

SBOS289 - NOVEMBER 2003

Digitally Controlled Microphone Preamplifier

FEATURES

- Fully Differential Input-to-Output Architecture
- Digitally Controlled Gain Using Serial Port Interface:
 - Gain Range: 10dB through 65dB, 1dB per step
 - Unity (0dB) Gain Setting via Serial Port or Dedicated Control Pin
- Dynamic Performance:
 - Equivalent Noise with $Z_S = 150\Omega$ and Gain = 30dB: -128dBu
 - Total Harmonic Distortion plus Noise (THD+N) with Gain = 30dB: 0.0004%
- Zero Crossing Detection Minimizes Audible Artifacts when Gain Switching
- Integrated DC Servo Minimizes Output Offset Voltage
- Common-Mode Voltage Input Simplifies Interfacing to Single Supply Audio A/D Converters
- Four-Wire Serial Control Port Interface:
 - Simple Interface to Microprocessor or DSP Serial Ports
 - Supports Daisy-Chaining of Multiple PGA2500 Devices
- Dedicated Input Pin for Selecting Unity Gain
- Overload Output Pin Provides Clipping Indication
- Four General-Purpose Digital Output Pins
- Requires ±5V Power Supplies
- Available in an SSOP-28 Package

APPLICATIONS

- Microphone Preamplifiers and Mixers
- Digital Mixers and Recorders

DESCRIPTION

The PGA2500 is a digitally controlled, analog microphone preamplifier designed for use as a front end for high-performance audio analog-to-digital (A/D) converters. The PGA2500 features include low noise, wide dynamic range, and a differential signal path. An on-chip DC servo loop is employed to minimize DC offset, while a common-mode voltage control function maintains the proper DC level between the preamplifier outputs and the A/D converter inputs.

The PGA2500 features a gain range of 10dB through 65dB (1dB/step), along with a unity gain setting. The wide gain range allows the PGA2500 to be used with a variety of microphones. Gain settings and internal functions are programmed using a 16-bit control word, which is loaded using a simple serial port interface. A serial data output pin provides support for daisy-chained connection of multiple PGA2500 devices. Four programmable digital outputs are provided for controlling the external switching of input pads, phantom power, high pass filters, and polarity reversal functions. The PGA2500 requires both +5V and -5V power supplies and is available in a small SSOP-28 package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners.

TEXAS INSTRUMENTS www.ti.com

SBOS289 - NOVEMBER 2003

ABSOLUTE MAXIMUM RATINGS

Over operating free-air temperature range unless otherwise noted(1)

	PGA2500	UNIT
Supply Voltage, VA+	+5.5	V
Supply Voltage, VA-	-5.5	V
Supply Voltage, VD-	-5.5	V
Voltage Difference, VA- to VD-	Less than 300	mV
Analog input voltage	(VA-) -0.3 to (VA+) +0.3	V
Digital input voltage	-0.3 to (VA+) + 0.3	V
Operating Temperature Range	-40 to +85	°C
Storage Temperature Range	-60 to +150	°C

⁽¹⁾ Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe

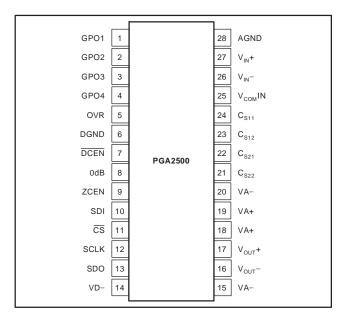
proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ORDERING INFORMATION

PRODUCT	PACKAGE-LEAD	PACKAGE DESIGNATOR(1)	SPECIFIED TEMPERATURE RANGE	PACKAGE MARKING	ORDERING NUMBER	TRANSPORT MEDIA, QUANTITY	
DC A OF OO	CCOD on	DD.	-40°C to +85°C	4000 1 0500	DC AGEGO!	PGA2500IDB	Rails, 50
PGA2500	SSOP-28	DB		PGA2500I	PGA2500IDBR	Tape and Reel, 2000	

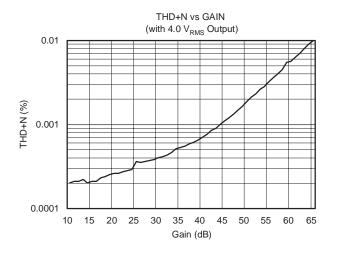
⁽¹⁾ For the most current specifications and package information, refer to our web site at www.ti.com.

