

2~4cell Li-ion/Li-polymer battery Secondary protection IC

MM3508A Series

Description

The MM3508A series is a double protection IC for 2-4 cell Li batteries. It detects battery voltage for each cell. The configuration of delay time can be achieved. Output at the time of detection can be held for a fixed period of time; therefore, this can maintain a regular disconnection time of a fuse. In addition, high cell voltage can be dropped and then stopped at the level where battery deterioration does not occur by Electrical discharge function of the IC after disconnecting the fuse. The ultra-small package SSON-6A is used to minimize footprints.

Features (Unless otherwise specified, Ta=25 degC)

• Detection voltage Range Accuracy

Overcharge detection voltage 4.0V to 4.5V, 5mV steps +/-20mV(Ta=0 to +50 degC)

Overcharge hysteresis voltage 50mV to 500mV, 50mV steps +/-100mV

Typ. 3.5uA Max. 5.0uA (Vcell=4.0V)
Typ. 0.15uA Max. 0.30uA (Vcell=2.3V)

The FUSE cutting signal is the output between period of time. And the CELL voltage is released by electric discharge resistance of " $60K\Omega$ " after FUSE was cut.

And CELL stops an electric discharge if the CELL voltage becomes less than the electric discharge release voltage.

Applications

- · Lithium-ion rechargeable battery pack
- · Lithium polymer rechargeable battery pack

Package type

•SSON-6A 2.00 × 1.80 × 0.75 [mm] •SOT-26A 2.90 × 2.80 × 1.15 [mm]

Low current consumption

2~4cell Li-ion/Li-polymer battery Secondary protection IC

MM3508B Series

Description

The MM3508B series is a double protection IC for 2-4 cell Li batteries. It detects battery voltage for each cell. The configuration of delay time can be achieved. Output at the time of detection can be held for a fixed period of time; therefore, this can maintain a regular disconnection time of a fuse. In addition, high cell voltage can be dropped and then stopped at the level where battery deterioration does not occur by Electrical discharge function of the IC after disconnecting the fuse. The ultra-small package SSON-6A is used to minimize footprints.

Features (Unless otherwise specified, Ta=25 degC)

Detection voltage Range Accuracy

Overcharge detection voltage 4.0V to 4.5V, 5mV steps +/-20mV(Ta=0 to +50 degC)

Overcharge hysteresis voltage 50mV to 500mV, 50mV steps +/-100mV

·Low current consumption

Typ. 3.5uA Max. 5.0uA (Vcell=4.0V)
Typ. 0.15uA Max. 0.30uA (Vcell=2.3V)

Applications

- · Lithium-ion rechargeable battery pack
- ·Lithium polymer rechargeable battery pack

Package type

•SSON-6A 2.00 × 1.80 × 0.75 [mm] •SOT-26A 2.90 × 2.80 × 1.15 [mm]

2~3cell Li-ion/Li-polymer battery Secondary protection IC

MM3508C Series

Description

The MM3508C series is a double protection IC for 2-3 cell Li batteries. It detects battery voltage for each cell. The configuration of delay time can be achieved. Output at the time of detection can be held for a fixed period of time; therefore, this can maintain a regular disconnection time of a fuse. In addition, high cell voltage can be dropped and then stopped at the level where battery deterioration does not occur by Electrical discharge function of the IC after disconnecting the fuse. The ultra-small package SSON-6A is used to minimize footprints.

Features (Unless otherwise specified, Ta=25 degC)

• Detection voltage Range Accuracy

Overcharge detection voltage 4.0V to 4.5V, 5mV steps +/-20mV(Ta=0 to +50 degC)

Overcharge hysteresis voltage 50mV to 500mV, 50mV steps +/-160mV

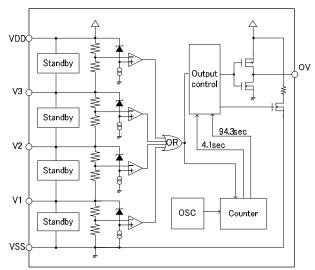
Low current consumption

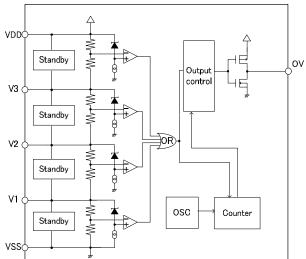
Typ. 3.5uA Max. 5.0uA (Vcell=4.0V)

Typ. 2.5uA Max. 4.0uA (Vcell=2.3V)

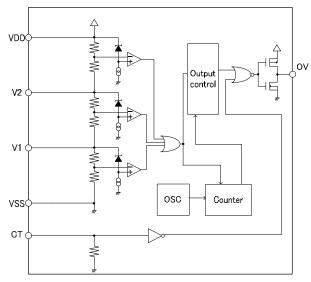
The terminal CT is used to control the output voltage of the terminal OV. The terminal CT controls the output voltage of the terminal OV regardless of the overcharge detection circuit. As for the output voltage of the terminal OV, the terminal CT becomes usually state in "H", and it becomes "H" in Open or "L". The terminal OV is controlled with the overcharge detection circuit in usually state.

Applications


- ·Lithium-ion rechargeable battery pack
- Lithium polymer rechargeable battery pack


Package type

•SSON-6A 2.00 × 1.80 × 0.75 [mm] •SOT-26A 2.90 × 2.80 × 1.15 [mm]


Block diagram

MM3508Axx rank

MM3508Bxx rank

MM3508Cxx rank

Package and pin configuration

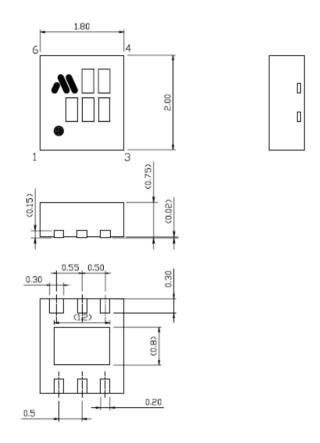
Axx, Bxx rank

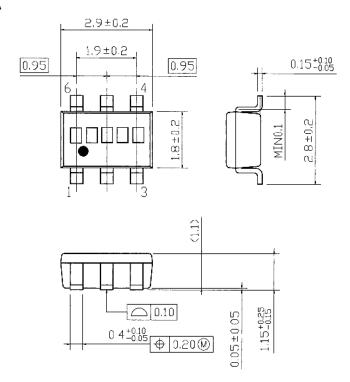
SSON-6A	Pin No.	Symbol	Function
TOP VIEW	1	VDD	input terminal of power supply of IC, and positive voltage of V4 cell
$VDD \begin{bmatrix} \overline{1} & \overline$	2	V3	input terminal of positive voltage of V3 cell, and negative voltage of V4 cell
	3	V2	input terminal of positive voltage of V2 cell, and negative voltage of V3 cell
V3 2 1 5 VSS	4	V1	input terminal of positive voltage of V1 cell, and negative voltage of V2 cell
$V2$ $\begin{bmatrix} \overline{3} \end{bmatrix}$ $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ $\begin{bmatrix} \overline{4} \end{bmatrix}$ $V1$	5	VSS	input terminal of ground of IC, and negative voltage of V1 cell
	6	OV	Output of over charge detection Output type is CMOS

SOT-26A	Pin No.	Symbol	Function					
	1	V2	input terminal of positive voltage of V2 cell, and negative voltage of V3 cell					
V2 1 (6 V1	2	V3	nput terminal of positive voltage of V3 cell, and negative voltage of V4 cell					
V3 2 TOP VIEW 5 VSS	3	VDD	input terminal of power supply of IC, and positive voltage of V4 cell					
101 1211 5 100	4	V1	input terminal of positive voltage of V1 cell, and negative voltage of V2 cell					
VDD 3 4 OV	5	5 VSS input terminal of ground of IC, and negative voltage of V1 cell						
	6	OV	Output of over charge detection Output type is CMOS					

Cxx rank

SSON-6A	Pin No.	Symbol	Function
TOP VIEW	1	VDD	input terminal of power supply of IC, and positive voltage of V3 cell
VDD [1 [1 [6] OV	2	V2	input terminal of positive voltage of V2 cell, and negative voltage of V3 cell
	3	V1	input terminal of positive voltage of V1 cell, and negative voltage of V2 cell
V2 2 1 1 5 VSS	4	СТ	input terminal of OV output control signal
V1 3 1 1 1 T4 CT	5	VSS	input terminal of ground of IC, and negative voltage of V1 cell
	6	OV	Output of over charge detection Output type is CMOS


SOT-26A	Pin No.	Symbol	Function
	1	V1	input terminal of positive voltage of V1 cell, and negative voltage of V2 cell
V1 1 (6 CT	2	V2	input terminal of positive voltage of V2 cell, and negative voltage of V3 cell
V2 2 TOP VIEW 5 VSS	3	VDD	input terminal of power supply of IC, and positive voltage of V3 cell
VZ Z TOP VIEW 5 V33	4	OV	Output of over charge detection Output type is CMOS
VDD 3 4 OV	5	VSS	input terminal of ground of IC, and negative voltage of V1 cell
	6	СТ	input terminal of OV output control signal


Package dimensions

• SSON-6A

• SOT-26A

Absolute maximum ratings

Axx, Bxx rank

Parameter	Symbol	Rating	Unit
Supply voltage	VDD	VSS-0.3 to VSS+28	V
OV terminal	VO	VSS-0.3 to VDD+0.3	V
Storage temperature	Tstg	-55 to +125	degC
Power Dissipation	Pd	150	mV

Cxx rank

Parameter	Symbol	Rating	Unit
Supply voltage	VDD	VSS-0.3 to VSS+18	V
OV terminal	VO	VSS-0.3 to VDD+0.3	V
Storage temperature	Tstg	-55 to +125	degC
Power Dissipation	Pd	150	mV

Recommend operating conditions

Axx, Bxx rank

Parameter	Symbol	Rating	Unit
Operating ambient temperature	Topr	-40 to +110	degC
Operating voltage	Vop	VSS+2.0 to VSS+21.0	V

Cxx rank

Parameter	Symbol	Rating	Unit
Operating ambient temperature	Topr	-40 to +110	degC
Operating voltage	Vop	VSS+2.0 to VSS+18.0	V

Electrical characteristics

PARAMETER	SYMBOL	TEST CONDITIONS	RANK	MIN	TYP	MAX	UNIT	
Consumption current 1	I _{DD1}	VCELL=3.5V,IOUT=0mA	Axx Bxx	-	3.5	5.0	μΑ	А
			Cxx	-	3.0	5.0		
Consumption current 2	I _{DD2}	VCELL=2.3V,IOUT=0mA	Axx Bxx	-	0.15	0.30	μΑ	А
			Cxx	-	2.5	4.0		
V3 pin input current	I _{V3}	VCELL=3.5V	Axx Bxx	-300	-	300	nA	А
			Cxx					
V2 pin input current	I _{V2}	VCELL=3.5V	-	-300	-	300	nA	А
V1 pin input current	I _{V1}	VCELL=3.5V	-	-300	-	300	nA	А

Electrical characteristics

(unless otherwise specified, Ta=25 $^{\circ}$ C, VCELL=3.5V)

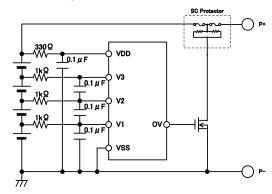
PARAMETER	SYMBOL	TEST CONDITIONS	RANK	MIN	TYP	MAX	UNIT	
			Axx		4.220			
	$V_{CELL}U$		Вхх		4.350	typ. +20mV	V	
voitage		VCLLL-3.5V 74.0V	Cxx	-201110	4.450	+20111V		
			A01		4.220			
			A04		4.320			
	$V_{CELL}U$		A05		4.370	typ.	V	
Overcharge detection voltage VCELLU Ta=0~+50°C *1 VCELL=3.5V→4.6V Axx Dxx Dxx Dxx Dxx Dxx Dxx Dxx Dxx Dxx		+25mV						
			B10		4.400			
			A02		4.350			
			A03		4.450			
			A06		4.500			
			B01		4.450			
			B06		4.350			
Overcharge detection	.,	Ta=-40 ~ +85°C *1	B07	typ.	4.300	typ.		
	V _{CELL} U	VCELL=3.5V→4.6V	B08	4	4.450	+50mV	V	
			B09		4.500			
			C01		4.350			
			C02		4.350			
			C03		4.450			
			C04		4.450			
V22 : " !				$V_{CELL}U$	V _{CELL} U	V _{CELL} U		
	Vhys	VCELL=4.5V→3.0V	Axx	-	-	-	V	
release voltage				0.6V	0.5V	0.4V		
				$V_{CELL}U$	V _{CELL} U	V _{CELL} U		
			B01	-	-	-	V	
				0.6	0.5	0.4		
				$V_{CELL}U$	V _{CELL} U	V _{CELL} U		
	V 0	V/CELL_4 EV/_>2 EV/					V	
_	VCELLO	VCELL-4.5V → 5.5V		-			V	
Voltage				0.72	0.62	0.52		
				$V_{CELL}U$	$V_{CELL}U$	$V_{CELL}U$		
			Cxx	-	-	-	٧	
				0.55	0.39	0.23		
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				$V_{CELL}U$	$V_{CELL}U$	$V_{CELL}U$		
	V 0	VCELL=4 5V→3 5V					V	
-	V CELLO	VCLLL-4.3V /3.3V					_	
				0.37	0.27	0.17		
Standby Valtage	Vet		Ахх	2.60	3.20	3.80	V	
olanuby voltage	VSť		Вхх	2.50	3.10	3.70	V	

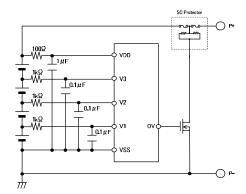
^{*1:}guaranteed by design.

Electrical characteristics

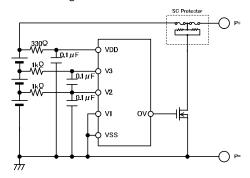
(unless otherwise specified, Ta=25 $^{\circ}$ C, VCELL=3.5V)

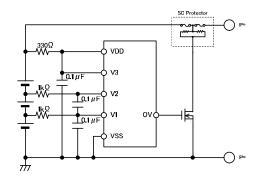
PARAMETER	SYMBOL	TEST CONDITIONS	RANK	MIN	TYP	MAX	UNIT	
			Axx		4.220			
Overcharge detection voltage	$V_{CELL}U$	Ta=0~+50°C *1 VCELL=3.5V→4.6V	Вхх	typ. -20mV	4.350	typ. +20mV	V	
Voltage		VCLLL-3.5V 74.0V	Схх	-201117	4.450	+201117		
			A01		4.220			
		a=00	A04]	4.320			
Overcharge detection voltage	$V_{CELL}U$	Ta=-10 ~ +85°C *1 VCELL=3.5V→4.6V	A05	typ. -25mV	4.370	typ. +25mV	V	
Voltage		VCLLL-3.5V 74.0V	A07	-25mv	4.375	+231110		
			B10		4.400			
			A02		4.350			
			A03		4.450			
			A06		4.500			
			B01		4.450			
			B06		4.350			
Overcharge detection	.,	Ta=-40 ~ +85°C *1	B07	typ.	4.300	typ.	.,	
voltage	V _{CELL} U	VCELL=3.5V→4.6V	B08	-50mV	4.450	+50mV	V	
			B09		4.500			
			C01		4.350			
			C02		4.350			
			C03		4.450			
			C04		4.450			
VDD die eller				$V_{CELL}U$	V _{CELL} U	V _{CELL} U	٧	
VDD pin pull-down release voltage	Vhys	VCELL=4.5V→3.0V	Axx	-	-	-		
release voltage				0.6V	0.5V	0.4V		
				$V_{CELL}U$	V _{CELL} U	V _{CELL} U	V	
			B01	-	-	-		
				0.6	0.5	0.4		
(11)			B06	$V_{CELL}U$	$V_{CELL}U$	$V_{CELL}U$		
(V4 cell) Overcharge release	V 0	VCELL=4.5V→3.5V	B07 B08		_		V	
voltage	V _{CELL} O	VCLLL-4.3V /3.3V	B09	_	-	-	v	
			B10	0.72	0.62	0.52		
				$V_{CELL}U$	$V_{CELL}U$	$V_{CELL}U$		
			Cxx	-	-	-	V	
				0.55	0.39	0.23		
() (4) (2) (2) (1)			B06	$V_{CELL}U$	$V_{CELL}U$	$V_{CELL}U$		
(V1,V2,V3 cell) Overcharge release	V _{CELL} O	VCELL=4.5V→3.5V	B07 B08	_	_	_	V	
voltage	V CELLO	VCLLL-4.5V *5.5V	B09					
			B10	0.37	0.27	0.17		
		V1CELL=]V2LCELL	Ахх	2.60	3.20	3.80	٧	
Standby Voltage	Vst	=V3CELL = V4CELL =4.5V→1.0V	Вхх	2.50	3.10	3.70	V	

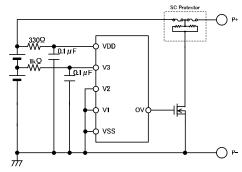

^{*1:}guaranteed by design.

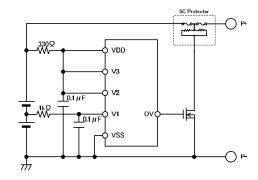


Typical application circuit


Axx, Bxx rank

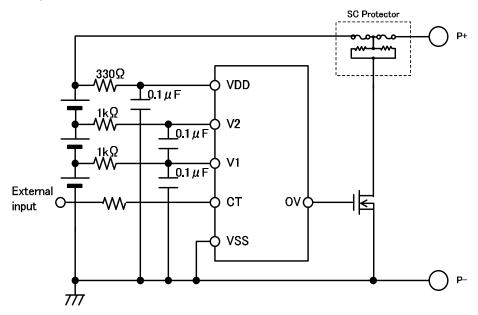

When using it for 4 cells

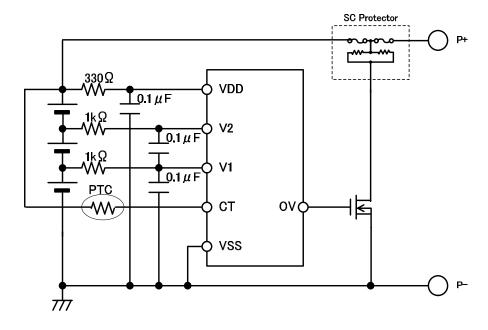



When using it for 3 cells

When using it for 2 cells

X1. The constant of the mark is a standard.


 $\fintilde{ imes}2$. The voltage change becomes big according to an excessive current, and the current of the bias in IC is turned off temporarily. It is this influence, and there is a possibility that the output logic becomes unstable. In that case, please set the time constant of CR connected with the power supply terminal so that the


Typical application circuit

Cxx rank

When using it for 3 cells

When using it by the overheat protection by PTC

When connecting a battery, it is recommended to make a short circuit by connecting a jumper between the output and VSS and then remove the output jumper at the completion of installing all the cells.

MODEL NAME

М	М	3	3	5	0	8]					
								1		4						
	1 2					3				4						
1	rank			Packag	ge		Packing Specifications				Taping Material					
			N	SOT-	26A	R	R HOUS	SING *S	tandar	d	Н	Emb	oss tap	e / For I	Halogen free	9
	*1		R	SSON	I-6A	L	L	HOUSI	١G		Ε		Em	boss tap	e *2	
	1					F	F HOUSING									
						В	В	B HOUSING								

^{*1} Please refer to MODEL LIST.

