ON Semiconductor

Is Now

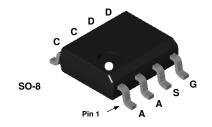
To learn more about onsemi™, please visit our website at www.onsemi.com

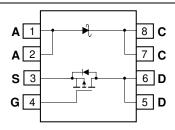
onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

ON Semiconductor®

FDFS2P106A

Integrated 60V P-Channel PowerTrench® MOSFET and Schottky Diode


General Description


The FDFS2P106A combines the exceptional performance of ON Semiconductor's PowerTrench MOSFET technology with a very low forward voltage drop Schottky barrier rectifier in an SO-8 package.

This device is designed specifically as a single package solution for DC to DC converters. It features a fast switching, low gate charge MOSFET with very low onstate resistance. The independently connected Schottky diode allows its use in a variety of DC/DC converter topologies.

Features

- -3.0 A, -60V $R_{DS(ON)} = 110 \text{ m}\Omega$ @ $V_{GS} = -10 \text{ V}$ $R_{DS(ON)} = 140 \text{ m}\Omega$ @ $V_{GS} = -4.5 \text{ V}$
- $V_F < 0.45 \text{ V}$ @ 1 A $(T_J = 125^{\circ}\text{C})$ $V_F < 0.53 \text{ V}$ @ 1 A $V_F < 0.62 \text{ V}$ @ 2 A
- Schottky and MOSFET incorporated into single power surface mount SO-8 package
- Electrically independent Schottky and MOSFET pinout for design flexibility

Absolute Maximum Ratings T_{A=25°C} unless otherwise noted

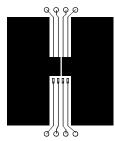
Symbol	Parameter		Ratings	Units	
V _{DSS}	MOSFET Drain-Source Voltage		-60	V	
V _{GSS}	MOSFET Gate-Source Voltage		±20	V	
I _D	Drain Current - Continuous	(Note 1a)	-3	A	
	- Pulsed		-10		
P _D	Power Dissipation for Dual Operation		2	W	
	Power Dissipation for Single Operation	(Note 1a)	1.6		
		(Note 1b)	1		
		(Note 1c)	0.9		
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C	
V_{RRM}	Schottky Repetitive Peak Reverse Voltage	Э	45	V	
Io	Schottky Average Forward Current	(Note 1a)	1	А	

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
FDFS2P106A	FDFS2P106A	13"	12mm	2500 units

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Char	racteristics	•			•	
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, \qquad I_{D} = -250 \mu\text{A}$	-60			V
<u>ΔBV_{DSS}</u> ΔT _J	Breakdown Voltage Temperature Coefficient	$I_D = -250 \mu A$, Referenced to 25°C		-60		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -48 \text{ V}, V_{GS} = 0 \text{ V}$			-1	μΑ
I _{GSSF}	Gate-Body Leakage, Forward	$V_{GS} = 20V$, $V_{DS} = 0 V$			100	nA
I _{GSSR}	Gate-Body Leakage, Reverse	$V_{GS} = -20 \text{ V}$ $V_{DS} = 0 \text{ V}$			-100	nA
On Char	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = -250 \mu A$	-1	-1.6	-3	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	$I_D = -250 \mu A$, Referenced to 25°C		4		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance	$ \begin{vmatrix} V_{GS} = -10 \ V, & I_D = -3A \\ V_{GS} = -4.5 \ V, & I_D = -2.7 \ A \\ V_{GS} = -10 \ V, & I_D = -3 \ A, \ T_J = 125^{\circ}C \\ \end{vmatrix} $		91 112 150	110 140 192	mΩ
I _{D(on)}	On-State Drain Current	$V_{GS} = -10 \text{ V}, V_{DS} = -5 \text{ V}$	-10			Α
g _{FS}	Forward Transconductance	$V_{DS} = -5 \text{ V}, \qquad I_{D} = -3.3 \text{ A}$		8		S
Dynamic	Characteristics					
C _{iss}	Input Capacitance	$V_{DS} = -30 \text{ V}, V_{GS} = 0 \text{ V},$		714		pF
Coss	Output Capacitance	f = 1.0 MHz		84		pF
C _{rss}	Reverse Transfer Capacitance	7		33		pF
Switchir	ng Characteristics (Note 2)			•	•	•
t _{d(on)}	Turn-On Delay Time	$V_{DD} = -30 \text{ V}, I_{D} = -1 \text{ A},$		8	15	ns
t _r	Turn-On Rise Time	$V_{GS} = -10 \text{ V}, R_{GEN} = 6 \Omega$		11	19	ns
t _{d(off)}	Turn-Off Delay Time	7		28	45	ns
t _f	Turn-Off Fall Time	7		8.5	17	ns
Q _g	Total Gate Charge	$V_{DS} = -30V$, $I_{D} = -3A$,		15	21	nC
Q _{gs}	Gate-Source Charge	$V_{GS} = -10 \text{ V}$		2		nC
Q _{gd}	Gate-Drain Charge	1		3		nC
Drain-S	ource Diode Characteristics	and Maximum Ratings	•	•	•	•
Is	Maximum Continuous Drain–Source				-1.3	Α
V _{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_{S} = -1.3 \text{ A} \text{(Note 2)}$		-0.8	-1.2	V

Electrical Characteristics (continued) T_A = 25°C unless otherwise noted


Symbol	Parameter	Test Conditions		Min	Тур	Max	Units
Schottky Diode Characteristics							
I _R	Reverse Leakage	V _R = 45 V	T _J = 25°C		2.8	80	μΑ
			T _J = 125°C		2.2	80	mA
V _F	Forward Voltage	I _F = 1 A	$T_J = 25^{\circ}C$		0.44	0.53	V
			T _J = 125°C		0.34	0.45	
		$I_F = 2 A$	$T_J = 25^{\circ}C$		0.49	0.62	
			T _J = 125°C		0.42	0.57	

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	78	°C/W
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	(Note 1)	40	°C/W

Notes:

 R_{8JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{8JC} is guaranteed by design while R_{8CA} is determined by the user's board design.

a) 78°C/W when mounted on a 0.5in² pad of 2 oz copper

125°C/W when mounted on a 0.02 in² pad of 2 oz copper

135°C/W when mounted on a minimum pad.

Scale 1:1 on letter size paper

2. Pulse Test: Pulse Width < 300 μ s, Duty Cycle < 2.0%

Typical Characteristics

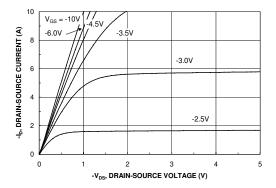


Figure 1. On-Region Characteristics.

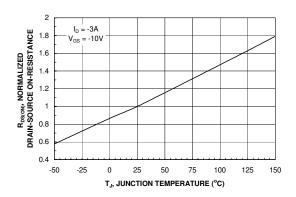


Figure 3. On-Resistance Variation with Temperature.

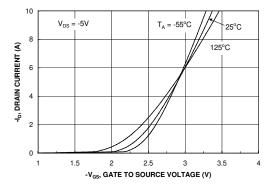


Figure 5. Transfer Characteristics.

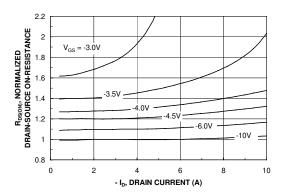


Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

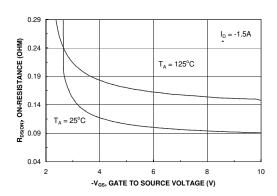


Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

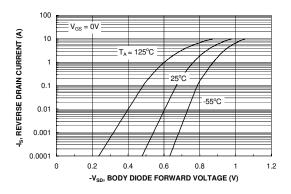
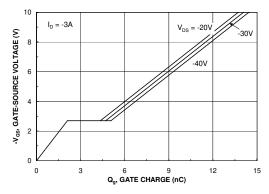



Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Characteristics

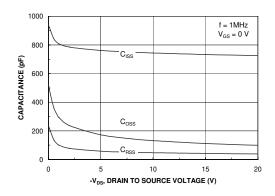
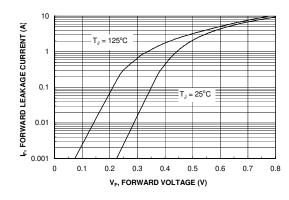



Figure 7. Gate Charge Characteristics.

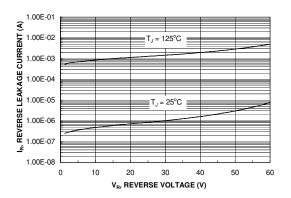


Figure 9. Schottky Diode Forward Voltage.

Figure 10. Schottky Diode Reverse Current.

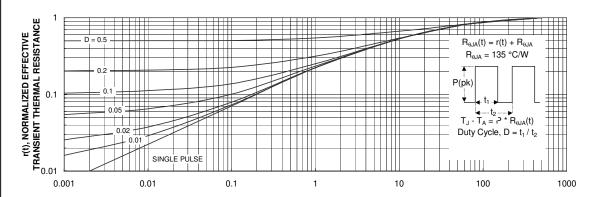


Figure 11. Transient Thermal Response Curve.

Thermal characterization performed using the conditions described in Note 1c. Transient thermal response will change depending on the circuit board design.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hol

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative