SWITCHMODE TM

NPN Bipolar Power Transistor For Switching Power Supply Applications

The BUL147 have an applications specific state-of-the-art die designed for use in electric fluorescent lamp ballasts to 180 Watts and in Switchmode Power supplies for all types of electronic equipment.

Features

- Improved Efficiency Due to Low Base Drive Requirements:
 - High and Flat DC Current Gain
 - ♦ Fast Switching
 - No Coil Required in Base Circuit for Turn–Off (No Current Tail)
- Parametric Distributions are Tight and Consistent Lot-to-Lot
- Two Package Choices: Standard TO-220 or Isolated TO-220
- Pb-Free Package is Available*

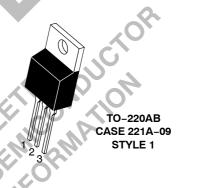
MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Collector-Emitter Sustaining Voltage	V _{CEO}	400	Vdc	
Collector-Base Breakdown Voltage	V _{CES}	700	Vdc	
Emitter-Base Voltage	V _{EBO}	9.0	Vdc	
Collector Current – Continuous – Peak (Note 1)	I _C I _{CM}	8.0 16	Adc	
Base Current – Continuous – Peak (Note 1)	I _B I _{BM}	4.0 8.0	Adc	
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	125 1.0	W/°C	
Operating and Storage Temperature	Tj, T _{stg}	-65 to 150	°C	

THERMAL CHARACTERISTICS

Characteristics	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	R _{θJC}	1.0	°C/W
Thermal Resistance, Junction-to-Ambient	R _{θJA}	62.5	°C/W
Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 5 Seconds	ΤL	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


1. Pulse Test: Pulse Width = 5 ms, Duty Cycle \leq 10%.

ON Semiconductor®

http://onsemi.com

POWER TRANSISTOR 8.0 AMPERES, 700 VOLTS, 45 AND 125 WATTS

MARKING DIAGRAM

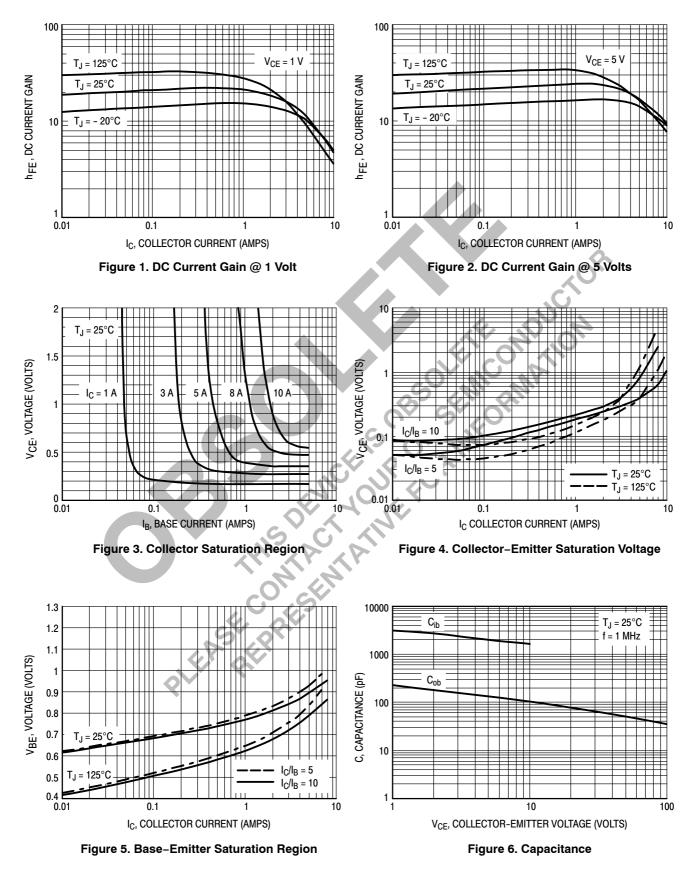
BUL147	= Device Code
Α	= Assembly Location
Y	= Year
WW	= Work Week
G	= Pb-Free Package

