

VCA5807 Development Guide

This development guide describes the characteristics, operation and use of the VCA5807EVM demonstration kit. This demonstration kit is an evaluation module for the VCA5807 device. The VCA5807 is an integrated Voltage Controlled Amplifier (VCA) that integrates a complete time-gain-control (TGC) imaging path and a continuous wave Doppler (CWD) path. The VCA5807 is intended for prototyping and evaluation. This user's guide includes a complete circuit description, schematic diagram, and bill of materials (BOM).

The following related documents are available through the Texas Instruments web site at http://www.ti.com.

Table 1. Related Document

Device	Literature Number	
VCA5807	SLOS727	

Contents

1	VCA58	307 Overview	3
	1.1	Important Disclaimer Information	3
2	Overvi	ew	3
	2.1	Introduction	3
	2.2	Default Configuration	4
3	Softwa	are Installation and Operation	5
	3.1	Minimum Requirements	5
	3.2	Installing the Software (PC Application)	5
	3.3	GUI Overview	6
4	Hardw	are	11
	4.1	Introduction	11
	4.2	Board Configuration	12
	4.3	Power	13
	4.4	Clock Buffer	13
	4.5	VCA Inputs	13
	4.6	VCA5807 Device	13
	4.7	VCA Outputs	13
	4.8	CW Mode	14
	4.9	VControl	16
	4.10	Serial Interface	16
5	Quick	Start	17
	5.1	Test Setup	17
	5.2	Power Up VCA5807EVM	17
	5.3	Launch the VCA5807 GUI	17
Appen	dix A	Bill of Materials (BOM)	18
Appen	dix B	PCB Layout and Schematics	22
-			

List of Figures

1 VCA5807EVM Basic Configuration 4

Pentium, Celeron are registered trademarks of Intel. Windows is a registered trademark of Microsoft Corporation.

www.ti.com

2	Introduction Tab of the VCA5807EVM GUI	6
3	Hardware/Power/RST Tab of the VCA5807EVM GUI	7
4	VCA LNA+VCA+PGA+LPF Tab of the VCA5807EVM GUI	8
5	VCA CW Mode Tab	9
6	VCA Debugging/Recording Tab	10
7	HW Setup	11
8	PCB Layout With Jumper Positions	12
9	CW Mode Hardware Configuration	14
10	Switching to CW Mode	15
11	Oscilloscope	16
12	Top Layer - Signal	22
13	Second Layer - Ground	23
14	Third Layer - Power	24
15	Fourth Layer - Signal	25
16	Fifth Layer - Ground	26
17	Bottom Layer - Signal	27
18	Schematic 1 of 10	28
19	Schematic 2 of 10	29
20	Schematic 3 of 10	30
21	Schematic 4 of 10	31
22	Schematic 5 of 10	32
23	Schematic 6 of 10	33
24	Schematic 7 of 10	34
25	Schematic 8 of 10	35
26	Schematic 9 of 10	36
27	Schematic 10 of 10	37

List of Tables

1	Related Document	1
2	Power Table	13
3	Bill of Materials	18

1 VCA5807 Overview

1.1 Important Disclaimer Information

CAUTION

The VCA5807EVM is intended for feasibility and evaluation testing only in laboratory and development environments. This product is not for diagnostic use.

Use the VCA5807 only under the following conditions:

- The VCA5807EVM is intended only for electrical evaluation of the features of the VCA5807 device in a laboratory, simulation, or development environment.
- The VCA5807EVM is not intended for direct interface with a patient, or patient diagnostics.
- The VCA5807EVM is intended only for development purposes. It is not intended to be used as all or part of an end-equipment application.
- The VCA5807EVM should be used only by qualified engineers and technicians who are familiar with the risks associated with handling electrical and mechanical components, systems, and subsystems.
- The user is responsible for the safety of themself, fellow employees, contractors, and coworkers when using or handling the VCA5807EVM. Furthermore, the user is fully responsible for the contact interface between the human body and electronics; consequently, the user is responsible for preventing electrical hazards such as shock, electrostatic discharge, and electrical overstress of electric circuit components.

2 Overview

2.1 Introduction

This document is intended as a step-by-step guide through the VCA5807 Evaluation Module (EVM) setup and test. The EVM is shipped with a default configuration from the manufacturer. With this configuration, the onboard CMOS clock is used for an analog-to-digital converter sampling clock; the onboard oscillator is used for CW mode operation. No external clock generator is required. The input signal for measurement from a signal generator must be provided.

A detailed explanation regarding the jumpers, connectors, and test points appears in Section 2.2. The graphical user interface (GUI) is available from the TI Web Site. Go to the software section of the product folder (VCA5807).

Throughout this document, the abbreviation EVM and the term evaluation module are synonymous with the VCA5807EVM.

2.2 Default Configuration

Figure 1 shows the default configuration of the EVM from the factory. The accompanying list identifies the basic components on the EVM board.

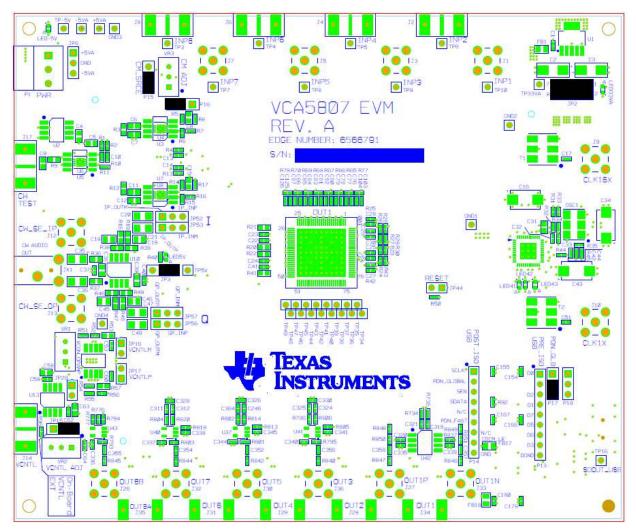


Figure 1. VCA5807EVM Basic Configuration

- 1. P1 Power supplies connector
- 2. JP2, and JP3 are set to enable 3.3-V and 5-V power supplies to the device
- 3. JP15: Enables onboard VCNT
- 4. P17: Disables PDB_Global
- 5. P15: Chooses the device Common Mode for the I/V Amp Common Mode
- 6. P16: Chooses Vss as -5 V for low-side power supply on I/V Amp

3 Software Installation and Operation

3.1 Minimum Requirements

Before installing the software, verify that your PC meets the minimum requirements outlined in this section.

3.1.1 Required Setup for VCA5807EVM GUI Software

- PC-compatible computer
- Pentium® III or Celeron® processor, 866 MHz or equivalent
- Minimum 256 MB of RAM (512 MB or greater recommended)
- Hard disk drive with at least 200 MB free space
- Windows® XP operating system with SP2, or Windows 7 operating system
- 1280 x 1024 or greater display screen resolution
- Mouse or other pointing device
- Available USB input

3.1.2 Additional Requirements for Use with Hardware

- VCA5807EVM
- USB cable
- Power supply to supply ±5 V

3.2 Installing the Software (PC Application)

The GUI software to evaluate the VCA5807 device is available at the Texas Instruments web site at www.ti.com (VCA5807).

Before installing the software, make sure the VCA5807EVM is not connected to the PC. If using a machine with Windows 7, it is recommended to have administrator rights to avoid problems during installation.

Unzip the installer file to a temporary directory, and then double click setup.exe from the directory. The installation creates a program menu item to execute the software.

Windows should automatically install the correct device drivers, but if there are problems installing the device drivers please refer to this e2e post. http://e2e.ti.com/support/other_analog/imaging_afes/f/239/p/213841/754871.aspx#754871

Follow these directions to ensure proper installation of the PC application.

3.3 GUI Overview

Every tab in the VCA5807EVM GUI has a software reset option available by clicking the **Software Reset** button located at the bottom right of the GUI.

The VCA Introduction tab: This tab gives a block diagram of the VCA5807 device.

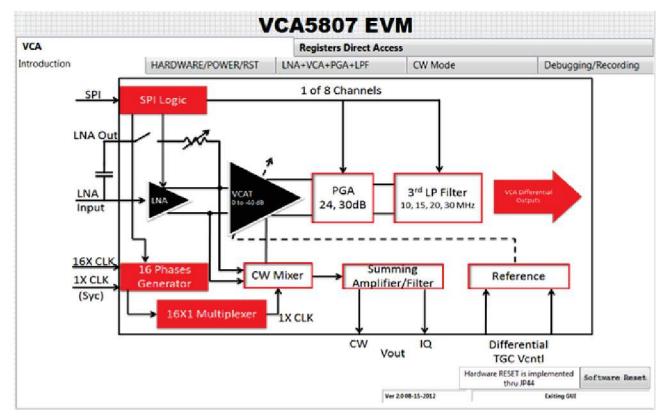


Figure 2. Introduction Tab of the VCA5807EVM GUI

The VCA HARDWARE/POWER/RST tab: This tab allows the execution of different power down options.

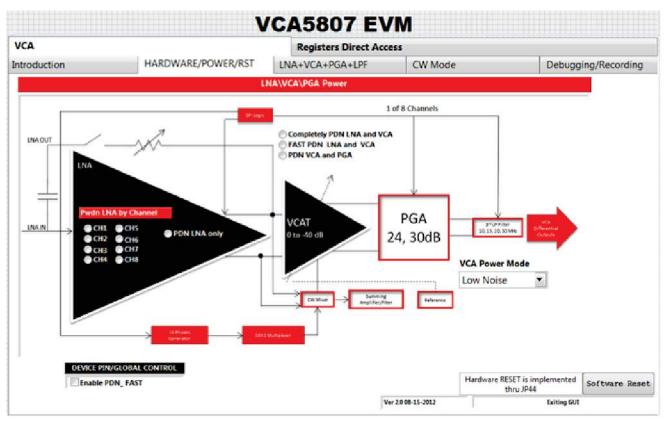


Figure 3. Hardware/Power/RST Tab of the VCA5807EVM GUI

Software Installation and Operation

www.ti.com

The VCA *LNA+VCA+PGA+LPF* tab: The settings of the Low Noise Amplifier (LNA), VCA, Programmable Gain Amplifier (PGA), and the Low Pass Filter (LPF) are adjusted in this tab.

- LNA: Adjusts the gain of each channel, adjust the active termination resistors, and disable the LNA
 offset Integrator
- VCA: Adjusts the digital Time Gain Control (TGC) Attenuator
- PGA: Adjusts the PGA gain, Clamp Level, and disable both the overload clamp and the offset integrator
- LPF: Adjusts the LPF frequency

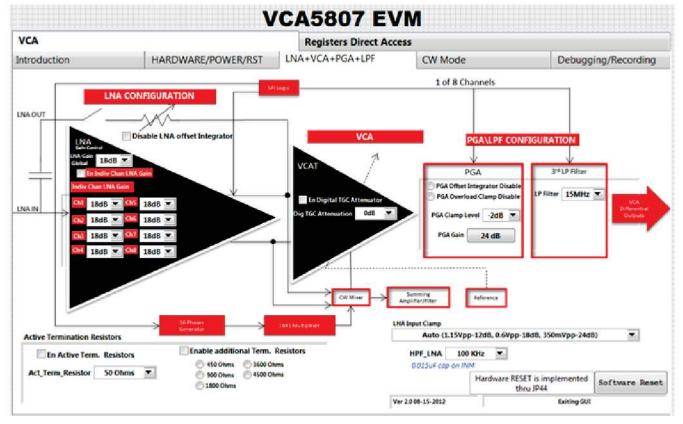


Figure 4. VCA LNA+VCA+PGA+LPF Tab of the VCA5807EVM GUI

The VCA *CW Mode* tab: The Continuous-wave (CW) Doppler mode is adjusted in this tab as well as the phases of each CW channel (1-8), the CW CLK, and the feedback resistors to control the gain. CH7 and CH8 are brought to the CW pins by using the PGA Test Mode.

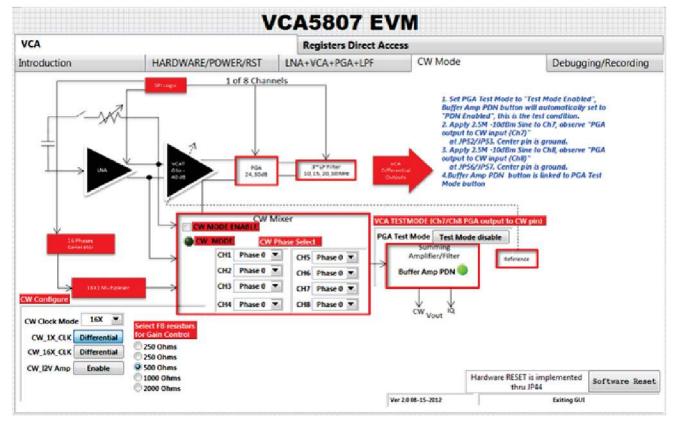


Figure 5. VCA CW Mode Tab

Software Installation and Operation

www.ti.com

The VCA *Debugging/Recording* tab: Command executions are saved to a file in this tab. The file can be played back at any time by clicking on the **Exec CMD File** button. This tab also displays the Write Status, and the ability to see the digital waveform of the SCLK, SDATA, and SEN pins.

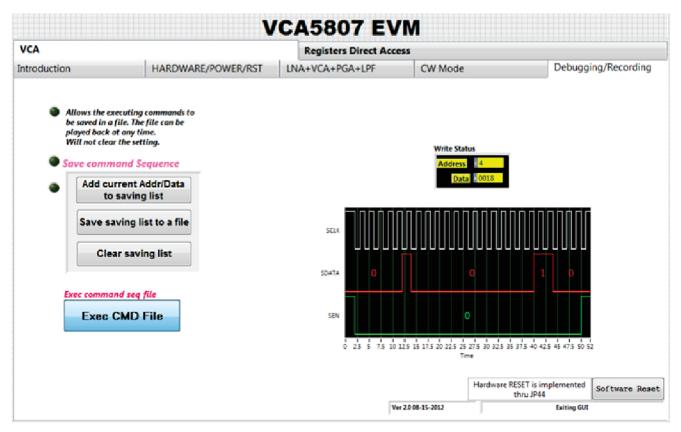


Figure 6. VCA Debugging/Recording Tab

4 Hardware

4.1 Introduction

The following illustration shows the setup of the VCA5807EVM and external connectors. For the default configuration as shown in Figure 1, it is unnecessary to have an external sampling clock and external Vcntl supply. The onboard CMOS clock and onboard Vcntl are used.

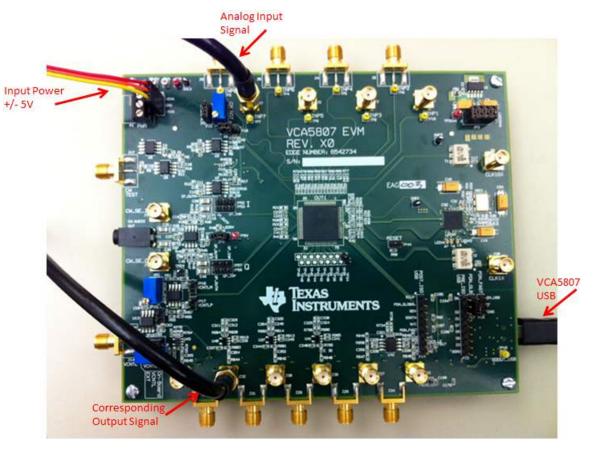


Figure 7. HW Setup

Hardware

4.2 Board Configuration

Power up the VCA5807EVM by applying +5 V and -5 V to the P1 connector. After power up is complete, three green LEDs and three red LEDs (LED 41, LED42, and LED 43) are turned. Locations of LEDs are shown in Figure 8.

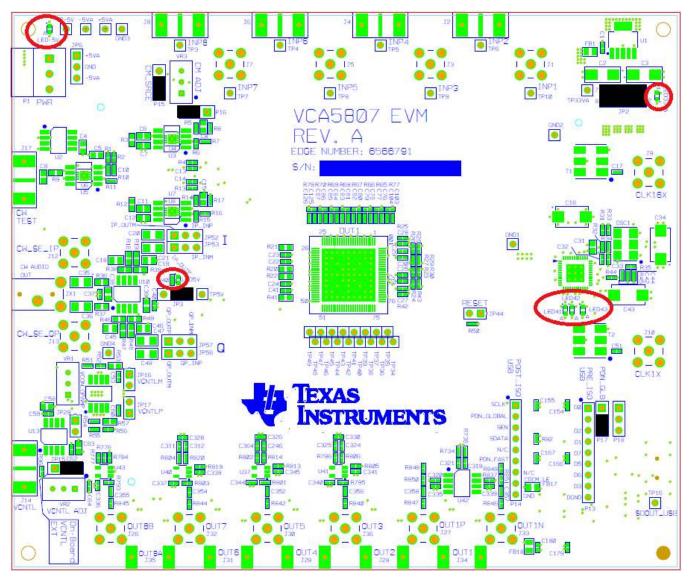


Figure 8. PCB Layout With Jumper Positions

4.3 Power

The power configuration of the board is shown in Figure 18, page 1 of the schematic. Refer to Table 2 for a list of important power components.

Connector	Description
P1/JP6	P1 is the +5-V and –5-V power supply connector. JP6 is the test point for +5-V/-5-V power supply.
JP3	Onboard 5-V enable. The configuration must be set up as shown in Figure 7 in order to use onboard 5-V supply.
TP-5V	-5-V supply test point
+5VA	+5-V supply test point
JP2	Onboard 3.3-VA enable. The configuration must be set up as shown in Figure 7 in order to use the onboard 3.3 V.
TP33VA	+3.3-VA supply test point
TP1 through TP4	Ground test points

Table 2. Power Table

4.4 Clock Buffer

The clock buffer drives the VCA5807 device. Each clock buffer output should only drive one VCA5807. Do not use one clock to drive multiple VCA5807s. This is due to the fact that the clock buffer's load capacitance increases by a factor of N, which then results in degraded falling and rising times. Select different clock inputs in the GUI. LEDs 41 and 42 demonstrate the PLL status of the clock buffer.

4.5 VCA Inputs

J1 through J8 are the analog input signals for CH1 through CH8. Connect to a signal generator. If the signal is too noisy, apply a bandpass filter between the generator and the SMA to get a better result. Use TP3-TP10 to see the input signal to the board.

4.6 VCA5807 Device

The VCA5807 device is a suitable ultrasound analog front end solution for high-end systems and portable systems. This device contains eight channels of VCA, and CW mixer. The VCA includes an LNA, Voltage-controlled Attenuator (VCAT), PGA, and an LPF. Each of these features is adjusted via the VCA5807 EVM GUI. For a more detailed explanation of the VCA5807 device please refer to the datasheet. The datasheet is found on the TI product folder at www.ti.com. (SLOS727)

4.7 VCA Outputs

J26 through J36 are the output signals for CH1 through CH8. All channels have a single-ended output through an OPA842 buffer amplifier. However, CH1 has the option of a fully differential output signal through a THS4130 amplifier. In order to use this amplifier, install R734 and R738 and remove R837, C317, and C318. CH8 also provides an added feature by allowing the choice of the OPA830 as the buffer amplifier. In order to use this amplifier, install R776 and R777 and remove U35.

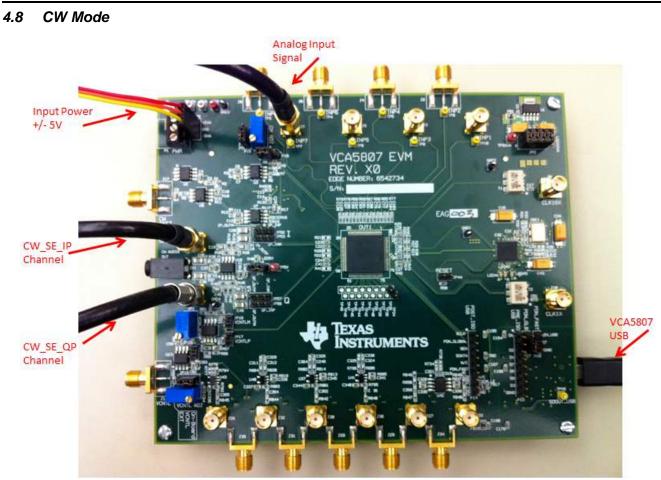


Figure 9. CW Mode Hardware Configuration

- Go to the CW Mode tab on the GUI.
- Check CW MODE ENABLE. LED41, LED42, and LED43 on the VCA5807EVM should all illuminate.
- Select 500 Ω for the gain control feedback resistor.

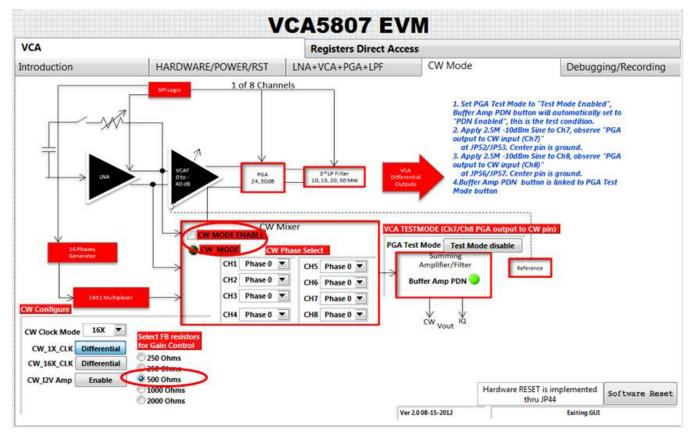


Figure 10. Switching to CW Mode

Hardware

- Apply an analog signal (2.51 MHz, -10 dBm) to any analog input SMA.
- The CW outputs (J12, J13) display the frequency I and Q signals at 10 kHz as shown in Figure 11. The GUI Gain Control Feedback Resistor can vary the amplitude of the outputs.

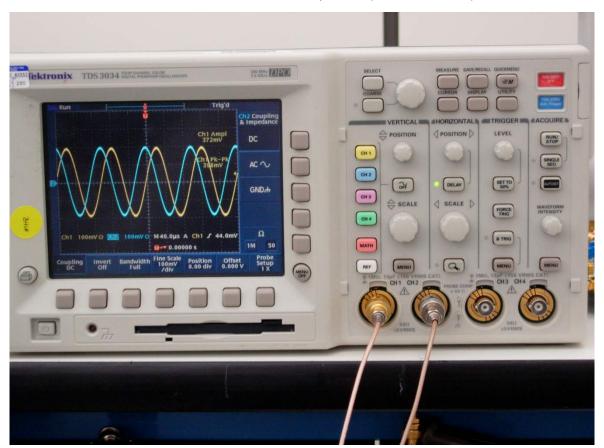


Figure 11. Oscilloscope

4.9 VControl

Switch between using the onboard Vcntl or the external Vcntl by using JP15. External Vcntl can range from 0 V to 1.5 V. If using the external Vcntl, then a DC voltage source must be connected to J14. The default setup uses onboard Vcntl. VR2 is used to make onboard Vcntl adjustments.

4.10 Serial Interface

The serial interface of the board is located on the bottom right-hand side. USB1 is the USB interface connector. P13 and P14 are test points for the USB data bus: From pin 1 to pin 9, the signals are D0, D4, D2, D1, D7, D5, D6, D3, and DGND. P14 on the VCA5807EVM is not installed.

5 Quick Start

This section assumes all engineering knowledge on the device and basic overview of the VCA5807EVM.

5.1 Test Setup

Connect the EVM as shown in . Typical input signals are 5 MHz at –32 dBm. This can be applied to any VCA input (J1-J8). If the signal is noisy, consider using a 5-MHz filter. Connect a scope or a spectrum analyzer to the corresponding VCA output in order to measure the gain on the channel.

5.2 Power Up VCA5807EVM

Connect ±5-V power to the board. No other power connection is needed.

5.3 Launch the VCA5807 GUI

Launch the VCA5807EVM GUI. Execute a software reset with the GUI and verify the current consumption drops from ≈ 0.762 A to ≈ 0.646 A. Enable the Active Termination Resistor of 50 Ohms (check the box) on the *LNA+VCA+PGA+LPF* tab. This tab is also used to vary the gain on each channel. However, with the default settings as shown in , the gain should be 42 dB overall. Therefore, with an input signal of 5 MHz at -32 dBm, load resistance of 50 Ω , and an overall gain of 42 dB, the output should read ≈ 4 dBm or 1 Vpp.

For more details and other modes for testing and evaluating the VCA5807 device, please refer to the previous pages of this development guide.

Appendix A Bill of Materials (BOM)

This section contains Table 3, the BOM for the VCA5807EVM.

Table 3. Bill of Materials

ltem	Qty	MFG	MFG Part#	REF DES	Description	Value or Function
1	41	AVX	0402YC104KAT2A	C17, C25, C26, C29, C30, C33, C37, C40, C51, C59, C62, C64, C76, C78, C80, C82, C84, C86, C94, C95, C96, C97, C98, C99, C101, C103, C125, C130, C131, C132, C133, C134, C135, C136, C137, C138, C139, C140, C141, C154, C155	CAP,SMT,0402	CAPACITOR,SMT,0402,CER,16V,10 %,0.1uF
2	2	AVX	0402YC471KAT2A	C53,C60	CAP,SMT,0402	CAPACITOR,SMT,0402,CER,16V,10 %,470pF
3	40		0402YC104KAT2A	C160, C162, C163, C165, C166, C167, C170, C171, C173, C174, C177, C178, C179, C180, C246, C265, C267, C294, C295, C308, C309, C310, C311, C312, C313, C314, C315, C316, C317, C318, C319, C320, C321, C322, C323, C324, C325, C364, C365, C366		
4	2	AVX	0402YC222KAT2A	C10, C74	CAP,SMT,0402	CAPACITOR,SMT,0402,CER,16V,10 %,2200pF
5	11	KEMET	C0402C103K3RACTU	C290, C350, C351, C352, C353, C354, C355, C356, C357, C358, C363	CAP,SMT,0402	CAPACITOR,SMT,0402,CER,0.01uF, 25V,10%,X7R
6	23	KEMET	C0402C104K8PAC	C1, C68, C69, C152, C291, C333, C334, C335, C336, C337, C338, C339, C340, C341, C342, C343, C344, C345, C346, C347, C360, C361, C362	CAP,SMT,0402	CAPACITOR,SMT,0402,CER,0.1uF,1 0V,10%,X5R
7	2	KEMET	C0402C152J5GACTU	C73, C89	CAP,SMT,0402	CAPACITOR,SMT,0402,CERAMIC,1 500pF,50V,5%,C0G/NP0
8	8	ТDК	C1005X5R0J105M	C77, C79, C81, C83, C85, C87, C104, C126	CAP,SMT,0402	CAPACITOR,SMT,0402,CER,1.0uF,6 .3V,20%,X5R
9	2	AVX	0402ZD105KAT2A	C71, C72	CAP,SMT,0402	CAPACITOR,SMT,0402,CERAMIC,1. 0uF,10V,20%,X5R
10	8	AVX	0402YC153KAT2A	C107, C108, C109, C116, C118, C119, C121, C123	CAP,SMT,0402	CAPACITOR,SMT,0402,CER,15000p F,16V,10%,X7R
11	1	AVX	04025C102KAT2A	C32	CAP,SMT,0402	CAPACITOR,SMT,0402,CER,1000pF ,50V,10%,X7R
12	4	AVX	04025C332KAT2A	C22, C23, C24, C41	CAP,SMT,0402	CAPACITOR,SMT,0402,CER,3300pF ,50V,10%,X7R
13	2	AVX	04025A470JAT2A	C175, C176	CAP,SMT,0402	CAPACITOR,SMT,0402,CER,47pF,5 0V,5%,NPO
14	7	AVX	06033C104JAT2A	C5, C7, C8, C12, C15, C88, C90	CAP,SMT,0603	CAPACITOR,SMT,0603,CERAMIC,0. 1uF,25V,5%,X7R
15	7	AVX	0603YD105KAT2A	C38, C39, C58, C63, C159, C161, C172	CAP,SMT,0603	CAPACITOR,SMT,0603,CERAMIC,1. 0uF,16V,10%,X5R
16	1	TAIYO YUDEN	AMK107BJ226MA-T	C9	CAP,SMT,0603	CAPACITOR,SMT,0603,CERAMIC,2 2uF,4V,20%,X5R
17	1	AVX	06036D106MAT2A	C4	CAP,SMT,0603	CAPACITOR,SMT,0603,CERAMIC,1 0uF,6.3V,20%,X5R
18	2	AVX	0603YD105KAT2A	C75, C129	CAP,SMT,0603	CAPACITOR,SMT,0603,CERAMIC,1. 0uF,16V,10%,X5R
19	2	MURATA	GRM188C80G475KE19	C6, C11	CAP,SMT,0603	CAPACITOR,SMT,0603,CERAMIC,4. 7uF,4V,10%,X6S (TI-F)
20	3	TAIYO YUDEN	JMK107BJ106MA-T	C31, C348, C349	CAP,SMT,0603	CAPACITOR,SMT,0603,CERAMIC,1 0uF,6.3V,20%,X5R
21	4	KEMET	C0805C332F3GACTU	C18, C19, C45, C46	CAP,SMT,0805	CAPACITOR,SMT,0805,CERAMIC,3 300pF,25V,1%,C0G(NP0)
22	6	AVX	1206YD226KAT2A	C20, C21, C35, C36, C47, C48	CAP,SMT,1206	CAPACITOR,SMT,1206,CERAMIC,2 2uF,10V,10%,X5R
23	4	VISHAY SPRAGE	293D226X9016D2TE3	C16, C34, C43, C128	CAP,SMT,7343	CAP,TAN,SMT, 22uF,16V,+/-10%,- 55~85C
24	4	AVX	TPSC226K016R0375	C2, C3, C70, C151	CAPACITOR,SMT,TA NT	10%, 16V, 22uF
25	14	AMPHENOL	901-144-8	J1, J3, J5, J7, J9, J10, J12, J13, J26, J27, J30, J32, J33, J36	CONNECTOR, SMA	SMA COAX STRAIGHT PCB CURRENT P/N IS 901-144-8RFX