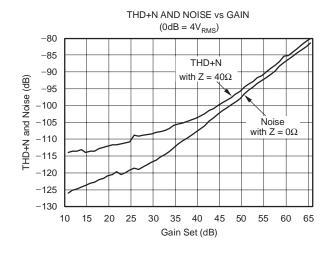

ELECTRICAL CHARACTERISTICS

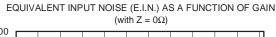
All parameters specified with $T_A = +25$ °C, VA+ = +5V, VA- = -5V, VD- = -5V, and $V_{COM}IN = 0V$, unless otherwise noted.

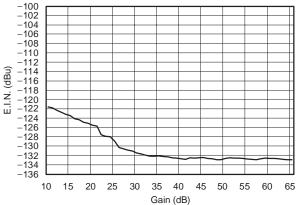
DADAMETER	TEST CONDITIONS		HAUT		
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DC Characteristics					
Step Size	Gain = 10dB through 65dB		1		dB
Gain Error	All Gain Settings		0.5		dB
V _{COM} IN Input Voltage Range		0		+2.5	V
AC Characteristics					
THD+N with f _{IN} = 1kHz	Gain = 0dB, $V_{OUT} = 3.5V_{RMS}$, $V_{COM}IN = 0V$ Gain = 30dB, $V_{OUT} = 3.5V_{RMS}$, $V_{COM}IN = 0V$		-114 -108	-108 -102	dB dB
Analog Input	Cam = CCCD, VOOT = C.S VRMS, VCOMITY = CV		100	102	
Maximum Input Voltage	Gain = 0dB	VA- +1.5		VA+ -2.0	V
Input Resistance Per Input Pin Differential			4600 9200		Ω
Analog Output					
Output Voltage Range	$V_{COM}IN = 0V, R_L = 600\Omega$	VA- +0.9		VA+ -0.9	V
Output Offset Voltage	DC Servo On, Any Gain		0.04	1	mV
Input Referred Offset	DC Servo Off, Gain = 30dB		1	1	mV
Output Resistive Loading	,	600		1	Ω
Load Capacitance Stability			100	†	pF
Short Circuit Current	10-second duration		100		mA
Digital Characteristics					
High-Level Input Voltage, V _{IH}		+2.0		VA+	V
Low-Level Input Voltage, V _{IL}		-0.3		0.8	V
High-Level Output Voltage, V _{OH}	Ι _Ο = 200μΑ	(VA+) - 1.0			V
Low-Level Output Voltage, V _{OL}	$I_{O} = -3.2$ mA	,		0.4	V
Input Leakage Current, I _{IN}	·		2	10	μА
Switching Characteristics		1			
Serial Clock (SCLK) Frequency	f _{SCLK}	0		6.25	MHz
Serial Clock (SCLK) Pulse Width Low	t _{ph}	80		1	ns
Serial Clock (SCLK) Pulse Width High	t _{pl}	80			ns
Input Timing	•þi				
SDI Setup Time	+	20			nc
•	t _{sds}	-		+	ns
SDI Hold Time	t _{sdh}	20			ns
CS Falling to SCLK Rising	t _{cscr}	90		+	ns
SCLK Falling to CS Rising	t _{cfcs}	35			ns
Output Timing					
CS Low to SDO Active	$t_{\rm cso}$			35	ns
SCLK Falling to SDO Data Valid	$t_{\sf cfdo}$			60	ns
CS High to SDO High Impedance	t_csz			100	ns
Power Supply					
Operating Voltage					
VA+		+4.75	+5	+5.25	V
VA-		-4.75	-5	-5.25	V
VD-		-4.75	-5	-5.25	V
Quiescent Current					
IA+	VA+ = +5V		30	40	mA
IA-	VA-=-5V	†	30	40	mA
ID-	VD- = -5V		1	2	mA

