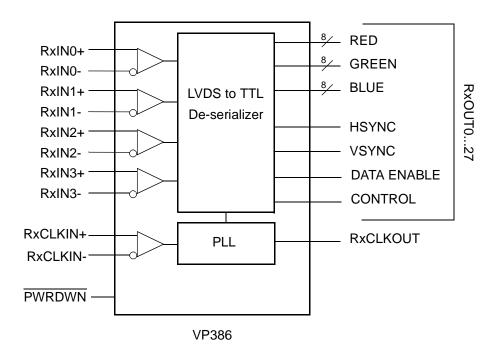


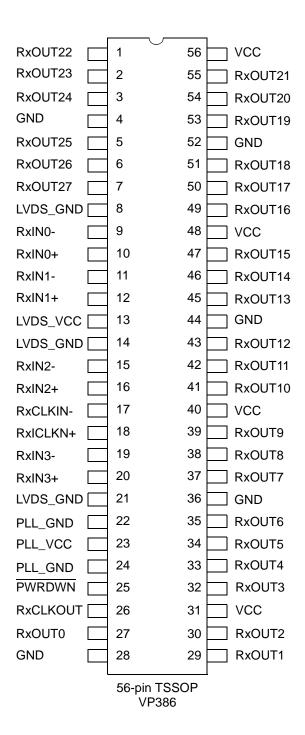
8/28-BIT LVDS RECEIVER FOR VIDEO

IDTVP386

General Description


The VP386 is an ideal LVDS receiver that converts 4-pair LVDS data streams into parallel 28 bits of CMOS/TTL data with bandwidth up to 2.8 Gbps throughput or 350 Mbytes per second.

This chip is an ideal means to solve EMI and cable size problems associated with wide, high-speed TTL interfaces through very low-swing LVDS signals.


Features

- Wide clock frequency range from 20 MHz to 100 MHz
- Pin compatible with the National DS90CF386, Thine THC63LVDF84, TISN65LVDS94
- Converts 4-pair LVDS data streams into parallel 28 bits of CMOS/TTL data
- Fully spread spectrum compatible
- LVDS voltage swing of 350 mV for low EMI
- On-chip PLL requires no external components
- Low-power CMOS design
- Falling edge clock triggered outputs
- Power-down control function
- Compatible with TIA/EIA-644 LVDS standards
- Packaged in a 56-pin TSSOP (Pb free available)

Block Diagram

Pin Assignment

Pin Descriptions

Pin No.	Pin Name	Pin Type	Pin Description
1	RxOUT22		
2	RxOUT23	OUT	Data outputs on pins (RxOUT027)
3	RxOUT24		
4	GND	Ground	Digital ground
5	RxOUT25		
6	RxOUT26	OUT	Data outputs on pins (RxOUT027)
7	RxOUT27		
8	LVDS_GND	Ground	Analog ground
9	RxIN0-		LVDS input (-)
10	RxIN0+	LVDS IN	LVDS input (+)
11	RxIN1-	LVD3 IIV	LVDS input (-)
12	RxIN1+		LVDS input (+)
13	LVDS_VCC	Power	Analog power
14	LVDS_GND	Ground	Analog ground
15	RxIN2-		LVDS input (-)
16	RxIN2+		LVDS input (+)
17	RxCLKIN-	LVDS IN	LVDS input (-)
18	RxCLKIN+	LVD3 IIV	LVDS input (+)
19	RxIN3-		LVDS input (-)
20	RxIN3+		LVDS input (+)
21	LVDS_GND	Ground	Analog ground
22	PLL_GND	Giodila	PLL ground
23	PLL_VCC	Power	PLL power
24	PLL_GND	Ground	PLL ground
25	PWRDWN	IN	Power-down control input. H: Nomal L: Power down, all ouputs are pulled low.
26	RxCLKOUT	OUT	Clock output
27	RxOUT0	OUT	Data outputs on pins (RxOUT027)
28	GND	Ground	Digital ground
29	RxOUT1	OUT	Data outputs on pins (RxOUT027)
30	RxOUT2	OUT	
31	VCC	Power	Digital power
32	RxOUT3		
33	RxOUT4	OUT	Data outputs on pins (RxOUT027)
34	RxOUT5		

Pin No.	Pin Name	Pin Type	Pin Description		
35	RxOUT6	OUT	Data outputs on pins (RxOUT027)		
36	GND	Ground	Digital ground		
37	RxOUT7				
38	RxOUT8	OUT	Data outputs on pins (RxOUT027)		
39	RxOUT9				
40	VCC	Power	Digital power		
41	RxOUT10				
42	RxOUT11	OUT	Data outputs on pins (RxOUT027)		
43	RxOUT12				
44	GND	Ground	Digital ground		
45	RxOUT13				
46	RxOUT14	OUT	Data outputs on pins (RxOUT027)		
47	RxOUT15				
48	VCC	Power	Digital power		
49	RxOUT16				
50	RxOUT17	OUT	Data outputs on pins (RxOUT027)		
51	RxOUT18				
52	GND	Ground	Digital ground		
53	RxOUT19				
54	RxOUT20	OUT	Data outputs on pins (RxOUT027)		
55	RxOUT21				
56	VCC	Power	Digital power		

Absolute Maximum Ratings

Item	Rating ¹			
Supply Voltage, VCC	-0.3 V to +4 V			
CMOS/TTL Output Voltage	-0.3 V to (VCC+0.3 V)			
LVDS Receiver Input Voltage	-0.3 V to (VCC+0.3 V)			
Ambient Operating Temperature	0 to +70°C			
Storage Temperature	-65 to +150°C			
Junction Temperature	150°C			
Soldering Temperature (10 seconds max.)	260°C			
Maximum Package Power	1.61 W (VP386)			
Packago Doroting	12.4 mW/℃ above +25℃			
Package Derating	15 mW/℃ above +25℃			

^{1.} Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Recommended Operation Conditions

Parameter	Min.	Тур.	Max.	Units
Ambient Operating Temperature (Ta)	0	25	70	°C
3.3 V Supply Voltage (VCC)	3	3.3	3.6	V
Receiver Input Range (V _{IN})	0		2.4	V
Supply Noise Voltage (V _N)			100	mVpp

Electrical Characteristics

VDD=3.3 V ±10%, Ambient temperature 0 to 70°C

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
CMOS/TTL DC Specifications						
Input High Voltage	V _{IH}		2.0		VCC	V
Input Low Voltage	V_{IL}		GND		8.0	V
Output High Voltage	V _{OH}	I _{OH} = -0.4 mA	2.7	3.3	VCC	V
Output Low Voltage	V _{OL}	I _{OL} = 2 mA		0.06	0.3	V
Input Clamp Voltage	V _{CL}	I _{CL} = -18mA		-0.79	-1.5	V
Input Current	I _{IN}	VCC			±15	μΑ
		0V			±10	
Output Short Circuit Current	Ios	V _{OUT} = 0V			-60	mA
LVDS Receiver DC Specifications	1		1	1		
Differential Input High Threshold	V_{TH}	V _{CM} = +1.2 V			+100	mV
Differential Input Low Threshold	V_{TL}		-100			mV
leavet Commant		V _{IN} = +2.4 V, VCC = 3.6 V			±10	μА
Input Current	I _{IN}	V _{IN} = 0V, VCC = 3.6 V			±15	μА
Receiver Supply Current						1
Bassinas Cumplu Cumput (wast assa)	I _{CCRW}	C _L = 8 pF, f = 65 MHz, worst case pattern			220	mA
Receiver Supply Current (worst case)		C _L = 8 pF, f = 100 MHz, worst case pattern			240	mA
Davis (2. 2. 1. 0. 2. 2. 1. (4.2. 0. 2. 2. 2. 1.)	I _{CCRG}	C _L = 8 pF, f = 65 MHz, 16 Grayscale pattern			125	mA
Receiver Supply Current (16 Grayscale)		C _L = 8 pF, f = 100 MHz, 16 Grayscale pattern			140	mA
Receiver Supply Current (Power Down)	I _{CCRZ}	Power_Down = Low, Receiver outputs stay low during Power-down mode		140	400	μΑ
Receiver Switching Characteristics	1		1	1		
CMOS/TTL Low-to-High Transition Time	CLHT	20% to 80% VCC, C _L = 8 pF		2	3.5	ns
CMOS/TTL High-to-Low Transition Time	CHLT	80% to 20% VCC, C _L = 8 pF		1.8	3.5	ns
CLKOUT period	RCOP		10	Т	50	ns
CLKOUT High Time	RCOH			4T/7		ns
CLKOUT Low Time	RCOL			3T/7		ns
Data Setup to CLKOUT	RSRC		0.35T-0.3			ns
Data Hold to CLKOUT	RHRC		0.45T-1.6			ns

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
RCK+/- to CLKOUT Delay	RCCD	25°C / 3.3 V, 85MHz		14.6		ns
Receiver PLL Setup Time	RPLLS				10	ms
Receiver Power Down Delay	RPDD				1	μs
Receiver Input Strobe Position for Bit0	RSPos0		-0.25	0	0.25	ns
Receiver Input Strobe Position for Bit1	RSPos1		T/7-0.25	T/7	T/7+0.25	ns
Receiver Input Strobe Position for Bit2	RSPos2		2T/7-0.25	2T/7	2T/7+0.25	ns
Receiver Input Strobe Position for Bit3	RSPos3	f = 100 MHz, T = 10 ns	3T/7-0.25	3T/7	3T/7+0.25	ns
Receiver Input Strobe Position for Bit4	RSPos4		4T/7-0.25	4T/7	4T/7+0.4	ns
Receiver Input Strobe Position for Bit5	RSPos5		5T/7-0.25	5T/7	5T/7+0.25	ns
Receiver Input Strobe Position for Bit6	RSPos6		6T/7-0.25	6T/7	6T/7+0.25	ns
RxIn Skew Margin	Rskm	f = 100 MHz, T = 10 ns	250			ps
(see note and Figure 8)		f = 65 MHz, T = 15.38 ns	500			ps

Note: The skew margins mean the maximum timing tolerance between the clock and data channel when the receiver still works well. This margin takes into acount the receiver input setup and hold time, and internal clock jitter (i.e., internal data sampling window - RSPos). Thyis margin allows for LVDS transmitter pulse position, interconnect skew, inter-symbol interference and intrinsic channel mismatch which will cause the skew between clock (RC+ and RCK-) and data (RX[n]+ and RX[n]-; n = 0, 1, 2, 3) channels.

Thermal Characteristics

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Thermal Resistance Junction to Ambient	θ_{JA}	Still air		84		°C/W
	θ_{JA}	1 m/s air flow		76		°C/W
	θ_{JA}	2 m/s air flow		67		°C/W
Thermal Resistance Junction to Case	θ_{JA}			50		°C/W

Timing Diagrams

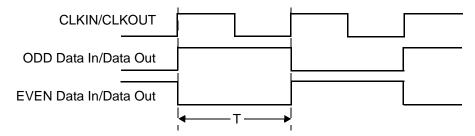


Figure 1. "Worst Case" Test Pattern

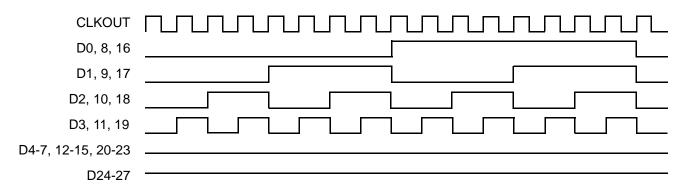


Figure 2. 16-Grayscale Test-Pattern Waveforms

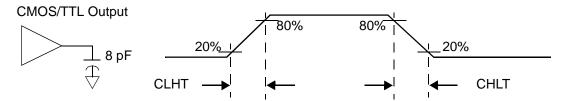


Figure 3. VP386 CMOS/TTL Output Load and Transition Time

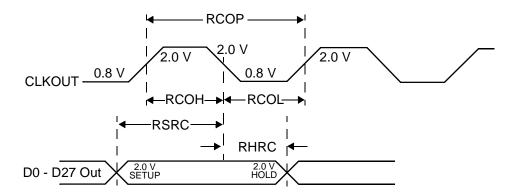


Figure 4. VP386 SETUP/HOLD and High/Low Times

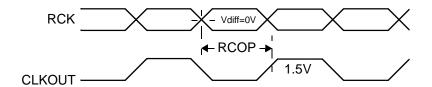


Figure 5. VP386 Clock In to Clock Out Delay

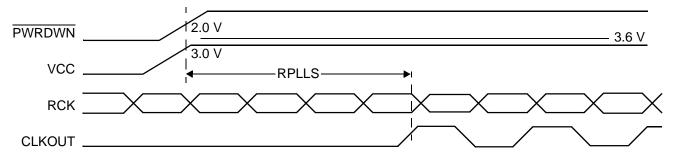


Figure 6. VP386 Phase Lock Loop Set Time

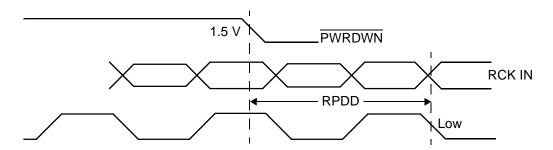


Figure 7. VP386 Power Down Delay

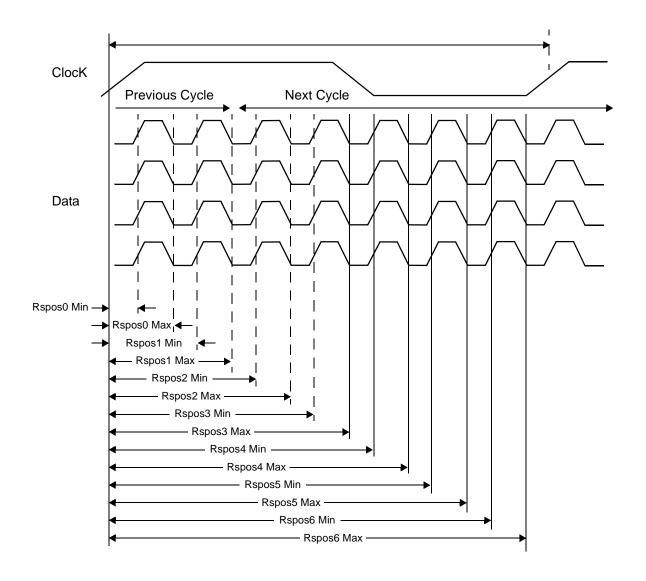


Figure 8. VP386 LVDS Input Strobe Position

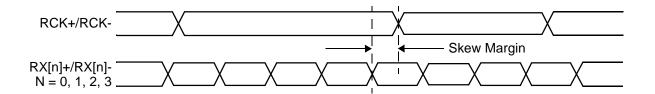
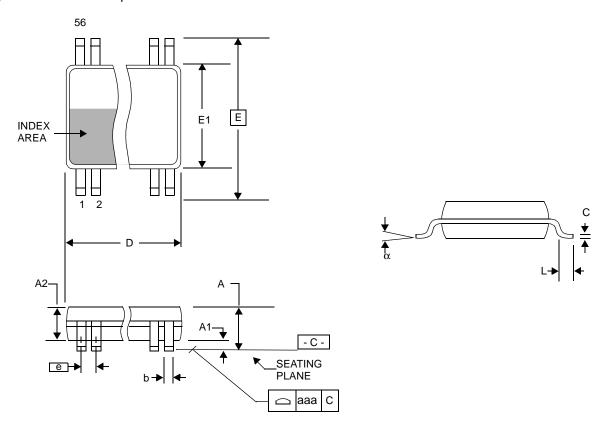
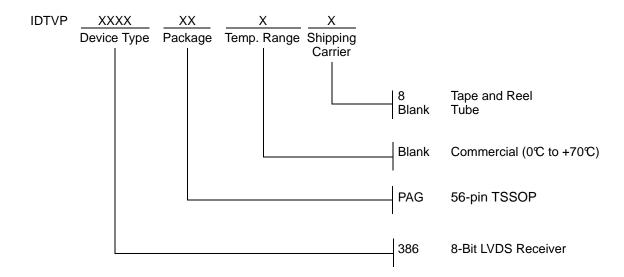



Figure 9. Receiver Input Skew Margin

Package Outline and Package Dimensions (56-pin TSSOP)

Package dimensions are kept current with JEDEC Publication No. 95



SYMBOL	In Millimeters COMMON DIMENSIONS		In Inches ¹ COMMON DIMENSIONS		
	MIN	MAX	MIN	MAX	
А	_	1.20	_	.047	
A1	0.05	0.15	.002	.006	
A2	0.80	1.05	.0032	.041	
b	0.17	0.27	.007	.011	
С	0.09	0.20	.0035	.008	
D	13.90	14.10	.547	.555	
Е	8.10 E	BASIC	.319 E	BASIC	
E1	6.00	6.20	.236	.244	
е	0.50 BASIC		.020 E	BASIC	
L	0.45	0.75	.018	.030	
α	0°	8°	0°	8°	
aaa	_	0.10	_	.004	

11

^{1.} For reference only. Controlling dimensions are in mm.

Ordering Information

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use o any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/