Table 3. Bill of Materials (continued)
------------------------------	------------

ltem	Qty	MFG	MFG Part#	REF DES	Description	Value or Function
26	12	STEWARD	HI0805R800R-00	FB1, FB6, FB7, FB8, FB9, FB10, FB11, FB12, FB13, FB14, FB17, FB18	FERRITE BEAD,SMT,2P	FERRITE,SMT,0805,80 OHM@100MHz,5A
27	1	MOLEX	39357-0003	P1	HEADER, THRU, 3P	HEADER, THRU, POWER, 3P,3.5MM, EUROSTYLE
28	1	SAMTEC	TSW-104-07-G-D	JP2	HEADER,THU	HEADER,THU,8P,2X4,MALE,DUAL ROW,100LS,100TL
29	1		PBC09SAAN	P13	HEADER,THU,9P	HEADER,THU,MALE,0.1LS,9P,1X9,3 35H,120TL
30	4	TYCO ELECTRONICS	4-103239-0x2	JP16, JP17, JP29, JP44	HEADER,THU,JUMP ER	MALE,2PIN,.100CC MAKE FROM 4- 103239-0x2
31	11	TYCO ELECTRONICS	4-103239-0x3	JP3, JP6, JP15, JP52, JP53, JP56, JP57, P15, P16, P17, P18	HEADER,THU,JUMP ER	MAKE FROM 4-103239-0
32	3	NATIONAL SEMI	LME49990MA/NOPB	U3, U5, U7	IC,SMT,8P	ULTRA LOW DISTORTION ULTRA LOW NOISE OPAMP
33 34	1	TI	THS4130CD	U42	IC,SMT,8P	HI-SPEED,LOW NOISE,FULL- DIFF,11/O AMP,SO-8
35	1	TEXAS INSTRUMENTS	CDCM7005RGZ	CLK_BUF	IC,SMT,QFN-48	3.3-V HIGH PERFORMANCE CLOCK SYNTHESIZER AND JITTER CLEANER
36	3	ті	ISO7240MDW	U16, U20, U21	IC,SMT,SOIC-16W	QUAD DIGITAL ISOLATORS
37	1	TI / BURR-BROWN	OPA211AID	U13	IC,SMT,SOIC-8	1.1nV/Hz NOISE LOW POWER PRECISION OPERATIONAL AMPLIFIER
38	1	TI	OPA2614ID	U10	IC,SMT,SOIC-8	DUAL HI GAIN BWIDTH HI OUTPUT CURRENT OPAMP WITH CURRENT LIMIT
39	1	BURR-BROWN / TI	REF5025AID	U2	IC,SMT,SOIC-8	LOW-NOISE VERY LOW DRIFT PRECISION VOLTAGE REFERENCE,2.5V
40	2	ТІ	THS4131ID	U15, VCON_OPAMP	IC,SMT,SOIC-8	HIGH-SPEED LOW NOISE DIFFERENTIAL I/O AMPLIFIERS
41	1	TI	TPS79633DCQR	U1	IC,SMT,SOT223-6	ULTRALOW-NOISE HI PSRR FAST RF 1-A LDO LINEAR REGULATOR,3.3V
42	1	TI / BURR-BROWN	OPA830IDBV	U43	IC,SMT,SOT23-5	LOW POWER SINGLE SUPPLY WIDEBAND OPAMP
43	8	TI / BURR-BROWN	OPA842IDBV	U35, U36, U37, U38, U39, U40, U41, U44	IC,SMT,SOT23-5	WIDEBAND,LOW DIST,UNITY-GAIN STABLE,VOLTAGE-FEEDBACK OPAMP
44	1	FUTURE TECHNOLOGY DEVICE INT.	FT245RL	U19	IC,SMT,SSOP-28	USB FIFO IC INCORPORATE FTDICHIP-ID SECURITY DONGLE
45	3	PANASONIC	LNJ208R82RA	LED41, LED42, LED43	LED,SMT,0603	LED,SMT,0603,ULTRA BRIGHT RED,1.92V
46	3	PANASONIC	LNJ308G8PRA	LED-5V, LED33VA, LED5V	LED,SMT,0603	LED,SMT,0603,PURE GREEN,2.03V
47						
48 49	6	VENKEL	CR0402-16W-000T	R2, R5, R14, R63, R71, R93	RES,SMT,0402	RESISTOR,SMT,0402,0 OHM,1/16W,ZERO JUMPER
50	17	VISHAY	CRCW0402000Z	R821, R822, R823, R824, R825, R826, R827, R828, R829, R830, R831, R832, R833, R834, R835, R836, R837	RES,SMT,0402	ZERO OHM JUMPER,SMT,0402,THICK FILM,0 OHM,1/16W,5%
51	2	VISHAY	CRCW04021001F100	R50, R92	RES,SMT,0402	RESISTOR,SMT,0402,1K,1/16W,1%, 100ppm
52	1	VISHAY	CRCW04021002F100	R95	RES,SMT,0402	RESISTOR,SMT,0402,10K,1/16W,1% ,100ppm
53	2	VISHAY	CRCW04022002F100	R44, R91	RES,SMT,0402	RESISTOR,SMT,0402,20K,1/16W,1% ,100ppm
54						
55	37	VISHAY	CRCW04024990F100	R80, R81, R82, R730, R731, R736, R793, R794, R795, R796, R797, R798, R799, R800, R801, R802, R803, R804, R805, R806, R807, R808, R809, R810, R811, R812, R813, R814, R815, R816, R817, R818, R819, R820, R852, R853, R854	RES,SMT,0402	RES,SMT,499 OHM,1/16W,1%,100ppm

Appendix A

Table 3. Bill of Materials (continued)

ltem	Qty	MFG	MFG Part#	REF DES	Description	Value or Function
56	11	VISHAY	CRCW040249R9F100	R838, R839, R840, R841, R842, R843, R844, R845, R846, R847, R855	RES,SMT,0402	RES,SMT,49.9 OHM,1/16W,1%,100ppm
57	1	VISHAY	CRCW04025110F100	R58	RES,SMT,0402	RESISTOR,SMT,0402,511 OHM,1/16W,1%,100ppm
58	1	PANASONIC	ERJ-2GE0R00X	R56	RES,SMT,0402	RESISTOR/JUMPER,SMT,0402,0 OHM,5%,1/16W
59	5	PANASONIC	ERJ-2GEJ131	R28, R29, R30, R32, R43	RES,SMT,0402	RESISTOR,SMT,0402,THICK FILM,5%,1/16W,130
60 61 62	4	PANASONIC	ERJ-2GEJ391	R51, R52, R54, R55	RES,SMT,0402	RESISTOR,SMT,0402,THICK FILM,5%,1/16W,390
63	5	PANASONIC	ERJ-2GEJ820	R23, R24, R26, R27, R34	RES,SMT,0402	RESISTOR,SMT,0402,THICK FILM,5%,1/16W,82
64	5	PANASONIC	ERJ-2RKF1000X	R25, R40, R42, R76, R78	RES,SMT,0402	RESISTOR,SMT,0402,100 OHM,1%,1/10W
65	2	PANASONIC	ERJ-2RKF2001X	R850, R851	RES,SMT,0402	RESISTOR,SMT,0402,2.00K,1%,1/16 W
66	1	PANASONIC	ERJ-2RKF3320X	R59	RES,SMT,0402	RESISTOR,SMT,0402,332 OHM,1%,1/16W
67	2	PANASONIC	ERJ-2RKF4020X	R848, R849	RES,SMT,0402	RESISTOR,SMT,0402,402 OHM,1%,1/16W
68	1	PANASONIC	ERJ-2RKF49R9X	R96	RES,SMT,0402	RESISTOR,SMT,0402,49.9 OHM,1%,1/16W
71	2	VISHAY/DALE	CRCW0603200RFKEA	R53, R57	RES,SMT,0603	RESISTOR,SMT,0603,1%,1/10W,200 OHM
73	1	PANASONIC	ERJ-3GSYJ153	R60	RES,SMT,0603	RESISTOR,SMT,0603,5%,1/10W,15K
74	2	VISHAY	TNPW0603475RBEEA	R3, R12	RES,SMT,0603	RESISTOR,SMT,0603,THIN FILM,475 OHM 0.1%,1/10W,25ppm
75	8	VISHAY	TNPW0603499RBEEA	R18, R19, R38, R39, R46, R47, R48, R49	RES,SMT,0603	RESISTOR,SMT,0603,THIN FILM,499 OHM 0.1%,1/10W,25ppm
76	3	VISHAY	TNPW060349R9BEEA	R9, R36, R37	RES,SMT,0603	RESISTOR,SMT,0603,THIN FILM,49.9 OHM,0.1%,1/10W
77	1	KYCON	STX-3000	JX1	STEREO PHONE JACK,THU,3 PIN	STEREO PHONE JACK,THU,3 PIN,3.5mm
78	3	KEYSTONE ELECTRONICS	5000	TP2, TP33VA, TP5V	TESTPOINT,THU,1P	TESTPOINT,THU,MINIATURE,0.1LS, 120TL, RED
79	4	KEYSTONE ELECTRONICS	5001	GND1, GND2, GND3, GND4	TESTPOINT,THU,1P	TESTPOINT,THU,MINIATURE,0.1LS, 120TL, BLACK
80	2	KEYSTONE ELECTRONICS	5002	TP1, TP-5V	TESTPOINT,THU,1P	TESTPOINT,THU,MINIATURE,0.1LS, 120TL, WHITE
81	9	KEYSTONE ELECTRONICS	5004	TP3, TP4, TP5, TP6, TP7, TP8, TP9, TP10, TP16	TESTPOINT,THU,1P	TESTPOINT,THU,MINIATURE,0.1LS, 120TL, YELLOW
82						
83	2	MINI-CIRCUITS	ADT4-1WT	T1, T2	TRANSF,SMT,6P	RF TRANSFORMER WIDEBAND, 2- 775 MHz, 50 OHM
84	2	BOURNS	3296W-1-103	VR2, VR3	TRIMPOT,THU,3P	TRIMPOT,THU,10K,10%,0.5W,100pp m,25T
85	1	BOURNS	3296W-1-205	VR1	TRIMPOT,THU,3P	TRIMPOT,THU,2M,10%,0.5W,100pp m,25T
86	2	PANASONIC	ERA-2AEB152X	R10, R64	RES,SMT,0402	RESISTOR,SMT,0402,THIN FILM,1.5 K,0.1%,1/16W,10ppm, Tolerance important
87	2	PANASONIC	ERA-2AEB202X	R61, R74	RES,SMT,0402	RESISTOR,SMT,0402,THIN FILM,2 K,0.1%,1/16W,10ppm, Tolerance important
88	8	PANASONIC	ERJ-2GEJ49R9(UN)	R65, R66, R67, R68, R69, R70, R77, R79	RES,SMT,0402	(UNINSTALLED PART)
89	4	PANASONIC	ERJ-3GSYJ102(UN)	R20, R21, R22, R41	UNINSTALLED	(UNINSTALLED PART)
90	12	UNINSTALLED	CRCW04020000Z0ED(UN)	R1, R6, R7, R8, R11, R15, R16, R17, R62, R72, R73, R75	UNINSTALLED	UNINSTALLED
91	1		PBC09SAAN	P14	UNINSTALLED	HEADER,THU,MALE,0.1LS,9P,1X9,3 35H,120TL
92						
93	4	AVX	0402YC104KAT2A(UN)	C27, C28,C100, C102	UNINSTALLED	UNINSTALLED
94	2	TAIYO YUDEN	LMK105BJ104KV- F	C42, C44	CAP,SMT,0402	CAPACITOR,SMT,0402,CERAMIC,1 0V,Y5V,0.1uF,20%

Table 3. Bill of Materials (continued)
------------------------------	------------

Item	Qty	MFG	MFG Part#	REF DES	Description	Value or Function	
95	2	KEMET	C0402C152J5GACTU	C13, C14	CAP,SMT,0402	CAPACITOR,SMT,0402,CERAMIC,1 500pF,50V,5%,C0G/NP0	
96	2	SUSUMU	RG1005N202B	R4, R13	UNINSTALLED	RESISTOR,SMT,0402,THIN FILM,2 K,0.1%,1/16W,10ppm,(UNINSTALLE D)	
97	1	PANASONIC	ERJ-2GEJ820	R33	RES,SMT,0402	RESISTOR,SMT,0402,THICK FILM,5%,1/16W,82 (UNINSTALLED)	
98	1	PANASONIC	ERJ-2GEJ131	R31	RES,SMT,0402	RESISTOR,SMT,0402,THICK FILM,5%,1/16W,130 (UNINSTALLED)	
99	1	PANASONIC	ERJ-2GEJ161	R35	RES,SMT,0402	RESISTOR,SMT,0402,THICK FILM,5%,1/16W,160 (UNINSTALLED)	
100	3	ті	LMH6629SDE/NOPB	U4, U6, U8	IC,SMT,DFN-8	ULTRA-LOW NOISE, PRECISION OPERATIONAL AMPLIFIERS	
101	8	PANASONIC	ECJ-0EC1H470J	C332, C329, C330, C331, C326, C327, C328, C359	CAP,SMT,0402	CAPACITOR,SMT,0402,CER,47pF,5 0V,5%,NPO	
102	2	AVX	06033C104JAT2A	C91, C92	CAP,SMT,0603	CAPACITOR,SMT,0603,CERAMIC,0. 1uF,25V,5%,X7R	
103	1	PANASONIC	ECJ-1VB1C105K	C93	CAP,SMT,0603	CAPACITOR,SMT,0603,CERAMIC,1. 0uF,16V,10%,X5R	
104	1	VISHAY	CRCW04024701F100	R45	RES,SMT,0402	RESISTOR,SMT,0402,4.7K,1/16W,1 %,100ppm	
105	1	TYCO ELECTRONICS	4-103239-0x3	P18	UNINSTALLED	MAKE FROM 4-103239-0, DNI	
106	4	Vishay	CRCW04020000Z0ED(UN)	R734, R738, R776, R777	UNINSTALLED	VISHAY_0402_1x0.5x0.35mm_016H	
107	16	COMPONENTS CORP	TP105-01-04	TP34, TP35, TP36, TP37, TP38, TP39, TP40, TP41, TP42, TP43, TP44, TP45, TP46, TP47, TP48, TP49	UNINSTALLED	TEST POINTS,THU,SMALL,TL-70, YELLOW, DNI	
108	1	ADVANCED CONNECTEK	MNE20-5K5P10	USB1	CONN,SMT,5P	MINI-AB USB OTG RECEPTACLE R/A SMT TYPE, Use 670-1523-1-ND instead.	
109	11	EFJOHNSON	142-0721-891	J2, J4, J6, J8, J14, J17, J28, J29, J31, J34, J35	CONN,THU,SMA JACK	SMA JACK END LAUNCH, 0.080 PCB THICK, Use J630-ND for board thickness of .042 or J502-ND for .062 or J992-ND for .068	
110	1	CONNOR WINFIELD	CWX813-10.0M	X1	OSC,SMT,4P	OSCILLATOR,SMT,4P,3.3V,+/- 25ppm,-20-70C,10.000 MHz, Use FVXO-PC73B-640-ND instead	
111	1		VCA5807PZP	DUT1	Customer Supplied	"IC, Fully Integrated, 8-Channel Voltage Controlled Amplifier for Ultrasound with Passive CW Mixer, 0.75 nV/rtHz, 99 mW/CH "	
112	1	OSC,SMT,6P	VX-7040-ECE-KXX-0- 640M000	OSC1	OSC,SMT,6P	VCXO,SMT,3.3V,40Mhz 5.0x7.5x1.8mm (Customer Supply)	
113	15	Molex	15-29-1025		SHUNT-JUMPER	CONN SHUNT CLOSED TOP .100 GOLD	
	Specia	al Instructions and Notes:					
	1. Incl	ude extra Shunt-Jumpers with bo	bard.		* Alternative Part suggested		
					* Orange=Tolerance is significant		
	Note:	Asterisk(*) next to part manufact	urer's name denotes possible long	lead time item.	* Green= Exact part, No Substitutions		
					* Blue= Uninstalled		

Appendix B PCB Layout and Schematics

B.1 PCB Layout

Figure 12 through Figure 17 show the PCB layouts for this EVM.

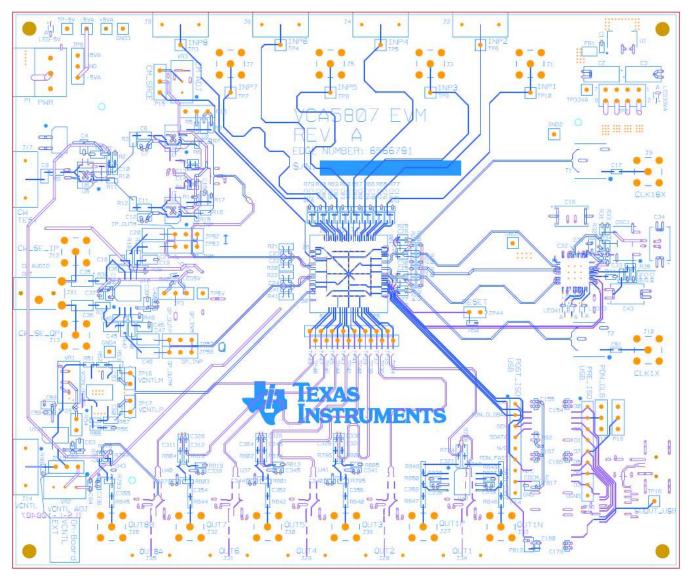


Figure 12. Top Layer - Signal

PCB Layout

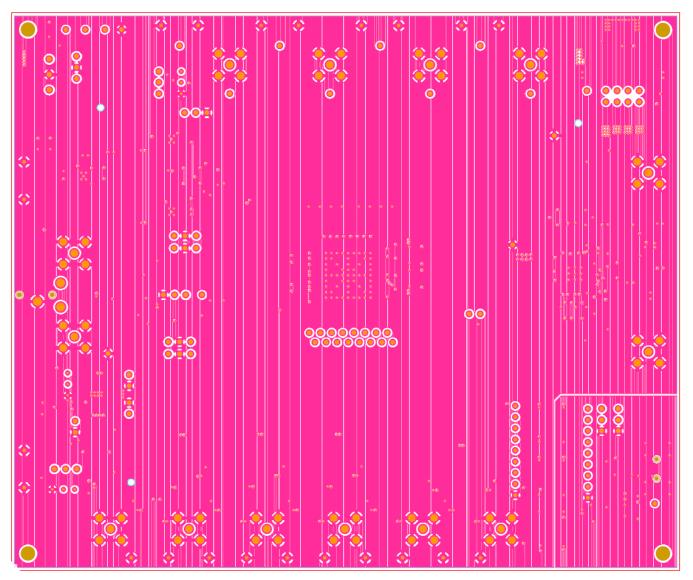


Figure 13. Second Layer - Ground

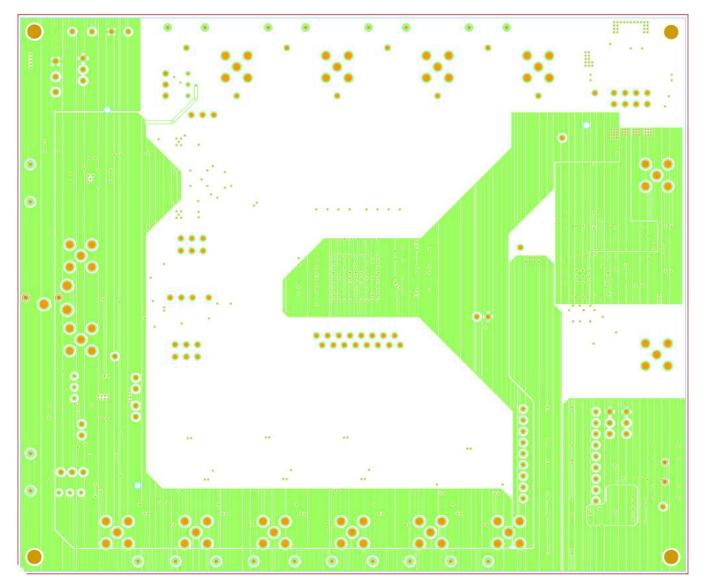


Figure 14. Third Layer - Power

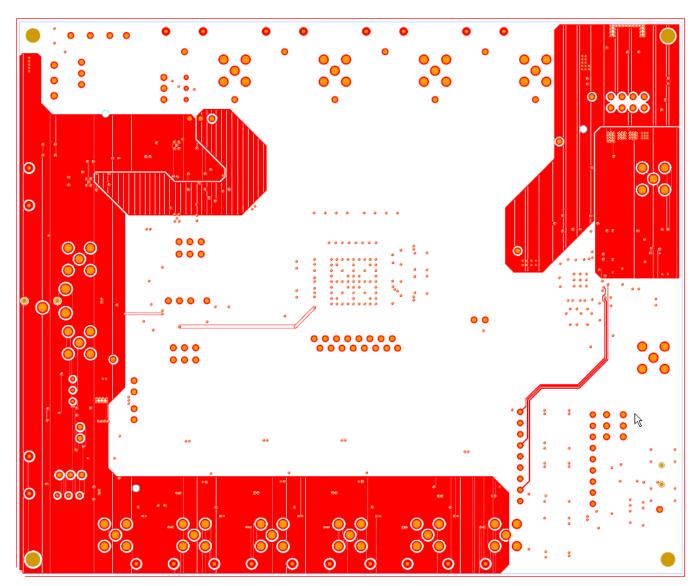


Figure 15. Fourth Layer - Signal

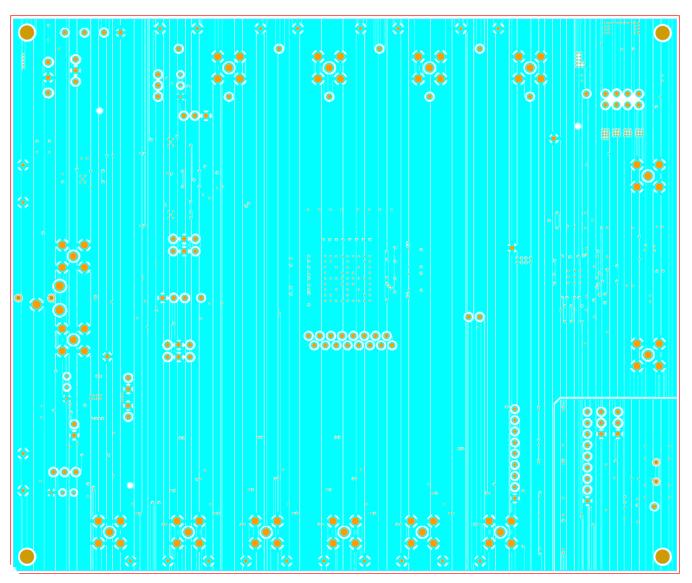


Figure 16. Fifth Layer - Ground

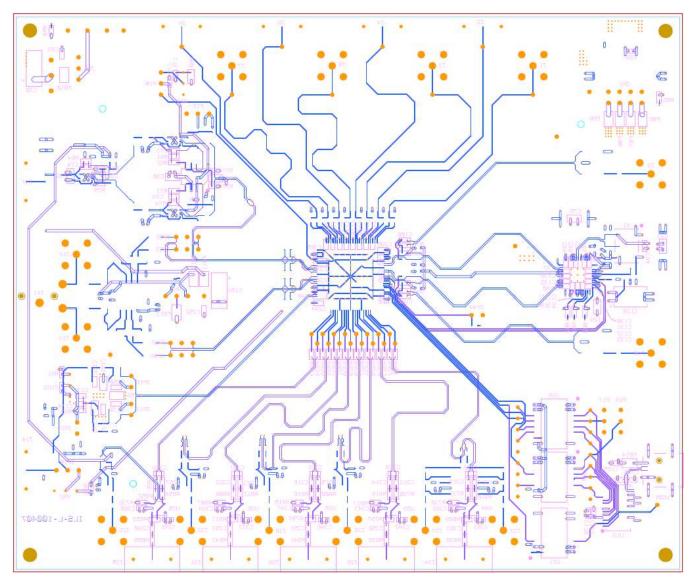


Figure 17. Bottom Layer - Signal

Schematics

www.ti.com

B.2 Schematics

Figure 18 through Figure 27 show the schematics for this EVM in landscape mode, for readability.

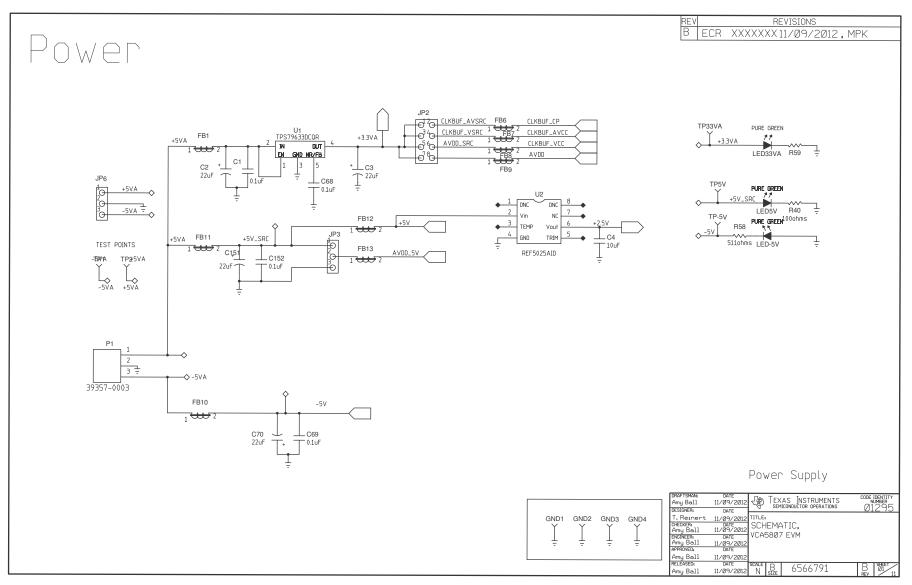


Figure 18. Schematic 1 of 10

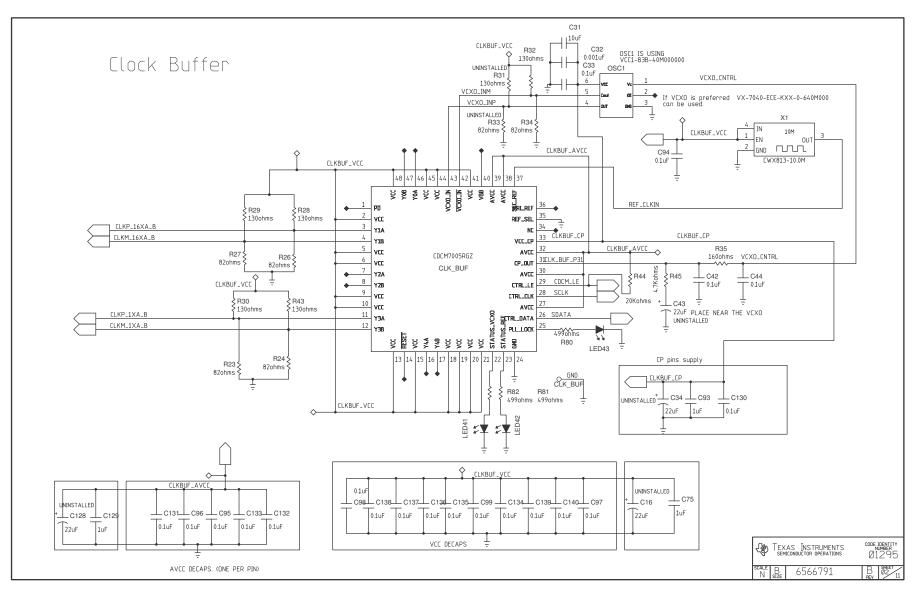


Figure 19. Schematic 2 of 10

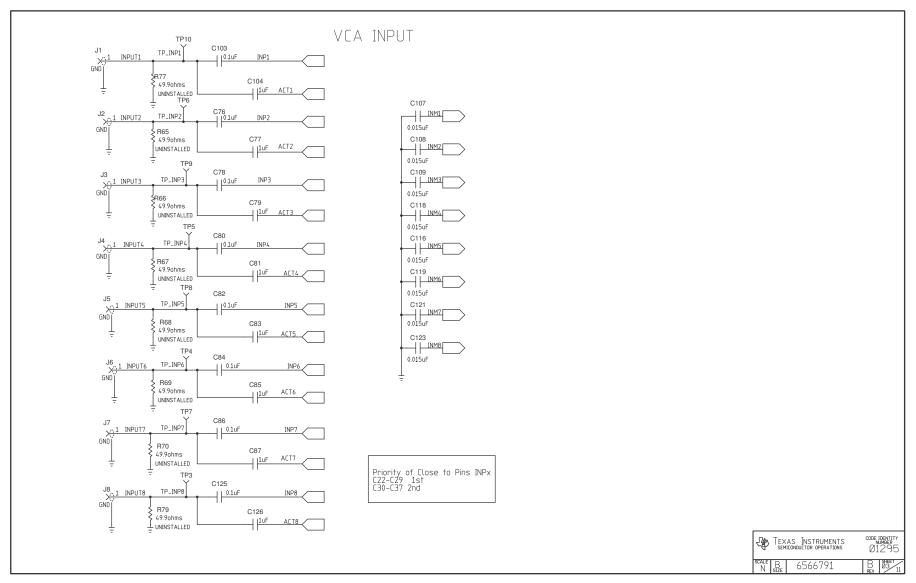


Figure 20. Schematic 3 of 10

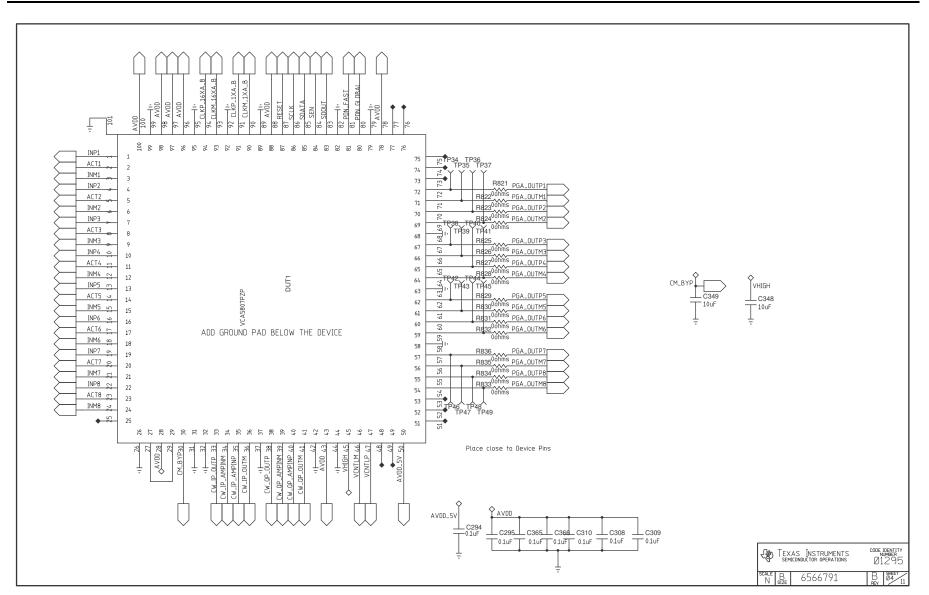
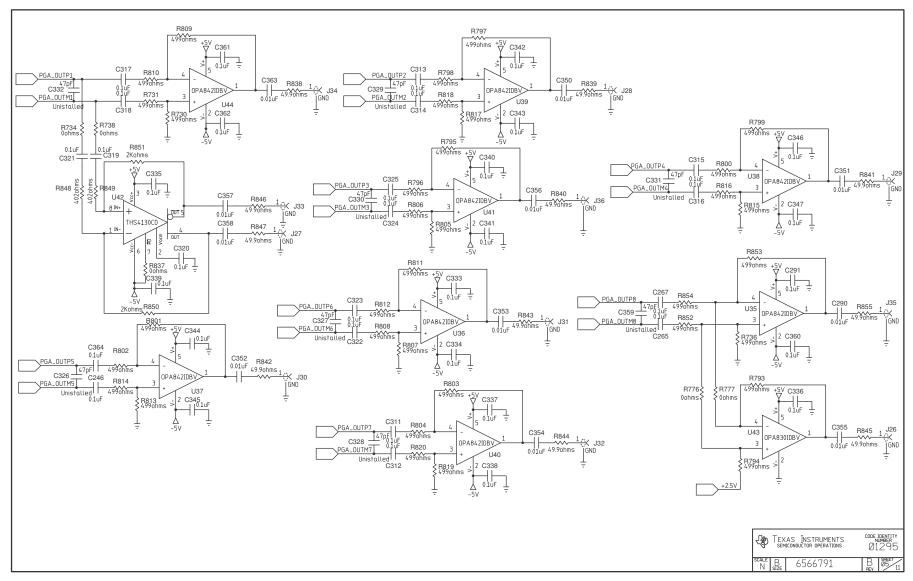
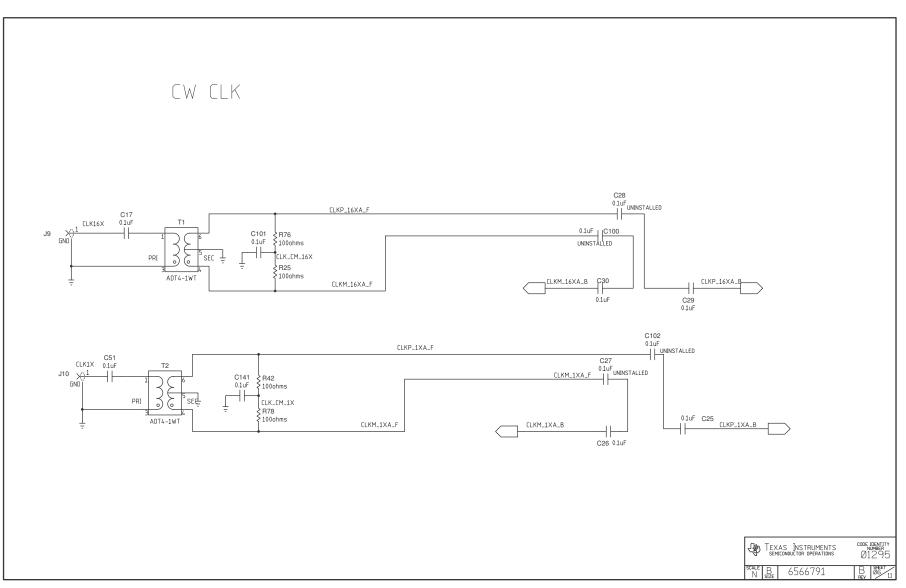
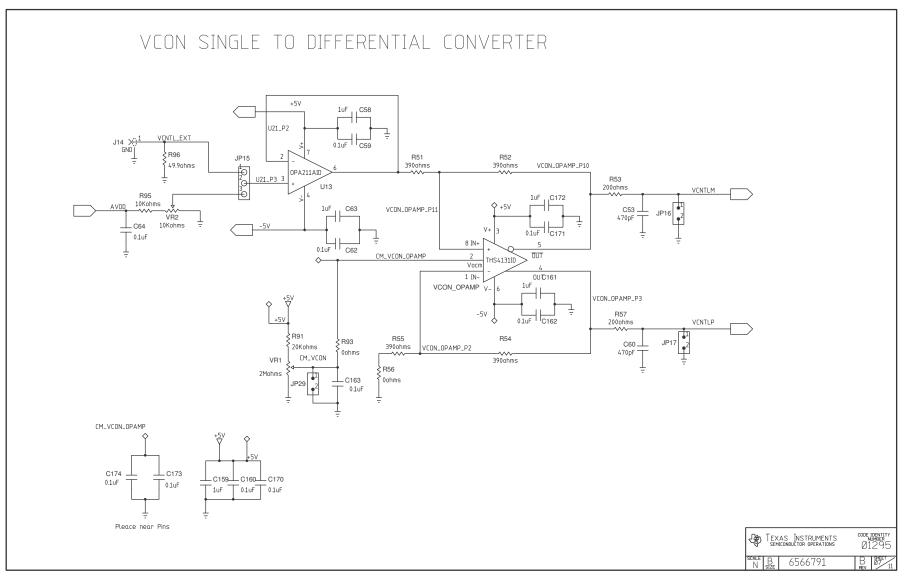


Figure 21. Schematic 4 of 10


Figure 22. Schematic 5 of 10

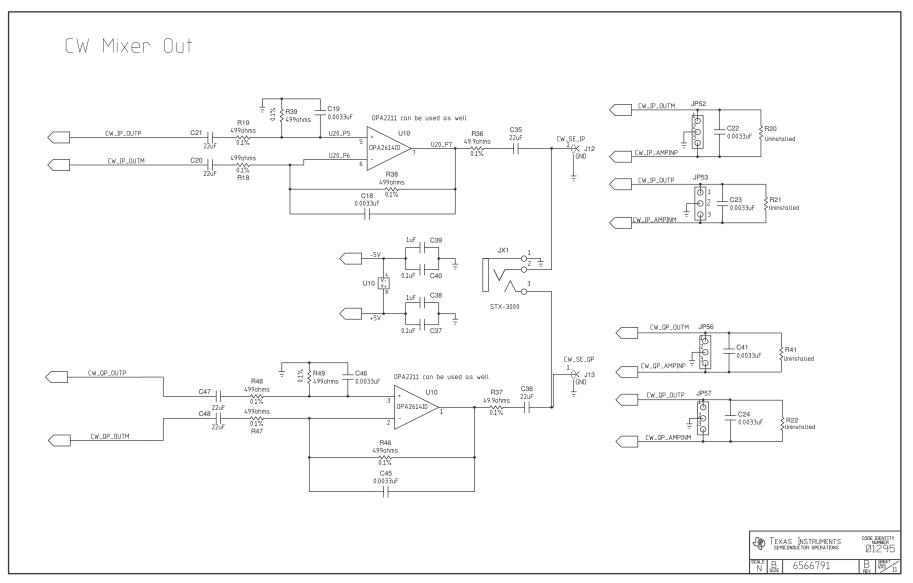


Figure 24. Schematic 7 of 10

Figure 25. Schematic 8 of 10

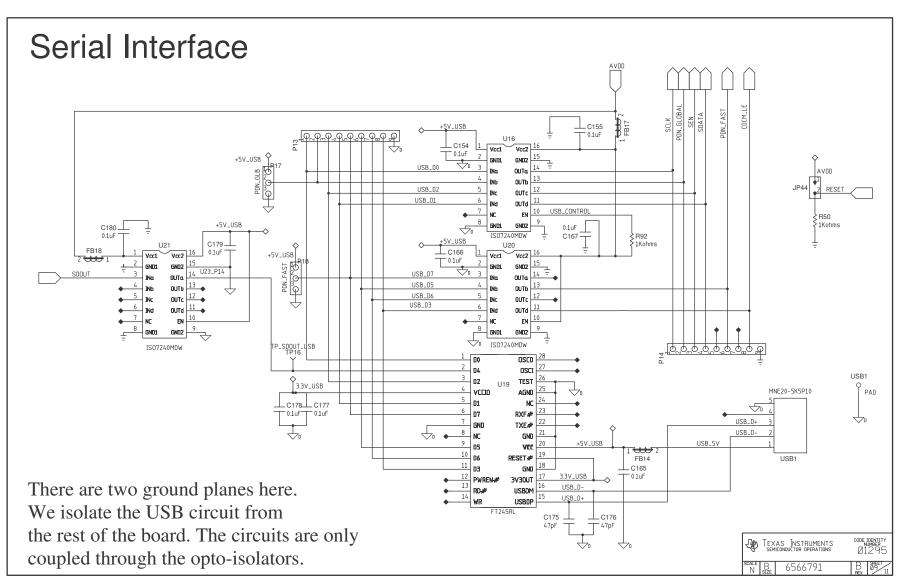


Figure 26. Schematic 9 of 10

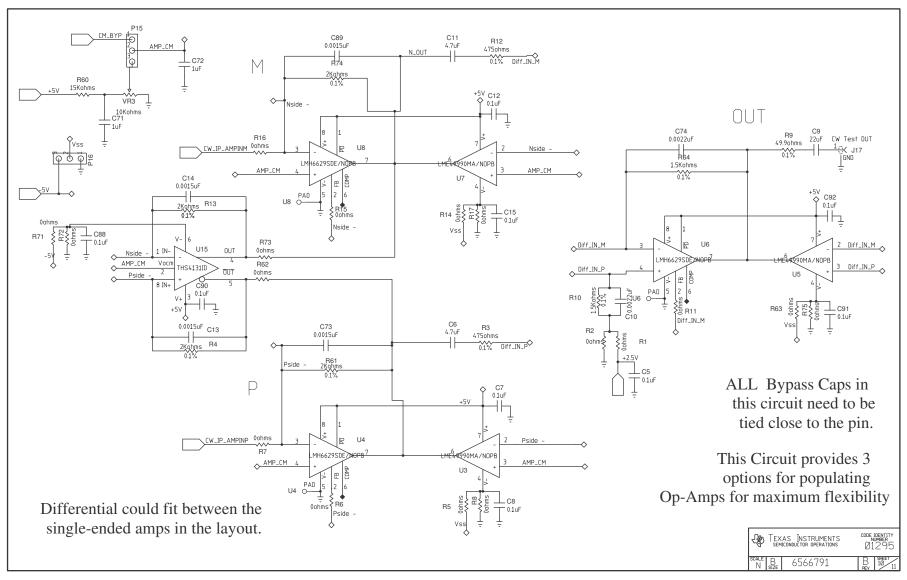


Figure 27. Schematic 10 of 10

STANDARD TERMS AND CONDITIONS FOR EVALUATION MODULES

- 1. *Delivery:* TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstration software, components, or documentation (collectively, an "EVM" or "EVMs") to the User ("User") in accordance with the terms and conditions set forth herein. Acceptance of the EVM is expressly subject to the following terms and conditions.
 - 1.1 EVMs are intended solely for product or software developers for use in a research and development setting to facilitate feasibility evaluation, experimentation, or scientific analysis of TI semiconductors products. EVMs have no direct function and are not finished products. EVMs shall not be directly or indirectly assembled as a part or subassembly in any finished product. For clarification, any software or software tools provided with the EVM ("Software") shall not be subject to the terms and conditions set forth herein but rather shall be subject to the applicable terms and conditions that accompany such Software
 - 1.2 EVMs are not intended for consumer or household use. EVMs may not be sold, sublicensed, leased, rented, loaned, assigned, or otherwise distributed for commercial purposes by Users, in whole or in part, or used in any finished product or production system.
- 2 Limited Warranty and Related Remedies/Disclaimers:
 - 2.1 These terms and conditions do not apply to Software. The warranty, if any, for Software is covered in the applicable Software License Agreement.
 - 2.2 TI warrants that the TI EVM will conform to TI's published specifications for ninety (90) days after the date TI delivers such EVM to User. Notwithstanding the foregoing, TI shall not be liable for any defects that are caused by neglect, misuse or mistreatment by an entity other than TI, including improper installation or testing, or for any EVMs that have been altered or modified in any way by an entity other than TI. Moreover, TI shall not be liable for any defects that result from User's design, specifications or instructions for such EVMs. Testing and other quality control techniques are used to the extent TI deems necessary or as mandated by government requirements. TI does not test all parameters of each EVM.
 - 2.3 If any EVM fails to conform to the warranty set forth above, TI's sole liability shall be at its option to repair or replace such EVM, or credit User's account for such EVM. TI's liability under this warranty shall be limited to EVMs that are returned during the warranty period to the address designated by TI and that are determined by TI not to conform to such warranty. If TI elects to repair or replace such EVM, TI shall have a reasonable time to repair such EVM or provide replacements. Repaired EVMs shall be warranted for the remainder of the original warranty period. Replaced EVMs shall be warranted for a new full ninety (90) day warranty period.
- 3 Regulatory Notices:
 - 3.1 United States
 - 3.1.1 Notice applicable to EVMs not FCC-Approved:

This kit is designed to allow product developers to evaluate electronic components, circuitry, or software associated with the kit to determine whether to incorporate such items in a finished product and software developers to write software applications for use with the end product. This kit is not a finished product and when assembled may not be resold or otherwise marketed unless all required FCC equipment authorizations are first obtained. Operation is subject to the condition that this product not cause harmful interference to licensed radio stations and that this product accept harmful interference. Unless the assembled kit is designed to operate under part 15, part 18 or part 95 of this chapter, the operator of the kit must operate under the authority of an FCC license holder or must secure an experimental authorization under part 5 of this chapter.

3.1.2 For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant:

CAUTION

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

FCC Interference Statement for Class A EVM devices

NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

FCC Interference Statement for Class B EVM devices

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- · Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

3.2 Canada

3.2.1 For EVMs issued with an Industry Canada Certificate of Conformance to RSS-210

Concerning EVMs Including Radio Transmitters:

This device complies with Industry Canada license-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Concernant les EVMs avec appareils radio:

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes: (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

Concerning EVMs Including Detachable Antennas:

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication. This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Concernant les EVMs avec antennes détachables

Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante. Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le manuel d'usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur

3.3 Japan

- 3.3.1 Notice for EVMs delivered in Japan: Please see http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_01.page 日本国内に 輸入される評価用キット、ボードについては、次のところをご覧ください。 http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_01.page
- 3.3.2 Notice for Users of EVMs Considered "Radio Frequency Products" in Japan: EVMs entering Japan may not be certified by TI as conforming to Technical Regulations of Radio Law of Japan.

If User uses EVMs in Japan, not certified to Technical Regulations of Radio Law of Japan, User is required by Radio Law of Japan to follow the instructions below with respect to EVMs:

- 1. Use EVMs in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry's Rule for Enforcement of Radio Law of Japan,
- 2. Use EVMs only after User obtains the license of Test Radio Station as provided in Radio Law of Japan with respect to EVMs, or
- 3. Use of EVMs only after User obtains the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to EVMs. Also, do not transfer EVMs, unless User gives the same notice above to the transferee. Please note that if User does not follow the instructions above, User will be subject to penalties of Radio Law of Japan.

【無線電波を送信する製品の開発キットをお使いになる際の注意事項】 開発キットの中には技術基準適合証明を受けて いないものがあります。 技術適合証明を受けていないもののご使用に際しては、電波法遵守のため、以下のいずれかの 措置を取っていただく必要がありますのでご注意ください。

- 1. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用 いただく。
- 2. 実験局の免許を取得後ご使用いただく。
- 3. 技術基準適合証明を取得後ご使用いただく。
- なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。 上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。 日本テキサス・イ

ンスツルメンツ株式会社

東京都新宿区西新宿6丁目24番1号

西新宿三井ビル

- 3.3.3 Notice for EVMs for Power Line Communication: Please see http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_02.page 電力線搬送波通信についての開発キットをお使いになる際の注意事項については、次のところをご覧ください。http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_02.page
- 4 EVM Use Restrictions and Warnings:
 - 4.1 EVMS ARE NOT FOR USE IN FUNCTIONAL SAFETY AND/OR SAFETY CRITICAL EVALUATIONS, INCLUDING BUT NOT LIMITED TO EVALUATIONS OF LIFE SUPPORT APPLICATIONS.
 - 4.2 User must read and apply the user guide and other available documentation provided by TI regarding the EVM prior to handling or using the EVM, including without limitation any warning or restriction notices. The notices contain important safety information related to, for example, temperatures and voltages.
 - 4.3 Safety-Related Warnings and Restrictions:
 - 4.3.1 User shall operate the EVM within TI's recommended specifications and environmental considerations stated in the user guide, other available documentation provided by TI, and any other applicable requirements and employ reasonable and customary safeguards. Exceeding the specified performance ratings and specifications (including but not limited to input and output voltage, current, power, and environmental ranges) for the EVM may cause personal injury or death, or property damage. If there are questions concerning performance ratings and specifications, User should contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may also result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM user guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, even with the inputs and outputs kept within the specified allowable ranges, some circuit components may have elevated case temperatures. These components include but are not limited to linear regulators, switching transistors, pass transistors, current sense resistors, and heat sinks, which can be identified using the information in the associated documentation. When working with the EVM, please be aware that the EVM may become very warm.
 - 4.3.2 EVMs are intended solely for use by technically qualified, professional electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems, and subsystems. User assumes all responsibility and liability for proper and safe handling and use of the EVM by User or its employees, affiliates, contractors or designees. User assumes all responsibility and liability to ensure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard. User assumes all responsibility and liability for any improper or unsafe handling or use of the EVM by User or its employees, affiliates, contractors or designees.
 - 4.4 User assumes all responsibility and liability to determine whether the EVM is subject to any applicable international, federal, state, or local laws and regulations related to User's handling and use of the EVM and, if applicable, User assumes all responsibility and liability for compliance in all respects with such laws and regulations. User assumes all responsibility and liability for proper disposal and recycling of the EVM consistent with all applicable international, federal, state, and local requirements.
- Accuracy of Information: To the extent TI provides information on the availability and function of EVMs, TI attempts to be as accurate as possible. However, TI does not warrant the accuracy of EVM descriptions, EVM availability or other information on its websites as accurate, complete, reliable, current, or error-free.

- 6. Disclaimers:
 - 6.1 EXCEPT AS SET FORTH ABOVE, EVMS AND ANY WRITTEN DESIGN MATERIALS PROVIDED WITH THE EVM (AND THE DESIGN OF THE EVM ITSELF) ARE PROVIDED "AS IS" AND "WITH ALL FAULTS." TI DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, REGARDING SUCH ITEMS, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER INTELLECTUAL PROPERTY RIGHTS.
 - 6.2 EXCEPT FOR THE LIMITED RIGHT TO USE THE EVM SET FORTH HEREIN, NOTHING IN THESE TERMS AND CONDITIONS SHALL BE CONSTRUED AS GRANTING OR CONFERRING ANY RIGHTS BY LICENSE, PATENT, OR ANY OTHER INDUSTRIAL OR INTELLECTUAL PROPERTY RIGHT OF TI, ITS SUPPLIERS/LICENSORS OR ANY OTHER THIRD PARTY, TO USE THE EVM IN ANY FINISHED END-USER OR READY-TO-USE FINAL PRODUCT, OR FOR ANY INVENTION, DISCOVERY OR IMPROVEMENT MADE, CONCEIVED OR ACQUIRED PRIOR TO OR AFTER DELIVERY OF THE EVM.
- 7. USER'S INDEMNITY OBLIGATIONS AND REPRESENTATIONS. USER WILL DEFEND, INDEMNIFY AND HOLD TI, ITS LICENSORS AND THEIR REPRESENTATIVES HARMLESS FROM AND AGAINST ANY AND ALL CLAIMS, DAMAGES, LOSSES, EXPENSES, COSTS AND LIABILITIES (COLLECTIVELY, "CLAIMS") ARISING OUT OF OR IN CONNECTION WITH ANY HANDLING OR USE OF THE EVM THAT IS NOT IN ACCORDANCE WITH THESE TERMS AND CONDITIONS. THIS OBLIGATION SHALL APPLY WHETHER CLAIMS ARISE UNDER STATUTE, REGULATION, OR THE LAW OF TORT, CONTRACT OR ANY OTHER LEGAL THEORY, AND EVEN IF THE EVM FAILS TO PERFORM AS DESCRIBED OR EXPECTED.
- 8. Limitations on Damages and Liability:
 - 8.1 *General Limitations.* IN NO EVENT SHALL TI BE LIABLE FOR ANY SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF THESE TERMS ANDCONDITIONS OR THE USE OF THE EVMS PROVIDED HEREUNDER, REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED TO, COST OF REMOVAL OR REINSTALLATION, ANCILLARY COSTS TO THE PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, RETESTING, OUTSIDE COMPUTER TIME, LABOR COSTS, LOSS OF GOODWILL, LOSS OF PROFITS, LOSS OF SAVINGS, LOSS OF USE, LOSS OF DATA, OR BUSINESS INTERRUPTION. NO CLAIM, SUIT OR ACTION SHALL BE BROUGHT AGAINST TI MORE THAN ONE YEAR AFTER THE RELATED CAUSE OF ACTION HAS OCCURRED.
 - 8.2 Specific Limitations. IN NO EVENT SHALL TI'S AGGREGATE LIABILITY FROM ANY WARRANTY OR OTHER OBLIGATION ARISING OUT OF OR IN CONNECTION WITH THESE TERMS AND CONDITIONS, OR ANY USE OF ANY TI EVM PROVIDED HEREUNDER, EXCEED THE TOTAL AMOUNT PAID TO TI FOR THE PARTICULAR UNITS SOLD UNDER THESE TERMS AND CONDITIONS WITH RESPECT TO WHICH LOSSES OR DAMAGES ARE CLAIMED. THE EXISTENCE OF MORE THAN ONE CLAIM AGAINST THE PARTICULAR UNITS SOLD TO USER UNDER THESE TERMS AND CONDITIONS SHALL NOT ENLARGE OR EXTEND THIS LIMIT.
- 9. Return Policy. Except as otherwise provided, TI does not offer any refunds, returns, or exchanges. Furthermore, no return of EVM(s) will be accepted if the package has been opened and no return of the EVM(s) will be accepted if they are damaged or otherwise not in a resalable condition. If User feels it has been incorrectly charged for the EVM(s) it ordered or that delivery violates the applicable order, User should contact TI. All refunds will be made in full within thirty (30) working days from the return of the components(s), excluding any postage or packaging costs.
- 10. Governing Law: These terms and conditions shall be governed by and interpreted in accordance with the laws of the State of Texas, without reference to conflict-of-laws principles. User agrees that non-exclusive jurisdiction for any dispute arising out of or relating to these terms and conditions lies within courts located in the State of Texas and consents to venue in Dallas County, Texas. Notwithstanding the foregoing, any judgment may be enforced in any United States or foreign court, and TI may seek injunctive relief in any United States or foreign court.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2015, Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconnectivity		

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2015, Texas Instruments Incorporated