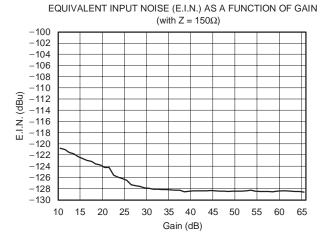
PIN CONFIGURATION


PIN DESCRIPTIONS


PIN NUMBER	NAME	DESCRIPTION		
1	GPO1	General Purpose CMOS Logic Output		
2	GPO2	General Purpose CMOS Logic Output		
3	GPO3	General Purpose CMOS Logic Output		
4	GPO4	General Purpose CMOS Logic Output		
5	OVR	Over Range Output (Active High)		
6	DGND	Digital Ground		
7	DCEN	DC Servo Enable (Active Low)		
8	0dB	Unity Gain Enable (Active High)		
9	ZCEN	Zero Crossing Detector Enable (Active High)		
10	SDI	Serial Data Input		
11	CS	Chip Select Input (Active Low)		
12	SCLK	Serial Data Clock Input		
13	SDO	Serial Data Output		
14	VD-	–5V Digital Supply		
15	VA-	–5V Analog Supply		
16	V _{OUT} -	Analog Output, Inverting		
17	V _{OUT} +	Analog Output, Non-Inverting		
18	VA+	+5V Analog Supply		
19	VA+	+5V Analog Supply		
20	VA-	–5V Analog Supply		
21	C _{S22}	DC Servo Capacitor #2, Terminal 2		
22	C _{S21}	DC Servo Capacitor #2, Terminal 1		
23	C _{S12}	DC Servo Capacitor #1, Terminal 2		
24	C _{S11}	DC Servo Capacitor #1, Terminal 1		
25	V _{COM} IN	Common Mode Voltage Input, 0V to +2.5V		
26	V _{IN} -	Analog Input, Inverting		
27	V _{IN} +	Analog Input, Non-Inverting		
28	AGND	Analog Ground		




TYPICAL CHARACTERISTICS


All specifications at $T_A = +25^{\circ}C$, VA+ = +5V, VA- = -5V, VD- = -5V, and $V_{COM}IN = 0V$, unless otherwise noted.

OVERVIEW

The PGA2500 is a digitally controlled microphone preamplifier integrated circuit designed for amplifying the output of dynamic and condenser microphones and driving high performance audio analog-to-digital converters (ADCs). A functional block diagram of the PGA2500 is shown in Figure 1.

The analog input to the preamplifier is provided differentially at the $V_{IN}+$ and $V_{IN}-$ inputs (pins 27 and 26, respectively). The programmable gain amplifier can be programmed to either pass through the signal at unity gain, or will apply 10dB to 65dB of gain to the input signal. The gain of the amplifier is adjustable over the full 10dB to 65dB range in 1dB steps. The differential output of the PGA2500 is made available at $V_{OUT}+$ and $V_{OUT}-$ (pins 17 and 16, respectively). Gain is controlled using a serial port interface.

The four-wire serial port interface is used to program the PGA2500 gain and support functions. A 16-bit control word is utilized to program these functions, as shown in Figure 2. A serial data output pin provides support for daisy-chaining multiple PGA2500 devices on a single serial interface bus, as shown in Figure 4.

The differential analog output of the PGA2500 is constantly monitored by a DC servo amplifier loop. The purpose of the servo loop is to minimize the DC offset voltage present at the analog outputs by feeding back an error signal to the input stage of the programmable gain amplifier. The error signal is then used to correct the offset. The DC servo may be disabled by driving the $\overline{\rm DCEN}$ input (pin 7) high or setting the DC bit in the serial control word to 1. Normally, the $\overline{\rm DCEN}$ pin is connected to DGND to enable the DC servo

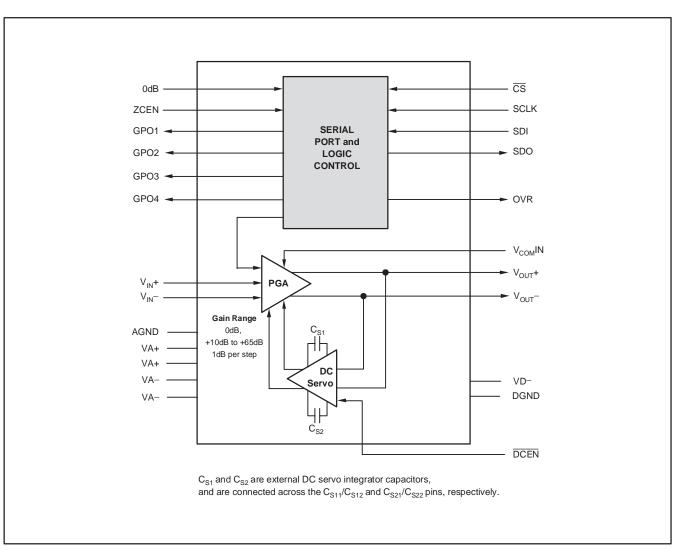


Figure 1. PGA2500 Functional Block Diagram

Two external capacitors are required for the DC servo function, with one capacitor connected between C_{S11} and C_{S12} (pins 24 and 23), and the second capacitor connected between C_{S21} and C_{S22} (pins 22 and 21). Capacitor values up to 4.7 μF may be utilized. However, larger valued capacitors will result in longer settling times for the DC servo loop. A value between $0.1\mu F$ and $1\mu F$ is recommended for use in most microphone preamplifier applications.

The common-mode voltage control input, named $V_{COM}IN$ (pin 25), allows the PGA2500 output and input to be DC-biased to a common-mode voltage between 0 and +2.5V. This allows for a DC-coupled interface between the PGA2500 preamplifier output and the inputs of common single-supply audio ADCs.

A dedicated 0dB input (pin 8) is provided so that the gain of the PGA2500 may be forced to unity without using the serial port interface. The 0dB input overrides gain settings made through the serial port. While the 0dB input is active (forced high), the serial port register may be updated or data may passed through the serial interface to other PGA2500 devices in daisy-chain configuration. However, any changes made in the gain will not take effect until the 0dB input is driven low.

The zero crossing control input, named ZCEN (pin 9), is provided for enabling and disabling the internal zero crossing detector function. Forcing the ZCEN input high enables the function. Zero crossing detection is used to force gain changes on zero crossings of the analog input signal. This limits the glitch energy associated with switching gain, thereby minimizing audible artifacts at the preamplifier output. Since zero crossing detection can add some delay when performing gain changes (up to 16ms maximum for a detector timeout event), there may be cases where the user may wish to disable the function.

Forcing the ZCEN input low disables zero crossing detection, with gain changes occurring immediately when programmed.

An overflow indicator output, OVR, is provided at pin 5. The OVR pin is an active high, CMOS logic level output. The overflow output is forced high when the preamplifier output voltage exceeds one of two preset thresholds. The threshold is programmed through the serial port interface using the OL bit. If OL=0, then the threshold is set to $5.1V_{RMS}$ differential, which is approximately -1dB below the specified output voltage range. If OL=1, then the threshold is set to $4.0V_{RMS}$ differential, which is approximately -3dB below the specified output voltage range.

The PGA2500 includes four programmable digital outputs, named GPO1 through GPO4 (pins 1 through 4, respectively), which are controlled via the serial port interface. All four pins are CMOS logic-level outputs. These pins may be used to control relay drivers or switches used for external preamplifier functions, including input pads, filtering, polarity reversal, or phantom power.

ANALOG INPUTS AND OUTPUTS

An analog signal is input differentially across the V_{IN} + (pin 26) and V_{IN} – (pin 27) inputs. The input voltage range and input impedance are provided in the Electrical Characteristics table. The Applications Information section of this datasheet provides additional details regarding typical input circuit considerations when interfacing the PGA2500 to a microphone input.

The analog output is presented differentially across $V_{OUT}+$ (pin 17) and $V_{OUT}-$ (pin 16). The output voltage range is provided in the Electrical Characteristics table. The analog output is designed to drive a 600Ω differential load while meeting the published THD+N specifications and typical performance curves.

SERIAL PORT OPERATION

The serial port interface for the PGA2500 is comprised of four wires: \overline{CS} (pin 11), SCLK (pin 12), SDI (pin 10), and SDO (pin 13). Figure 2 illustrates the serial port protocol, while Figure 3 and the Electrical Characteristics table provide detailed timing parameters for the port.

The \overline{CS} input functions as the chip select and word latch clock for the serial port. The \overline{CS} input must be low in order to clock data into and out of the serial port. The control word is latched on a low-to-high transition of the \overline{CS} input. The serial port ignores the SCLK and SDI inputs when \overline{CS} is high, and the SDO output is set to a high impedance state while \overline{CS} is high.

The SCLK input is used to clock serial data into the SDI pin and out of the SDO pin. The SDI pin functions as the serial data input, and is used to write the serial port register. The SDO pin is the shift register serial output, and is used for either register read-back or for daisy-chaining multiple PGA2500 devices. Data on SDI is sampled on the rising edge of SCLK, while data is clocked out of SDO on the falling edge of SCLK.

When the 0dB input (pin 8) is forced high, the gain set by the serial port register will be overridden. The serial port register may be updated while the 0dB input is forced high, but the programmed gain will not take effect until the 0dB input is forced low.

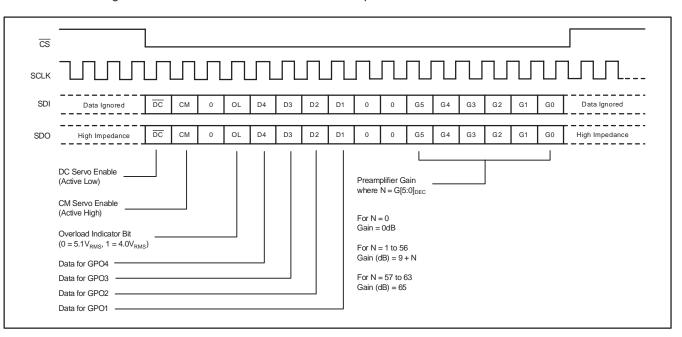


Figure 2. Serial Port Protocol

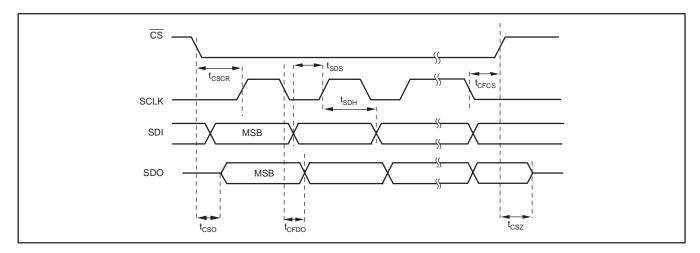


Figure 3. Serial Port Timing Requirements

DAISY-CHAINING MULTIPLE PGA2500 PREAMPLIFIERS

Since the serial port interface may be viewed as a serial in, serial out shift register, multiple PGA2500 preamplifiers may be connected in a cascaded or daisy-chained fashion, as shown in Figure 4. The daisy-chained PGA2500 devices behave as a 16 x *N*-bit shift register, where *N* is the

number of cascaded PGA2500 devices. To program all of the devices, simply force \overline{CS} low for 16 x N serial clock periods and clock in 16 x N bits of control data. The \overline{CS} input is then forced high to latch in the new settings.

A timing diagram for the daisy-chain application is shown in Figure 5.

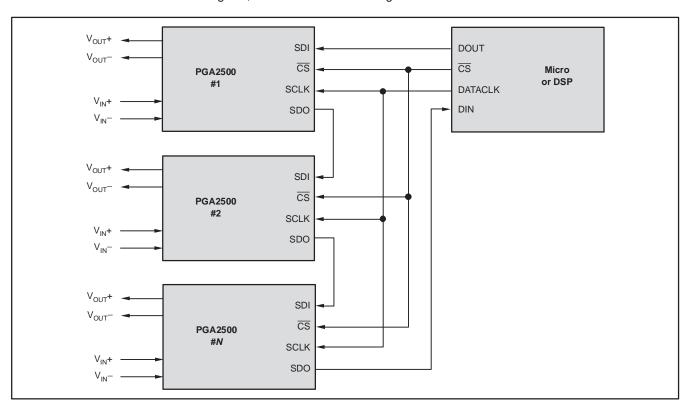


Figure 4. Daisy-Chain Configuration for Multiple PGA2500 Preamplifiers

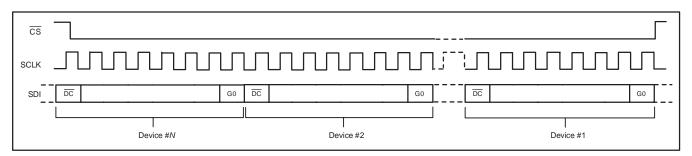


Figure 5. Serial Port Operation for Daisy-Chain Operation

APPLICATION INFORMATION

This section provides practical information for designing the PGA2500 into end applications.

BASIC CIRCUIT CONFIGURATION

A typical applications circuit, minus the input and output circuitry, is shown in Figure 6. Power-supply bypass and DC servo capacitors are shown with recommended values. All capacitors should be placed as close as possible to the PGA2500 package to limit inductive noise coupling. Surface-mount capacitors are recommended (X7R ceramic for the $0.1\mu F$ capacitors and low ESR tantalum for the $4.7\mu F$ capacitors).

The PGA2500 can be placed on a split ground plane, with the package located over the split. However, there must be a low impedance connection between the analog and digital grounds at a common return point.

The DC common-mode input, $V_{COM}IN$ (pin 25), can be connected to analog ground or a DC voltage (such as the reference or common voltage output of an audio ADC). When biasing this input to a DC voltage, keep in mind that both the analog output and input pins are level-shifted by the value of the bias voltage.

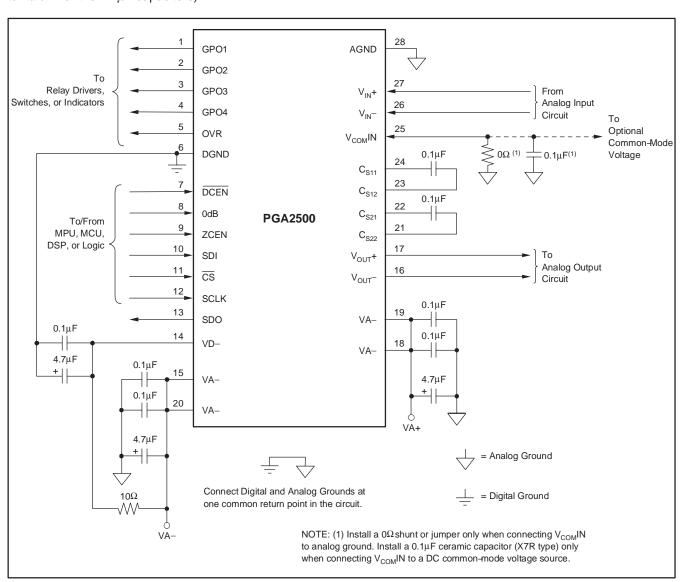


Figure 6. Basic Circuit Configuration for the PGA2500

INPUT CIRCUIT CONSIDERATIONS

The input circuit for the PGA2500 must include several items that are common to most microphone preamplifiers. Figure 7 shows a typical input circuit configuration. Other functions, such as input attenuation (pads), filters, and polarity reversal switches are commonly found in preamplifier circuits, but are not shown here in order to focus on the basic input circuit requirements.

The microphone input is typically taken from a balanced XLR or TRS input connection (XLR shown). The 1000pF capacitors provide simple EMI filtering for the circuit. Additional filtering for low- or high-frequency noise may be added, depending upon the end application environment. A bridging resistor is shown and may be selected to provide the desired overall input impedance required for a given microphone. This resistance will be in parallel with the phantom power bias resistors and the PGA2500 input resistance to set the actual input impedance.

Connections for +48V phantom power, required for condenser microphones, are shown in Figure 7. The phantom power requires an On/Off switch, as dynamic microphones do not require phantom power and may be damaged if power is applied. DC-blocking capacitors are required between the phantom power connections and the PGA2500 inputs. The blocking capacitors are selected to

have a high working voltage rating, with 50V being the minimum and 63V recommended for long term reliability.