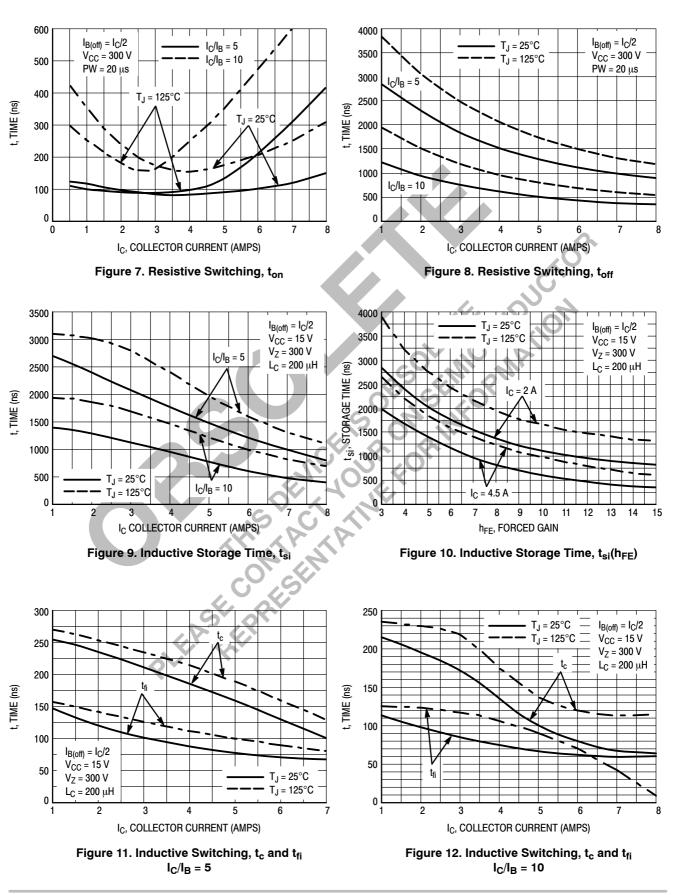
ORDERING INFORMATION

Device	Package	Shipping
BUL147	TO-220	50 Units / Rail
BUL147G	TO-220 (Pb-Free)	50 Units / Rail

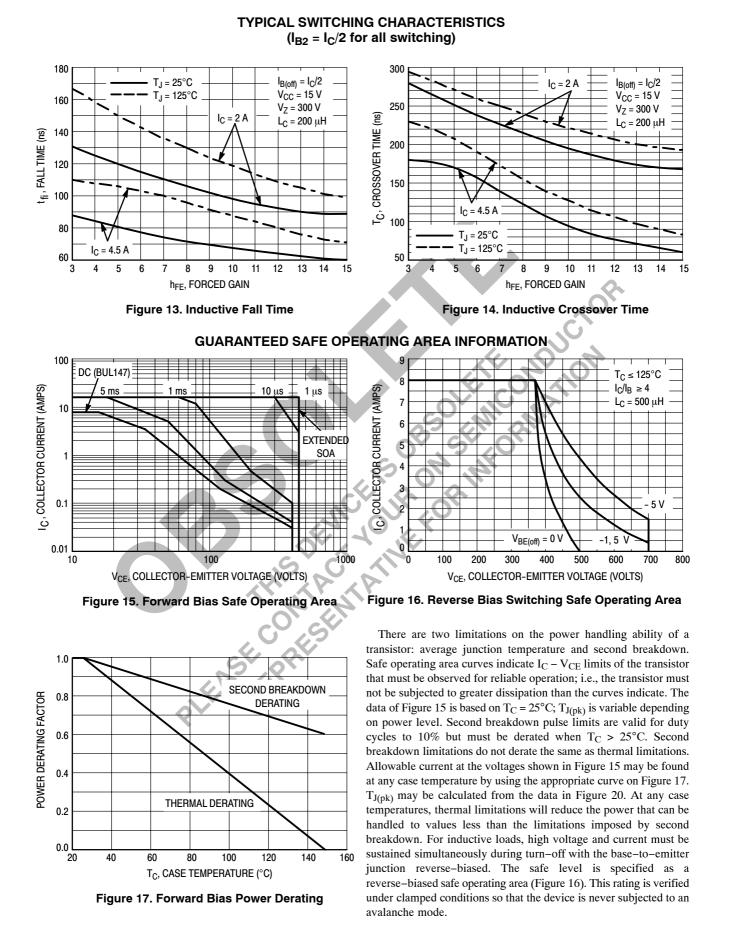
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

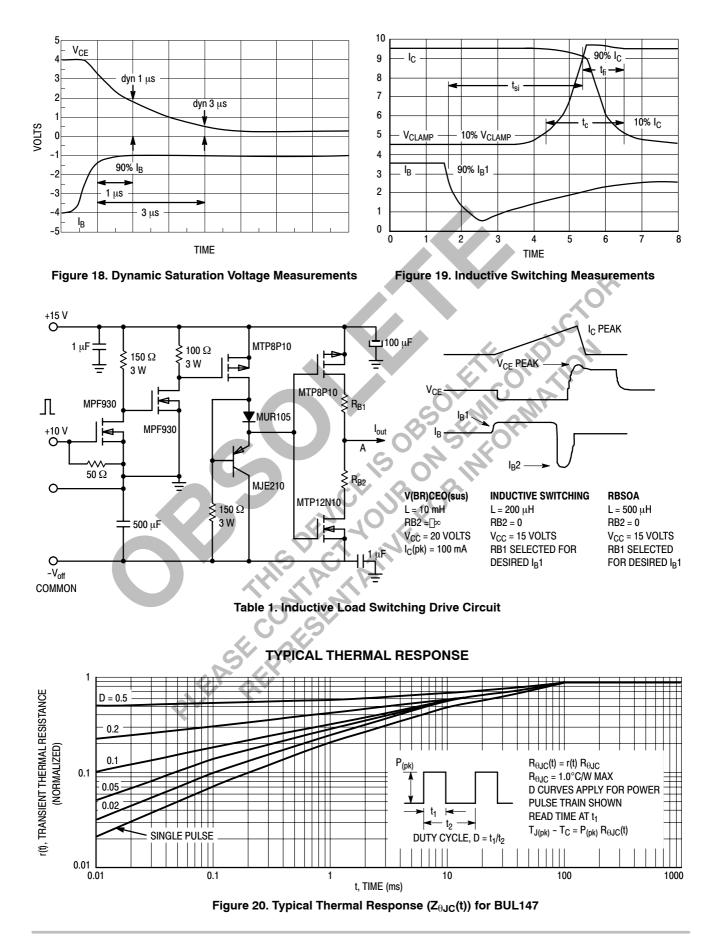
ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

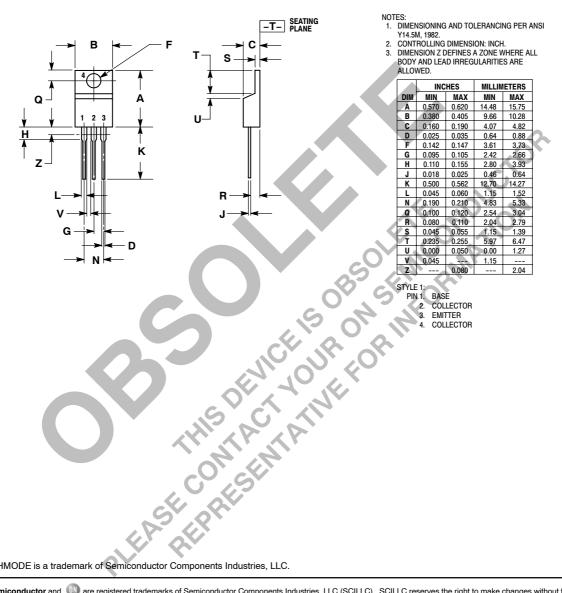

Characteristic			Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Collector–Emitter Sustaining Vol $(I_C = 100 \text{ mA}, L = 25 \text{ mH})$	tage		V _{CEO(sus)}	400	_	_	Vdc
Collector Cutoff Current (V_{CE} = Rated V_{CEO} , I_B = 0)			I _{CEO}	_	_	100	μAdc
Collector Cutoff Current (V_{CE} = Rated V_{CES} , V_{EB} = 0) (V_{CE} :	= 500 V, V _{EB} = 0)	(T _C = 125°C) (T _C = 125°C)	I _{CES}	- - -	- -	100 500 100	μAdc
Emitter Cutoff Current ($V_{EB} = 9.0 \text{ Vdc}, I_C = 0$)			I _{EBO}	_	_	100	μAdc
ON CHARACTERISTICS							
$\begin{array}{l} \text{Base-Emitter Saturation Voltage} \\ (I_{C} = 2.0 \text{ Adc}, I_{B} = 0.2 \text{ Adc}) \\ (I_{C} = 4.5 \text{ Adc}, I_{B} = 0.9 \text{ Adc}) \end{array}$)		V _{BE(sat)}	-	0.82 0.92	1.1 1.25	Vdc
Collector-Emitter Saturation Volt ($I_C = 2.0 \text{ Adc}, I_B = 0.2 \text{ Adc}$)	tage	(T _C = 125°C)	V _{CE(sat)}	-	0.25 0.3	0.5 0.5	Vdc
$(I_{C} = 4.5 \text{ Adc}, I_{B} = 0.9 \text{ Adc})$		(T _C = 125°C)			0.35 0.35	0.7	
(I _C = 2.0 Adc,	, V _{CE} = 1.0 Vdc)	$(T_{C} = 125^{\circ}C)$ $(T_{C} = 125^{\circ}C)$ $T_{C} = 25^{\circ}C \text{ to } 125^{\circ}C)$	h _{FE}	14 8.0 7.0 10 10	30 12 11 18 20	34 - - - -	_
DYNAMIC CHARACTERISTICS			07 3				ļ
Current Gain Bandwidth ($I_C = 0.5 \text{ Adc}, V_{CE} = 10 \text{ Vdc}, f$	= 1.0 MHz)	JCF JP	fτ	-	14	-	MHz
Output Capacitance (V_{CB} = 10 Vdc, I_E = 0, f = 1.0 I	MHz)	\$ 4°	C _{ob}	-	100	175	pF
Input Capacitance (V _{EB} = 8.0 V)	JIS.	CAN	C _{ib}	_	1750	2500	pF
	(I _C = 2.0 Adc I _{B1} = 200 mAdc	μs (T _C = 125°C)		-	3.0 5.5	-	
Determined 1.0 μs and 3.0 μs respectively after	$V_{\rm CC} = 300 \text{ V}$ 3.0	μ s (T _C = 125°C)	V	-	0.8 1.4	-	v
rising I _{B1} reaches 90% of final I _{B1} (see Figure 18)	(I _C = 5.0 Adc I _{B1} = 0.9 Adc	μs (T _C = 125°C)	V _{CE(dsat)}	-	3.3 8.5	-	v
	$V_{\rm CC} = 300 \text{ V}$ 3.0	μs (T _C = 125°C)		-	0.4 1.0	-	


	Characteristic		Symbol	Min	Тур	Max	Unit	
SWITCHING CHARACTERISTICS: Resistive Load (D.C. ≤ 10%, Pulse Width = 20 μs)								
Turn-On Time	$(I_{C} = 2.0 \text{ Adc}, I_{B1} = 0.2 \text{ Adc})$ $I_{B2} = 1.0 \text{ Adc}, V_{CC} = 300 \text{ V})$	(T _C = 125°C)	t _{on}		200 190	350 -	ns	
Turn-Off Time		(T _C = 125°C)	t _{off}		1.0 1.6	2.5 _	μs	
Turn-On Time	$(I_{C} = 4.5 \text{ Adc}, I_{B1} = 0.9 \text{ Adc})$ $I_{B1} = 2.25 \text{ Adc}, V_{CC} = 300 \text{ V})$	(T _C = 125°C)	t _{on}		85 100	150 -	ns	
Turn–Off Time	_	(T _C = 125°C)	t _{off}	-	1.5 2.0	2.5 _	μs	

SWITCHING CHARACTERISTICS: Inductive Load (V_{clamp} = 300 V, V_{CC} = 15 V, L = 200 μ H)


Fall Time	(I _C = 2.0 Adc, I _{B1} = 0.2 Adc I _{B2} = 1.0 Adc)	(T _C = 125°C)	t _{fi}	-	100 120	180 -	ns
Storage Time		(T _C = 125°C)	t _{si}	-	1.3 1.9	2.5	μs
Crossover Time		(T _C = 125°C)	t _c		210 230	350 -	ns
Fall Time	$(I_{C} = 4.5 \text{ Adc}, I_{B1} = 0.9 \text{ Adc} \ I_{B2} = 2.25 \text{ Adc})$	(T _C = 125°C)	t _{fi}	-	80 100	150 -	ns
Storage Time		(T _C = 125°C)	t _{si}	0	1.6 2.1	3.2	μs
Crossover Time		(T _C = 125°C)	tc		170 200	300 -	ns
Fall Time	$(I_{C} = 4.5 \text{ Adc}, I_{B1} = 0.9 \text{ Adc})$ $I_{B2} = 0.9 \text{ Adc})$	(T _C = 125°C)	t _{fi}	60 -	_ 150	180 -	ns
Storage Time		(T _C = 125°C)	t _{si}	2.6 _	_ 4.3	3.8 -	μs
Crossover Time		(T _C = 125°C)	tc		200 330	350 -	ns
C	PLEASE PEPE	ENTAIN					


TYPICAL STATIC CHARACTERISTICS


TYPICAL SWITCHING CHARACTERISTICS ($I_{B2} = I_C/2$ for all switching)

PACKAGE DIMENSIONS

TO-220AB CASE 221A-09 **ISSUE AA**

SWITCHMODE is a trademark of Semiconductor Components Industries, LLC.

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILC does not convey any license under its patent rights or the rights of others. SCILC products are not designed, intended, or authorized for use a components in systems intended for surgical implant into the body, or other applications. intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative