
Specification for 3535C1 Series

AB-3535CJ-F1D

3535 Ceramic 1.0W 850nm 3V IR LED

Features:

- Top view infrared LED
- High power infrared LED
- Low thermal resistance
- Pb-free reflow soldering application
- RoHS and REACH compliant

Applications:

- Infrared Illumination for cameras
- Surveillance systems
- Proximity sensor
- Auto Focus
- Gaming Notebook
- Large Size Touch Panel
- Car Sensors
- Virtual Reality

Absolute Maximum Ratings (Tj=25°C)

Item	Symbol	Absolute Max. Rating	Unit
Forward Current	I _F	1000	mA
Pulse Forward Current	I _{FP}	1200	mA
Power Dissipation	PD	3.6	W
Reverse Voltage	V _R	5	V
Operating Temperature	T _{opr}	-40~ +85	°C
Storage Temperature	T _{stg}	-40~ +105	°C
Junction Temperature	Tj	115	°C
Soldering Temperature	T _{sld}	Reflow soldering: 230°C or 260°C for 10 sec	

* IFP condition with Pulse: Width≤100µs, Duty cycle≤1/10

* LED's properties might be different from suggested values like above and below tables if operation condition will be exceeded our parameter range. Care is to be taken that power dissipation does not exceed the absolute maximum rating of the product

* All measurements were made under the standardized environment of American Bright LED

Electrical/Optical Characteristics (Tj=25°C)

ltem	Symbol	Min.	Тур.	Max.	Unit	Condition
Forward Voltage	VF	2.6	3.0	3.6	V	l _f = 350mA
Reverse Current	I _R	-		10	μΑ	$V_R = 5V$
Radiant Flux	Φ _e		520	-	mW	l _f = 350mA
Radiant Intensity	l _e		280	-	mW/Sr	l _f = 350mA
Peak Wavelength	λρ	-	850	-	nm	l _f = 350mA
Viewing Angle	2θ _{1/2}		60	-	o	l _f = 350mA
Thermal Resistance	R _{th} j-sp	5	5.3	-	°C/W	l _f = 350mA
Electrostatic Discharge	ESD	6000	-	-	V	HBM

* Tolerance of measurements of the Forward Voltage is ±0.1V

* Tolerance of measurements of the Radiant Flux is ±7%

* $2\theta_{1/2}$ is the off-axis where the luminous intensity is 1/2 of the peak intensity

* Tolerance of measurements of Peak Wavelength is ±2.0nm

* Rth j-sp is the thermal resistance from LED junction to solder point on MCPCB with electrical power

Naming System:

AB-3535CJ-F1D-yyy

yyy: bin code

BIN Structure

Radiant Flux BINs (I_F =350mA, T_j =25°C)

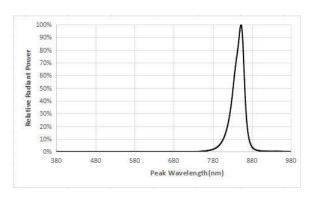
Radiant Flux				
BIN code	Min.	Max.	Unit	
JNO	315	390	mW	
JPO	390	490	mW	
JQO	490	610	mW	
JRO	610	770	mW	
JSO	770	960	mW	

* Tolerance of meJSOasurements of the Luminous Flux is ±7%

Peak Wavelength Bins ($I_F = 350 \text{mA}, T_j = 2\text{°C}$)

BIN code	Min.	Max.	Unit
XEO	840	860	nm
XFO	860	880	nm

* Tolerance of measurements of the peak wavelength is ±2.0nm


Forward Voltage Ranks (I_F = 150mA, T_j =25°C)

BIN Code	Min.	Max.	Unit
AB6	2.6	2.8	V
AC3	2.8	3.0	V
AC4	3.0	3.2	V
AC5	3.2	3.4	V
AC6	3.4	3.6	

* Tolerance of measurements of the Forward Voltage is $\pm 0.1 V$

Typical Characteristics Curves

Fig 1. Color Spectrum (T_j=25°C)

Fig 3. Forward Current vs. Relative Voltage, T_j =25°C

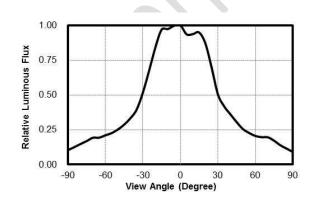
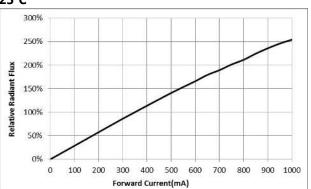



Fig 2. Forward Current vs. Relative Intensity, $T_j = 25^{\circ}C$

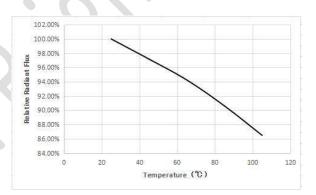
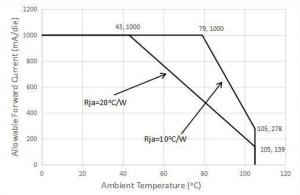
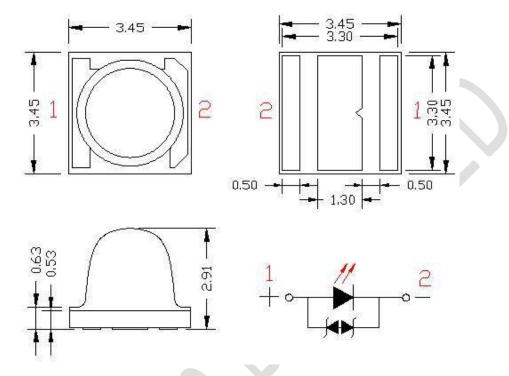
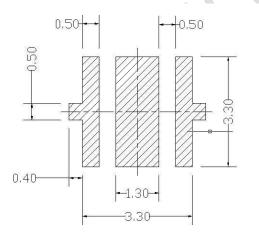
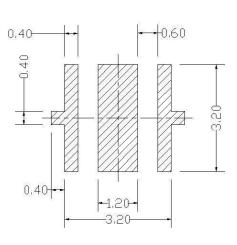




Fig 6. Soldering Temperature vs. Maximum Forward Current

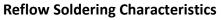


Package Dimensions



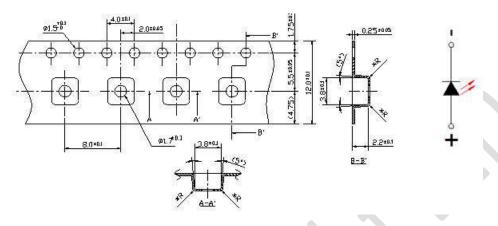
* The tolerance unless mentioned is ±0.1mm, unit = mm

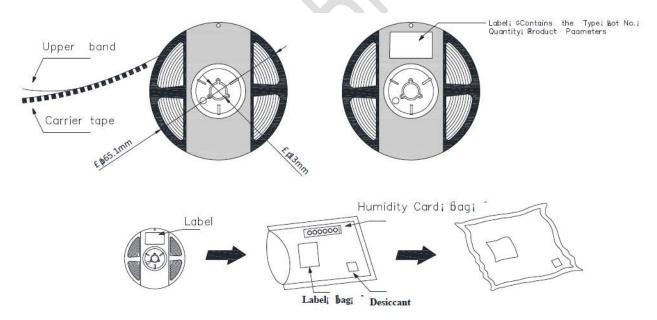
Recommended Solder Pad



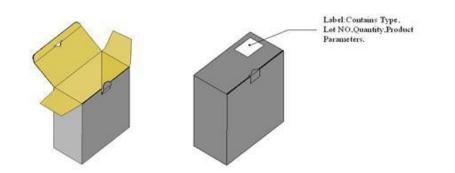


Recommeded Stencil Pattern

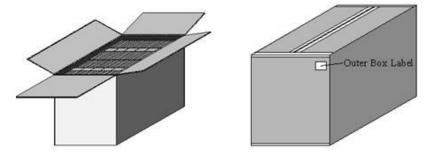

* The tolerance unless mentioned is ±0.1mm, unit = mm


Reflow Soldering				
Temperature min (T _{s, min})	 150°C			
Temperature Max (T _{s, Max)}	200°C			
Time (t _s) from (T _{s, min} to T _{s, Max})	60-120 s			
Ramp-up rate (T_L to T_p)	3°C/s Max			
Liquidous temperature (T _L)	217°C			
Time (T_L) maintained above T_L	60-150 s			
Peak package body temperature	260°C Max			
Time (T_p) within 5°C of the specified classification temperature (T_c)	30 s Max			
Ramp-down rate (T_p to T_L)	6°C/s Max			
Time 25°C to peak temperature	8 min. Max			

Package Dimensions of Tape



- * Quantity: Max 500pcs/Reel
- * Cumulative Tolerance: Cumulative Tolerance/10 pitches to be ±0.25mm
- * Package: P/N, Manufacturing data Code No. and Quantity to be indicated on a waterproof Package.
- * unit = mm


Package Dimensions of Reel

Packaging

* Capacity 4 or 8 reels per box.

* Capacity 48 or 64 reels per box.

Caution

1. Reflow soldering is recommended not to be done more than two times. In the case of more than 24 hours passed soldering after first, LEDs will be damaged.

2. Repairs should not be done after the LEDs have been soldered. When repair is unavoidable, suitable tools must be used.

- 3. Die slug is to be soldered.
- 4. When soldering, do not put stress on the LEDs during heating.
- 5. After soldering, do not warp the circuit board.

Notes on American Bright AB-3535CJ Series soldering:

- 1. Recommend to use reflow machine.
- 2. Recommend to use heating plate soldering.
- 3. Manual soldering is not recommended.

Notes on reflow process:

1. To confirm whether the actual temperature curve in the reflow soldering conditions comply with recommended conditions. LEDs are guaranteed for one time reflow.

2. During reflow process do not apply force on LED active area.

3. After reflow process, PCB board should be cooled down before packing or storage.

Precaution for use

Storage

1. Before opening the package: The LED should be kept at 30°C or less and 90%RH or less.

2. After opening the package: The LED's lifetime is 168Hrs @30°C or 60%RH. If unused LED remain, it should be stored in moisture proof packages JEDEC (**MSL 3**).

3.If the moisture absorbent material (silica gel) has faded away or the LEDs have exceeded the storage time, baking treatment should be performed using the following conditions: baking treatment: 60±5°C for 24 hours.