

32Kx8 Static RAM

Features

- 4.5V-5.5V Operation
- Low active power (70 ns, LL version)
 - -275 mW (max.)
- Low standby power (70 ns, LL version)
 - -28 μW (max.)
- 55, 70 ns access time
- Easy memory expansion with CE and OE features
- · TTL-compatible inputs and outputs
- · Automatic power-down when deselected
- CMOS for optimum speed/power

Functional Description

The CY62256 is a high-performance CMOS static RAM organized as 32,768 words by 8 bits. Easy memory expansion is provided by an active LOW chip enable (CE) and active LOW

output enable (\overline{OE}) and three-state drivers. This device has an automatic power-down feature, reducing the power consumption by 99.9% when deselected. The CY62256 is in the standard 450-mil-wide (300-mil body width) SOIC, TSOP, and 600-mil PDIP packages.

An active LOW write enable signal (\overline{WE}) controls the writing/reading operation of the memory. When \overline{CE} and \overline{WE} inputs are both LOW, data on the eight data input/output pins (I/O₀ through I/O₇) is written into the memory location addressed by the address present on the address pins (A₀ through A₁₄). Reading the device is accomplished by selecting the device and enabling the outputs, \overline{CE} and \overline{OE} active LOW, while \overline{WE} remains inactive or HIGH. Under these conditions, the contents of the location addressed by the information on address pins are present on the eight data input/output pins.

The input/output pins remain in a high-impedance state unless the chip is selected, outputs are enabled, and write enable (WE) is HIGH.

Maximum Ratings

Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage	>2001V
Latch-Up Current	>200 mA

Operating Range

Range	Ambient Temperature	V _{cc}
Commercial	0°C to +70°C	5V ± 10%
Industrial	–40°C to +85°C	5V ± 10%

Electrical Characteristics Over the Operating Range

				(Y62256	-55		CY62256-	-70	
Parameter	Description	Description Test Conditions		Min.	Typ ^[2]	Max.	Min.	Typ ^[2]	Max.	Unit
V _{OH}	Output HIGH Voltage	V _{CC} = Min., I _{OH} = -1.0 mA		2.4			2.4			V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 2.1	mΑ			0.4			0.4	V
V _{IH}	Input HIGH Voltage			2.2		V _{CC} +0.5V	2.2		V _{CC} +0.5V	V
V _{IL}	Input LOW Voltage			-0.5		8.0	-0.5		8.0	V
I _{IX}	Input Load Current	$GND \le V_{I} \le V_{CC}$		-0.5		+0.5	-0.5		+0.5	μА
loz	Output Leakage Current	$GND \le V_O \le V_{CC}$, Output Disabled		-0.5		+0.5	-0.5		+0.5	μА
I _{CC}	V _{CC} Operating Supply Current	V _{CC} = Max.,			28	55		28	55	mA
		$I_{OUT} = 0 \text{ mA},$ $f = f_{MAX} = 1/t_{RC}$	L		25	50		25	50	mA
			LL		25	50		25	50	mA
I _{SB1}	Automatic CE Power-Down Current— TTL Inputs				0.5	2		0.5	2	mA
		" " " " " " " " " " " " " " " " " " "	L		0.4	0.6		0.4	0.6	mA
			LL		0.3	0.5		0.3	0.5	mA
I _{SB2}	Automatic CE	Max. V _{CC} ,			1	5		1	5	mA
	Power-Down Current— CMOS Inputs	1 – 60	L		2	50		2	50	μΑ
			LL		0.1	5		0.1	5	μΑ
		Indust'l Temp Range	LL		0.1	10		0.1	10	μΑ

Shaded area contains preliminary information.

Capacitance^[3]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	8	pF

Note:

- 1. V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns.
- 2. Typical specifications are the mean values measured over a large sample size across normal production process variations and are taken at nominal conditions (T_A = 25°C, V_{CC}). Parameters are guaranteed by design and characterization, and not 100% tested.
- 3. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT
639Ω
OUTPUT••••••••• 1.77V

Data Retention Characteristics

Parameter	Description		Conditions ^[4]	Min.	Typ . ^[2]	Max.	Unit
V_{DR}	V _{CC} for Data Retention		$V_{CC} = 3.0V$	2.0			٧
I _{CCDR}	Data Retention Current	L	$ \begin{array}{l} V_{CC} = 3.0V, \\ \hline CE \geq V_{CC} - 0.3V, \\ V_{IN} \geq V_{CC} - 0.3V \text{ or} \\ V_{IN} \leq 0.3V \end{array} $		2	50	μΑ
		LL	$V_{IN} \le 0.3V$		0.1	5	μΑ
		LL Indust'l			0.1	10	μΑ
t _{CDR} ^[3]	Chip Deselect to Data Retention Time	•		0			ns
t _R ^[3]	Operation Recovery Time	1		t _{RC}			ns

Data Retention Waveform

Note:

4. No input may exceed V_{CC}+0.5V.

Switching Characteristics Over the Operating Range^[5]

		CY62	CY62256-55			
Parameter	Description	Min.	Max.	Min.	Max.	Unit
READ CYCLE	-	<u> </u>	4	×4		
t _{RC}	Read Cycle Time	55		70		ns
t _{AA}	Address to Data Valid		55		70	ns
t _{OHA}	Data Hold from Address Change	5		5		ns
t _{ACE}	CE LOW to Data Valid		55		70	ns
t _{DOE}	OE LOW to Data Valid		25		35	ns
t _{LZOE}	OE LOW to Low Z ^[6]	5		5		ns
t _{HZOE}	OE HIGH to High Z ^[6, 7]		20		25	ns
t _{LZCE}	CE LOW to Low Z ^[6]	5		5		ns
t _{HZCE}	CE HIGH to High Z ^[6, 7]		20		25	ns
t _{PU}	CE LOW to Power-Up	0		0		ns
t _{PD}	CE HIGH to Power-Down		55		70	ns
WRITE CYCLE ^{[8,}	9]				•	•
t _{WC}	Write Cycle Time	55		70		ns
t _{SCE}	CE LOW to Write End	45		60		ns
t _{AW}	Address Set-Up to Write End	45		60		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	40		50		ns
t _{SD}	Data Set-Up to Write End	25		30		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{HZWE}	WE LOW to High Z ^[6, 7]		20		25	ns
t _{LZWE}	WE HIGH to Low Z ^[6]	5		5		ns

Shaded area contains preliminary information.

Switching Waveforms

Read Cycle No. 1^[10,11]

Notes:

- Notes:
 Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified loL/loH and 100-pF load capacitance.
 At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZCE} is less than t_{LZCE}, and t_{HZWE} is less than t_{LZWE} for any given device.
 t_{HZCE}, t_{HZCE}, and t_{HZWE} are specified with C_L = 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.
 The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
 The minimum write cycle time for write cycle #3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}
 Device is continuously selected. OE, CE = V_{IL}.
 WE is HIGH for read cycle.

- 11. WE is HIGH for read cycle.

Switching Waveforms (continued)

Notes:

- Address valid prior to or coincident with CE transition LOW.
 Data I/O is high impedance if OE = V_{IH}.
 If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.

Switching Waveforms (continued)

Write Cycle No. 3 (WE Controlled, OE LOW)

Note:

15. During this period, the I/Os are in output state and input signals should not be applied.

Typical DC and AC Characteristics

Typical DC and AC Characteristics (continued)

Truth Table

CE	WE	OE	Inputs/Outputs	Mode	Power
Н	Х	Х	High Z	Deselect/Power-Down	Standby (I _{SB})
L	Н	L	Data Out	Read	Active (I _{CC})
L	L	Х	Data In	Write	Active (I _{CC})
L	Н	Н	High Z	Deselect, Output Disabled	Active (I _{CC})

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
55	CY62256-55SNC	S22	28-Lead 450-Mil (300-Mil Body Width) SOIC	Commercial
	CY62256L-55SNC	S22	28-Lead 450-Mil (300-Mil Body Width) SOIC	
	CY62256LL-55SNC	S22	28-Lead 450-Mil (300-Mil Body Width) SOIC	
	CY62256-55ZRC	ZR28	28-Lead Reverse Thin Small Outline Package	
	CY62256L-55ZRC	ZR28	28-Lead Reverse Thin Small Outline Package	
	CY62256LL-55ZRC	ZR28	28-Lead Reverse Thin Small Outline Package	
	CY62256-55ZC	Z28	28-Lead Thin Small Outline Package	
	CY62256L-55ZC	Z28	28-Lead Thin Small Outline Package	
	CY62256LL-55ZC	Z28	28-Lead Thin Small Outline Package	
	CY62256-55PC	P15	28-Lead (600-Mil) Molded DIP	
70	CY62256-70SNC	S22	28-Lead 450-Mil (300-Mil Body Width) SOIC	Commercial
	CY62256L-70SNC	S22	28-Lead 450-Mil (300-Mil Body Width) SOIC	
	CY62256LL-70SNC	S22	28-Lead 450-Mil (300-Mil Body Width) SOIC	
	CY62256-70SNI	S22	28-Lead 450-Mil (300-Mil Body Width) SOIC	Industrial
	CY62256L-70SNI	S22	28-Lead 450-Mil (300-Mil Body Width) SOIC	
	CY62256LL-70SNI	S22	28-Lead 450-Mil (300-Mil Body Width) SOIC	
	CY62256-70ZC	Z28	28-Lead Thin Small Outline Package	Commercial
	CY62256L-70ZC	Z28	28-Lead Thin Small Outline Package	
	CY62256LL-70ZC	Z28	28-Lead Thin Small Outline Package	
	CY62256-70ZI	Z28	28-Lead Thin Small Outline Package	Industrial
	CY62256L-70ZI	Z28	28-Lead Thin Small Outline Package	
	CY62256LL-70ZI	Z28	28-Lead Thin Small Outline Package	
	CY62256-70PC	P15	28-Lead (600-Mil) Molded DIP	Commercial
	CY62256L-70PC	P15	28-Lead (600-Mil) Molded DIP	
	CY62256LL-70PC	P15	28-Lead (600-Mil) Molded DIP	
	CY62256-70ZRC	ZR28	28-Lead Reverse Thin Small Outline Package	
	CY62256L-70ZRC	ZR28	28-Lead Reverse Thin Small Outline Package	
	CY62256LL-70ZRC	ZR28	28-Lead Reverse Thin Small Outline Package	

Shaded area contains preliminary information.

Document #: 38-00455-C

Package Diagrams

28-Lead (600-Mil) Molded DIP P15

28-Lead 450-Mil (300-Mil Body Width) SOIC S22

Package Diagrams (continued)

28-Lead Thin Small Outline Package Z28

Package Diagrams (continued)

28-Lead Reverse Thin Small Outline Package ZR28