The blocking capacitors, along with the PGA2500 input resistance, form a high-pass filter circuit. With the typical input resistance of the PGA2500 specified in the Electrical Characteristics table, the value of the capacitor can be chosen to meet the desired low frequency response for the end application. At the same time, the value should be no higher than required, since larger capacitors store more charge and increase the surge current seen at the preamplifier when a short circuit occurs on the microphone input connector.

To protect the PGA2500 from large surge currents, power Schottky diodes are placed on the input pins to both the VA+ and VA- power supplies. Schottky diodes are used due to their lower turn-on voltage compared to standard rectifier diodes. Power devices are required since the surge currents from a large valued blocking capacitor (47 μ F) can exceed 4.5 amps for a very short duration of time. It is recommended that the Schottky diode chosen for this application be specified for at least a 10A surge current.

The use of a series current-limiting resistor prior to the protection diodes will aid in handling surge currents, although the resistor will add noise to the circuit. Select a current-liming resistor value that is as high as tolerable for the desired noise performance of the preamplifier circuit.

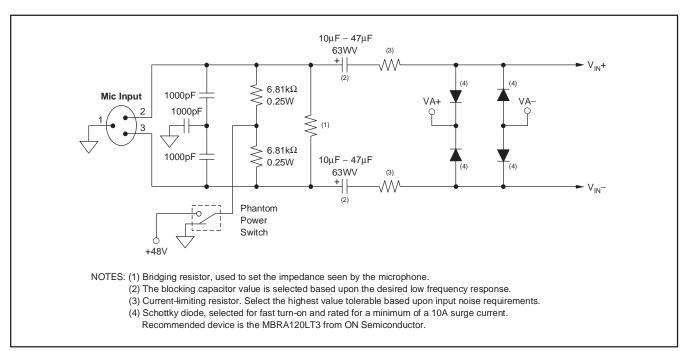


Figure 7. Typical Input Circuit for the PGA2500

ti.com 8-Apr-2008

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
PGA2500IDB	ACTIVE	SSOP	DB	28	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
PGA2500IDBG4	ACTIVE	SSOP	DB	28	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
PGA2500IDBR	ACTIVE	SSOP	DB	28	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
PGA2500IDBRG4	ACTIVE	SSOP	DB	28	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

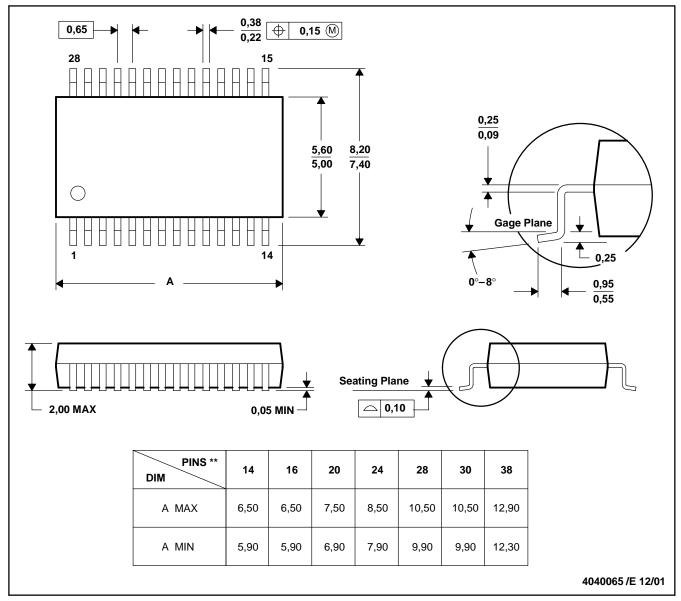
TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-150

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Amplifiers amplifier.ti.com Data Converters dataconverter.ti.com DSP dsp.ti.com Clocks and Timers www.ti.com/clocks Interface interface.ti.com Logic logic.ti.com Power Mamt power.ti.com Microcontrollers microcontroller.ti.com www.ti-rfid.com RF/IF and ZigBee® Solutions www.ti.com/lprf

www.ti.com/audio
www.ti.com/automotive
www.ti.com/broadband
www.ti.com/digitalcontrol
www.ti.com/medical
www.ti.com/military
www.ti.com/opticalnetwork
www.ti.com/security
www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated