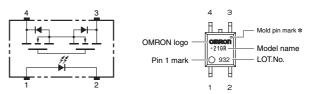
G3VM-21GR MOS FET Relays

MOS FET Relays with Low Output Capacitance and ON Resistance ($C \times R = 5pF \cdot \Omega$) in a 20-V Load Voltage Model.

Output capacitance of 1 pF (typical) allows high-frequency applications.

• Leakage current of 1.0 nA max. when output relay is open.

RoHS compliant


H

■ Application Examples

- Semiconductor test equipment
- Test & Measurement equipment
- Communication equipment
- Data loggers

Note: The actual product is marked differently from the image shown here.

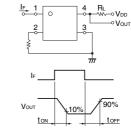
Terminal Arrangement/Internal Connections

Note: The actual product is marked differently from the image shown here. * The indentation in the corner diagonally opposite from the pin 1 mark is from a pin on the mold.

■ List of Models

Package type	Contact form	Terminals	Load voltage	Model	Minimum package quantity	
	Contact Ionni		(peak value) *	Model	Number per tube	Number per tape and reel
0004	1a (SPST-NO)	Surface-mounting Terminals	20 V	G3VM-21GR	100	-
SOP4			20 V	G3VM-21GR (TR)	-	2,500

* The AC peak and DC value are given for the load voltage.

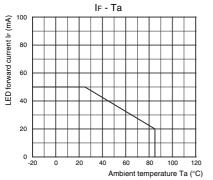

■ Absolute Maximum Ratings (Ta = 25°C)

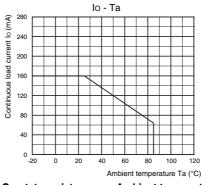
	Item	Symbol	Rating	Unit	Measurement conditions	
	LED forward current	lF	50	mA		
Ĕ	LED forward current reduction rate	∆IF/°C	-0.5	mA/°C	Ta ≥ 25°C	
dul	LED reverse voltage	VR	5	V		
	Connection temperature	TJ	125	°C		
	Load voltage (AC peak/DC)	Voff	20	V		
put	Continuous load current (AC peak/DC)	lo	160	mA		
Outp	ON current reduction rate	∆lo/°C	-1.6	mA/°C	Ta ≥ 25°C	
5	Connection temperature	ТJ	125	°C		
	electric strength between (See note 1.)	VI-0	1500	Vrms	AC for 1 min	N
Am	bient operating temperature	Та	-20 to +85	°C	With no icing or condensation	
Am	bient storage temperature	Tstg	-40 to +125	°C	With no icing or condensation	
Soldering temperature		-	260	°C	10 s	

Electrical Characteristics (Ta = 25°C)

Item		Symbol	Minimum	Typical	Maximum	Unit	Measurement conditions	
Input	LED forward voltage	VF	1.0	1.15	1.3	V	IF = 10 mA	٨
	Reverse current	IR	-	-	10	μA	VR = 5 V	
Ing	Capacity between terminals	Ст	-	15	-	pF	V = 0, f = 1 MHz	
	Trigger LED forward current	IFT	-	-	4	mA	lo =100 mA	
Output	Maximum resistance with output ON	Ron	-	5	8	Ω	IF = 5 mA, lo = 160 mA, t < 1 s	1
	Current leakage when the relay is open	ILEAK	-	-	1.0	nA	Voff = 20 V, Ta = 50 $^{\circ}$ C	
	Capacity between terminals	COFF	-	1	2.5	pF	V = 0, f = 100 MHz, t < 1 s	
Capacity between I/O terminals		CI-O	-	0.8	-	pF	f = 1 MHz, Vs = 0 V	
Insulation resistance between I/O terminals		Rı-o	1000	-	-	MΩ	VI-0 = 500 VDC, RoH \leq 60 %]
Turn-ON time		ton	-	-	0.5	ms	$I_F = 10 \text{ mA}, \text{ RL} = 200 \Omega,$]
Turn-OFF time		toff	-	-	0.5	ms	$V_{DD} = 20 V$ (See note 2.)	

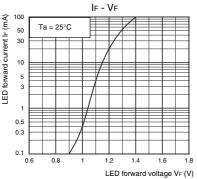
G3VM-21GR

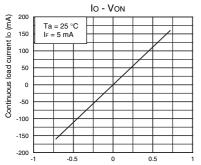

Recommended Operating Conditions


Use the G3VM under the following conditions so that the Relay will operate properly.

Item	Symbol	Minimum	Typical	Maximum	Unit
Load voltage (AC peak/DC)	Vdd	-	-	20	V
Operating LED forward current	lF	7	-	30	mA
Continuous load current (AC peak/DC)	lo	-	-	160	mA
Ambient operating temperature	Та	25	-	60	°C

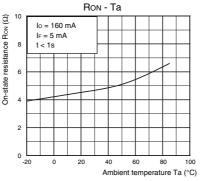
Engineering Data

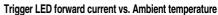

LED forward current vs. Ambient temperature

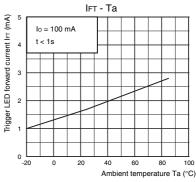


Continuous load current vs. Ambient temperature

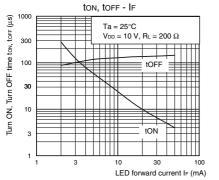
LED forward current vs. LED forward voltage

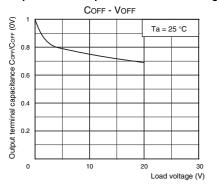



Continuous load current vs. On-state voltage



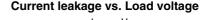
On-state resistance vs. Ambient temperature

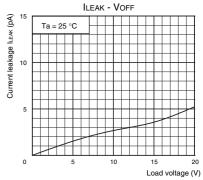




Turn ON, Turn OFF time vs. LED forward current Turn ON, Turn OFF time vs. Ambient temperature

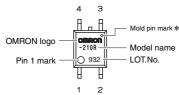
On-state voltage Von (V)




Output terminal capacitance vs. Load voltage

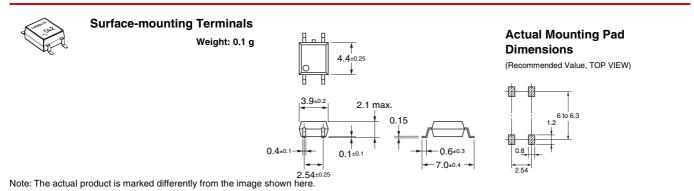
ton, torr - Ta (srl) 250 $V_{DD} = 10 \text{ V}, \text{ R}_{L} = 200 \Omega$ torr IF = 10 mA 200 ton, furn ON, Turn OFF time 150 tori 100 50 tor 1 0 80 -20 0 20 40 60 100

Ambient temperature Ta (°C)


■ Safety Precautions

• Refer to "Common Precautions" for all G3VM models.

■ Appearance



Note: The actual product is marked differently from the image shown here. * The indentation in the corner diagonally opposite from the pin 1 mark is from a pin on the mold.

Dimensions

(Unit: mm)

Application examples provided in this document are for reference only. In actual applications, confirm equipment functions and safety before using the product.
Consult your OMRON representative before using the product under conditions which are not described in the manual or applying the product to nuclear control systems, railroad systems, aviation systems, vehicles, combustion systems, medical equipment, amusement machines, safety equipment, and other systems or equipment that may have a serious influence on lives and property if used improperty. Make sure that the ratings and performance characteristics of the product provide a margin of safety for the system or equipment with double safety mechanisms.

Note: Do not use this document to operate the Unit.

OMRON Corporation ELECTRONIC AND MECHANICAL COMPONENTS COMPANY Co

Contact: www.omron.com/ecb

Cat. No. K181-E1-01 0412(0412)(O)