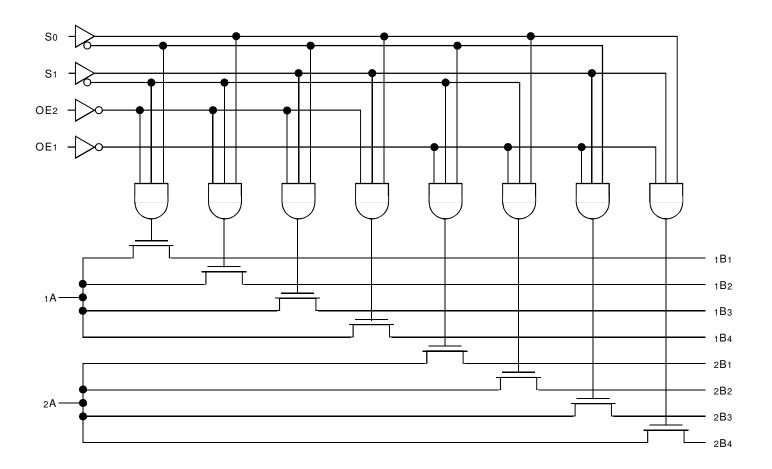


DUAL 4-BIT TO 1-BIT FET MULTIPLEXER/ DEMULTIPLEXER

IDT74FST3253

FEATURES:

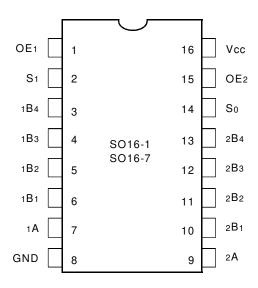
- Bus switches provide zero delay paths
- Low switch on-resistance: 5Ω
- TTL-compatible input and output levels
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model (C = 200pF, R = 0)
- Available in QSOP and SOIC Packages


DESCRIPTION:

The FST3253 belongs to IDT's family of Bus switches. Bus switch devices perform the function of connecting or isolating two ports without providing any inherent current sink or source capability. Thus they generate little or no noise of their own while providing a low resistance path for an external driver. These devices connect input and output ports through an n-channel FET. When the gate-to-source junction of this FET is adequately forward-biased the device conducts or the resistance between input and output ports is small. Without adequate bias on the gate-to-source junction of the FET, the FET is turned off, therefore with no VCC applied, the device has hot insertion capability.

The low on-resistance and simplicity of the connection between input and output ports reduces the delay in this path to close to zero.

The FST3253 is a dual, bidirectional 4 to 1 mux/demux. It is ideal for use in high speed interleaving or bus selection applications.


FUNCTIONAL BLOCK DIAGRAM

INDUSTRIAL TEMPERATURE RANGE

FEBRUARY 2000

PIN CONFIGURATION

SOIC/ QSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Rating	Max.	Unit
V _{TERM} (2)	Terminal Voltage with Respect to GND	-0.5 to +7	V
Tstg	Storage Temperature	-65 to +150	°C
lout	Maximum Continuous Channel Current	128	mA

FST LINK

NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. Vcc, Control, and Switch terminals.

CAPACITANCE (1)

Symbol	Parameter	Conditions(2)	Тур.	Unit
CIN	Control Input Capacitance		4	pF
C _{I/O}	Switch Input/Output	Switch Off		pF
	Capacitance			

NOTES:

- 1. Capacitance is characterized but not tested.
- 2. TA = 25°C, f = 1MHz, VIN = 0V, VOUT = 0V

PIN DESCRIPTION

Pin Names	I/O	Description
xA	I/O	Muxed BUs
хВу	I/O	Demux Bus
ŌĒx	I	Output Enable
S0, S1	I	Mux Select

FUNCTIONAL TABLE (1)

S ₁	S ₀	OE ₁	OE ₂	Function	
Χ	Χ	Н	Χ	Disconnect ₁ A	
Χ	Х	Х	Н	Disconnect 2A	
L	L	L	L	1A to 1B1 and 2A to 2B1	
L	Н	L	L	1A to 1B2 and 2A to 2B2	
Н	L	L	L	1A to 1B3 and 2A to 2B3	
Н	Н	L	L 1A to 1B4 and 2A to 2B4		

NOTE:

- 1. H = HIGH
 - L = LOW
 - X = Don't Care

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified: Operating Conditions: $TA = -40^{\circ}C$ to $+85^{\circ}C$, $VCC = 5.0V \pm 10\%$

Symbol	Parameter	Te	Test Conditions ⁽¹⁾		Typ. ⁽²⁾	Max.	Unit
VIH	Input HIGH Voltage	Guaranteed Logic HIG	GH for Control Inputs	2	_	_	V
VIL	Input LOW Voltage	Guaranteed Logic LO	W for Control Inputs	_	_	0.8	V
Іін	Input HIGH Current	Vcc = Max.	VI = VCC	_	_	±1	μA
lıL	Input LOW Voltage		VI = GND	_	_	±1	
lozh	High Impedance Output Current	Vcc = Max.	Vo = Vcc	_	_	±1	μA
lozL	(3-State Output pins)		Vo = GND	_	_	±1	
los	Short Circuit Current	Vcc = Max., