	2	
NP0	C ≥ 10 pF	±5%
X7R		±10%, ±20%
Dissipation factor (D.	F.)	
NP0	C < 30 _P F	≤ I / (400 + 20C)
	C ≥ 30 pF	≤ 0.1%

X7R	0508 (Array)	0612 (Array)	
16V	InF to IOnF	220pF to 47nF	≤ 3.5%
	I5nF to I00nF		≤ 5%
25V	InF to IOnF	220pF to 47nF	≤ 2.5%
50V	InF	220pF to 10nF	≤ 2.5%
Insulation resist	ance after I minute at U _r (DC)	IR ≥ 10G Ω or I.R × C ≥ 500 second	ls whichever is less

7

Surface-Mount Ceramic Multilayer Capacitors Automotive Array NP0/X7R 16 V to 50 V

SOLDERING CONDITIONS

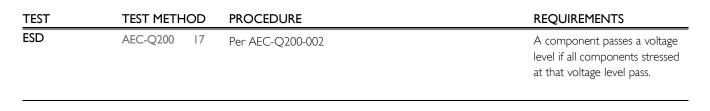
The lead free MLCCs are able to stand the reflow soldering conditions as below:

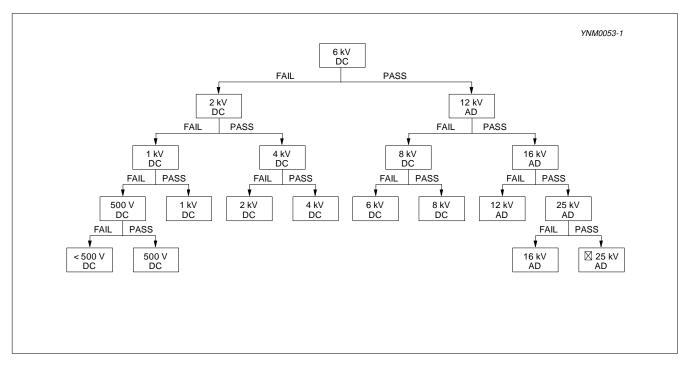
- Temperature: above 220 °C
- Endurance: 95 to 120 seconds •
- ٠ Cycles: 3 times

The test of "soldering heat resistance" is carried out in accordance with the schedule of "MIL-STD-202G-method 210F", "The robust construction of chip capacitors allows them to be completely immersed in a solder bath of 260 °C for 10 seconds". Therefore, it is possible to mount MLCCs on one side of a PCB and other discrete components on the reverse (mixed PCBs). Surface Mount Capacitors are tested for solderability at 245 °C during 2 seconds. The test condition for no leaching is 260°C for 30 seconds.

TESTS AND REQUIREMENTS

TEST	TEST METH	IOD	PROCEDURE	REQUIREMENTS
Mounting	IEC 60384- 21/22	4.3	The capacitors may be mounted on printed-circuit boards or ceramic substrates	No visible damage
Capacitance	IEC 60384- 21/22	4.5.1	Class I: At 20 °C, 24 hours after annealing $f = 1$ MHz for $C \le InF$, measuring at voltage 1 V _{rms} at 20 °C f = 1 KHz for $C > InF$, measuring at voltage 1 V _{rms} at 20 °C Class 2: At 20 °C, 24 hours after annealing f = 1 KHz, measuring at voltage 1 V _{rms} at 20 °C	Within specified tolerance
Dissipation Factor (D.F.)	IEC 60384- 21/22	4.5.2	Class I: At 20 °C, 24 hours after annealing $f = 1$ MHz for $C \le InF$, measuring at voltage 1 V _{rms} at 20 °C f = 1 KHz for $C > InF$, measuring at voltage 1 V _{rms} at 20 °C Class 2: At 20 °C, 24 hours after annealing f = 1 KHz, measuring at voltage 1 V _{rms} at 20 °C	In accordance with specification
Insulation Resistance	IEC 60384- 21/22	4.5.3	At U _r (DC) for 1 minute	In accordance with specification
High Temperature Exposure	AEC-Q200	3	Unpowered ; 1000hours @ T=150° C Measurement at 24±2 hours after test conclusion.	No visual damage $\Delta C/C$: Class I: NP0: within ±0.5% or 0.5 pF whichever is greater Class2: X7R: ±10% D.F.: within initial specified value IR: within initial specified value




TEST	TEST METH	HOD	PROCEDURE	REQUIREMENTS
Temperature Cycling	AEC-Q200	4	Preconditioning; 150 +0/–10 °C for 1 hour, then keep for	No visual damage
			 24 ±1 hours at room temperature 1000 cycles with following detail: 30 minutes at lower category temperature 30 minutes at upper category temperature Recovery time 24 ±2 hours 	Δ C/C Class I: NP0: Within ±1% or 0.5pF, whichever is greater. Class2: X7R: ±10%
				D.F. meet initial specified value IR meet initial specified value
Destructive Physical Analysis	AEC-Q200	5	Note: Only applies to SMD ceramics. Electrical test not required.	
Moisture Resistance	AEC-Q200	6	T=24 hrs/per cycle; 10 continuous cycles unpowered. Measurement at 24 ±2 hours after test condition.	No visual damage
				Δ C/C NP0: Within ±3% or 3 pF, whichever is greater X7R: ±15%
				D.F. Within initial specified value IR NP0: ≥ 10,000 MΩ X7R: Meet initial specified value

Г	Т	Т	Т	Т	Т	П											Г	Г												Г	Т
L.		$^{+}$	+	+	+	\square								80	-10	07	+													t	$^{+}$
70	1	T	INI	TIAL	. co	N-			_	90-	100	X R	н	_	RH			90	0-10	07	RH	_		_	8	0-1	007	RH		<u> </u>	_
6	- I -		DIT	IONI RY (ING	IN					Π			Ń			1	Г				Ń								Г	Т
6			24	HOUP	RS	' '					-		-				+		1			N								t	╈
5		╈		6	_	Γ		H		1							+	17					\square							t	+
50	1	t		-p:	7	ħ				1			-	_	М		+	Ħ					٦							t	$^{+}$
4		1:	JNCO	DIT	Y Olle	Ы				/			-		N		+	ᡟ					N		+	-				t	$^+$
41		+	Т	T	Т			\square					-	_			\mathbf{t}								+	-				t	$^+$
3:		$^{+}$	+	+	+	H		\square	1				+			٢	Ħ			\square	_			H	+	EN	0 0	FF	INA	AL.	CY
30		$^+$	+	+	+	H			\mathcal{H}				-+			7	1/	+			_			Y	\neg	ME/ SPI	ASU	REM	ENT D I	TS En	AS 3.
25		$^+$	+	+	+	1-	55	Η	+				+				0°C			H					+	55				K	Ť
20		Τ,		7.41	MEA	SURE	MEN	170			-		-	_		-	2.0			\square					+	-1				ħ	Xt
	5	٦Å	SS	PECI	FIE	DIN	3	z					+				1	+		H					+					Ħ	h
10	아	$^{+}$	Т	Т	Г								+				+	+		H										t	H
	5	$^+$	+	+	+	\square		H	-		VOL	TAG	EA	PPL	IEC	A	\s s	PEC	IFI	ED 1	(N)	3.5	_			1				Ħ	H
	아	$^+$	+	+	+	\vdash	_	\square									T	T								1				Ħ	H
-+	5	$^+$	+	+	+	\vdash		\square					+			s	TEP	S 7	8	7b (IF	APP	LIC	ABLI	E)	1			-	H	╞╪
-10	아	+	+	+	+	\vdash					\neg		+	_		5	HAL	L 81 TH	E PE	RFO	RME	DA S.	MI	NIM	UM TY	OF IS	-		-	Ľ	+
-	+	+	+	+	+	\vdash	_	\square			-		+	-		U	NCO	NTR	DLLE	D D 7ь	URI	NG				-	_			┢	+
-	+	+	+	+	+	\vdash	_	\square			-		-				T	<u>1 – 1</u>	1	ŕ	UNL	ί Π				-	_			⊢	+
-	+	┢	RIO	RT	DFI	RST	CY	CLE	ST	EP 1		STE	, 2	15	TEP	, 3	1 51	TEP	41	STE	P 5	IS	TEP	61			s	TEP	, 7	-	-
	+	Ľ	INLĒ	SS (DTHE	RWIS IED	SE .			_	+	_	-		CLE	-					_		_	ECI	FTF	ד ת	-	_	-		
	+	f		T	T											-	1	Ī	Í		-					1	1			Γ	T
L	-	+	-		-				_		_		-	_		-	-		-					_	-	-				-	-
A Maintana anaistant																															
.4 Moisture resistant																															

TEST	TEST METH	IOD	PROCEDURE	REQUIREMENTS
Biased Humidity	AEC-Q200	7	 I. Preconditioning, class 2 only: 150 +0/-10 °C /1 hour, then keep for 24 ±1 hour at room temp 	No visual damage after recovery
			 Initial measure: Parameter: IR Measuring voltage: 1.5V ± 0.1 VDC Note: Series with 100 KΩ Test condition: 85 °C, 85% R.H. connected with 100 KΩ resistor, applied 1.5V/U_r for 1,000 hours. 	Initial requirement: Class I: - Connected to 100 K Ω : C \leq 10 nF: I.R \geq 10,000 M Ω or C \geq 10 nF: (I.R-100 K Ω) \times C
			 4. Recovery: Class I: 6 to 24 hours Class 2: 24 ±2 hours 5. Final measure: IR 	≥ 100s. Class2: - Connected to 100 KΩ: C ≤ 25 nF: I.R ≥ 4,000 MΩ or
				C > 25 nF: (I.R-100 KΩ) × C ≥ 100s.
				Final measurement: The insulation resistance shall be greater than 0.1 time initial value.
Operational Life	AEC-Q200	8	1. Preconditioning, class 2 only: 150 +0/-10 °C /1 hour, then keep for	No visual damage
			24 ±1 hour at room temp2. Initial measure:Spec: refer to initial spec C, D, IR	$\Delta C/C$ NP0: Within ±2% or 1 pF, whichever is greater X7R: ±15%
			3. Endurance test: Temperature: X7R: 125 °C	D.F.
			 Specified stress voltage applied for 1,000 hours: Applied 2.0 × U_r s 4. Recovery time: 24 ±2 hours 5. Final measure: C, D, IR 	NP0: $\leq 2 \times$ specified value. X7R: $\leq 16V$: $\leq 7\%$ or specified value whichever is greater $\geq 25V$: $\leq 5\%$ or specified value whichever is greater
			Note: If the capacitance value is less than the minimum value permitted, then after the other measurements have been made the capacitor shall be preconditioned according to <i>"IEC 60384 4.1"</i> and then the requirement shall be met.	IR NP0: \geq 4,000 M Ω or IR x C _r \geq 40s whichever is less X7R: \geq 1,000 M Ω or IRx C _r \geq 50s whichever is less
External Visual	AEC-Q200	9	Any applicable method using × 10 magnification	In accordance with specification
Physical Dimension	AEC-Q200	10	Verify physical dimensions to the applicable device specification.	In accordance with specification

TEST	TEST METH	IOD	PROCEDURE	REQUIREMENTS			
Mechanical Shock	AEC-Q200	13	Three shocks in each direction shall be applied along the three mutually perpendicular axes of the test specimen (18 shocks) Peak value: 1,500 g's Duration: 0.5 ms Velocity change: 15.4 ft/s Waveform: Half-sin	ΔC/C NP0: Within ±0.5% or 0.5 pF, whichever is greater X7R: ±10% D.F. Within initial specified value IR Within initial specified value			
Vibration	AEC-Q200	14	5 g's for 20 minutes, 12 cycles each of 3 orientations.	ΔC/C NP0: Within ±0.5% or 0.5 pF, whichever is greater X7R: ±10%			
				D.F: meet initial specified value IR meet initial specified value			
Resistance to Soldering Heat	AEC-Q200	15	Precondition: $150 \pm 0/-10$ °C for 1 hour, then keep for 24 ±1 hours at room temperature Preheating: 120 °C to 150 °C for 1 minute Solder bath temperature: 260 ±5 °C Dipping time: 10 ±0.5 seconds Recovery time: 24 ±2 hours	Dissolution of the end face plating shall not exceed 25% of the length of the edge concerned $\Delta C/C$ Class I: NP0: Within ±1% or 0.5 pF, whichever is greater. Class2: X7R: ±10%			
				D.F. within initial specified value IR within initial specified value			
Thermal Shock	AEC-Q200	16	 Preconditioning, class 2 only: 150 +0/-10 °C /1 hour, then keep for 24 ±1 hour at room a temp Initial measure: Spec: refer to initial spec C, D, IR Rapid change of temperature test: NP0/X7R: -55 °C to +125 °C; 300 cycles 15 minutes at lower category temperature; 15 minutes at upper category temperature. Recovery time: Class1: 6 to 24 hours Class2: 24 ±2 hours Final measure: C, D, IR 	No visual damage $\Delta C/C$ NP0: Within ±1% or 1 pF, whichever is greater X7R: ±15% D.F: meet initial specified value IR meet initial specified value			

Solderability	AEC-Q200	18	 Preheat at 155°C for 4 hours. After preheating, immerse the capacitor in a solution of ethanol and rosin (25% rosin in weight proportion). Immerse in eutectic solder solution for 5+0/-0.5 seconds at 235±5°C. 	The solder should cover over 95% of the critical area of each termination.	
			 Should be placed into steam aging for 8 hours±15 minutes. After preheating, immerse the capacitor in a solution of ethanol and rosin (25% rosin in weight proportion). Immerse in eutectic solder solution for 5+0/-0.5 seconds at 235±5°C. 		
			3. Should be placed into steam aging for 8 hours±15 minutes. After preheating, immerse the capacitor in a solution of Ethanol and rosin (25% rosin in weight proportion). Immerse in eutectic solder solution for 120±5 seconds at 260±5°C.		

Product specification 11

TEST	TEST METHOD		PROCEDURE	REQUIREMENTS ΔC/CClass 1:NP0: ±30 ppm/°CClass2:X7R: ±15%	
Electrical Characterization	AEC-Q200 19		Parametrically test per lot and sample size requirements, summary to show Min, Max, Mean and Standard deviation at room as well as Min and Max operating temperatures. Class 1: NP0: -55 °C to +125 °C Normal temperature: 20 °C Class 2: X7R: -55 °C to +125 °C Normal temperature: 20 °C		
Board Flex AEC-Q200 21		21	Part mounted on a 100 mm X 40 mm FR4 PCB board, which is 1.6 ±0.2 mm thick Part should be mounted using the following soldering reflow profile. Conditions: Class I: Bending 3 mm at a rate of 1 mm/s, radius jig 340 mm Class2: Bending 2 mm at a rate of 1 mm/s, radius jig 340 mm	No visible damage $\Delta C/C$ Class I: NP0: Within ±1% or 0.5 pF, whichever is greater Class2: X7R: ±10%	
Terminal Strength	AEC-Q200	22	With the component mounted on a PCB obtained with the device to be tested, apply a 17.7N (1.8Kg) force to the side of a device being tested. This force shall be applied for 60+1 seconds. Also the force shall be applied gradually as not to apply a shock to the component being tested.	Magnification of 20X or greater may be employed for inspection of the mechanical integrity of the device body, terminals and body/terminal junction. Before and after the test, the device shall comply with all electrical requirements stated in this specification.	
Beam Load Test	AEC-Q200	23	Place the part in the beam load fixture. Apply a force until the part breaks or the minimum acceptable force level required in the user specification(s) is attained.	0508: 20N 0612: 15N	
Voltage Proof			1. Specified stress voltage applied for $1 \sim 5$ seconds 2. Ur ≤ 100 V: applied 2.5 Ur	No breakdown or flashover	
			Charge/Discharge current is less than 50 mA		

<u>REVISION HISTORY</u>

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 0	July 09, 202 I	-	- New Datasheet

LEGAL DISCLAIMER

Yageo, its distributors and agents (collectively, "Yageo"), hereby disclaims any and all liabilities for any errors, inaccuracies or incompleteness contained in any product related information, including but not limited to product specifications, datasheets, pictures and/or graphics. Yageo may make changes, modifications and/or improvements to product related information at any time and without notice.

Yageo makes no representation, warranty, and/or guarantee about the fitness of its products for any particular purpose or the continuing production of any of its products. To the maximum extent permitted by law, Yageo disclaims (i) any and all liability arising out of the application or use of any Yageo product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for a particular purpose, non-infringement and merchantability.

Yageo statements regarding the suitability of products for certain types of applications are based on Yageo's knowledge of typical operating conditions for such types of applications in a generic nature. Such statements are neither binding statements of Yageo nor intended to constitute any warranty concerning the suitability for a specific customer application or use. They are intended for use only by customers with requisite knowledge and experience for determining whether Yageo products are the correct products for their application or use. In addition, unpredicatable and isolated cases of product failure may still occur, therefore, customer application or use of Yageo products which requires higher degree of reliability or safety, shall employ additional protective safeguard measures to ensure that product failure would not result in personal injury or property damage.

Yageo products are not designed for application or use in medical, life-saving, or life-sustaining devices or for any other application or use in which the failure of Yageo products could result in personal injury or death. Customers using or selling Yageo products not expressly indicated for above-mentioned purposes shall do so at their own risk and agree to fully indemnify Yageo and hold Yageo harmless.

Information provided here is intended to indicate product specifications only. Yageo reserves all the rights for revising this content without further notification, as long as products are unchanged. Any product change will be announced by PCN.