MODEL LIST

Parts Name	Overcharge	Overcharge	Detection	Latch	Standby	PTC
Parts Name	detection voltage	hysteresis voltage	delay time	function	function	function
1 234	V _{CELL} U	V_{HYS}	Tov			
MM3508 A 0 1 R R E	4.220±0.02V	500±100mV	4.10±0.9s	0	0	
MM3508 A 0 2 R R E	4.350±0.02V	500±100mV	4.10±0.9s	\circ	\circ	
MM3508 A 0 3 R R E	4.450±0.02V	500±100mV	4.10±0.9s	\circ	\circ	
MM3508 A 0 4 R R E	4.320±0.02V	500±100mV	4.10±0.9s	\circ	\circ	
MM3508 A 0 5 R R E	4.370±0.02V	500±100mV	4.10±0.9s	\circ	\circ	
MM3508 A 0 6 R R E	4.500±0.02V	500±100mV	4.10±0.9s	\circ	\circ	
MM3508 A 0 7 R R E	4.375±0.02V	500±100mV	4.10±0.9s	\circ	\circ	
MM3508 B 0 1 R R E	4.450±0.02V	500±100mV	5.00±1.5s		0	
MM3508 B 0 6 R R E	4.350±0.02V	V4: 620±100mV V3~V1: 270±100mV	4.00±1.2s		\circ	
MM3508 B 0 7 R R E	4.300±0.02V	V4: 620±100mV V3~V1: 270±100mV	4.00±1.2s		0	
MM3508 B 0 8 R R E	4.450±0.02V	V4: 620±100mV V3~V1: 270±100mV	4.00±1.2s		0	
MM3508 B 0 9 R R E	4.500±0.02V	V4: 620±100mV V3~V1: 270±100mV	4.00±1.2s		0	
MM3508 B 1 0 R R E	4.400±0.02V	V4: 620±100mV V3~V1: 270±100mV	4.50±1.35s		0	
MM3508 C 0 1 R R E	4.350±0.02V	390±160mV	4.00±1.2s			\circ
MM3508 C 0 1 N R H	4.350±0.02V	390±160mV	4.00±1.2s			0
MM3508 C 0 2 R R E	4.350±0.02V	390±160mV	5.65±1.7s			\circ
MM3508 C 0 2 N R H	4.350±0.02V	390±160mV	5.65±1.7s			\circ
MM3508 C 0 3 R R E	4.450±0.02V	390±160mV	5.65±1.7s			\circ
MM3508 C 0 3 N R H	4.450±0.02V	390±160mV	5.65±1.7s			\circ
MM3508 C 0 4 R R E	4.450±0.02V	390±160mV	4.00±1.2s			\bigcirc

^{*2} SSON-6A corresponds to halogen free.

NOTES

Safety Precautions

- Though Mitsumi Electric Co., Ltd. (hereinafter referred to as "Mitsumi") works continually to improve our product's quality and reliability, semiconductor products may generally malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of this product could cause loss of human life, bodily injury, or damage to property, including data loss or corruption. Before customers use this product, create designs including this product, or incorporate this product into their own applications, customers must also refer to and comply with (a) the latest versions or all of our relevant information, including without limitation, product specifications, data sheets and application notes for this product and (b) the user's manual, handling instructions or all relevant information for any products which is to be used, or combined with this products. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. Mitsumi assumes no liability for customers' product design or applications.
- This product is intended for applying to computers, OA units, communication units, instrumentation units, machine tools, industrial robots, AV units, household electrical appliances, and other general electronic units.

[Precautions for Product Liability Act]

· No responsibility is assumed by us for any consequence resulting from any wrong or improper use or operation, etc. of this product.

[ATTENTION]

- This product is designed and manufactured with the intention of normal use in general electronics. No special circumstance as described below is considered for the use of it when it is designed. With this reason, any use and storage under the circumstances below may affect the performance of this product. Prior confirmation of performance and reliability is requested to customers.
 - Environment with strong static electricity or electromagnetic wave
 - Environment with high temperature or high humidity where dew condensation may occur
- This product is not designed to withstand radioactivity, and must avoid using in a radioactive environment.
- This specification is written in Japanese and English. The English text is faithfully translated into the Japanese. However, if any question arises, Japanese text shall prevail.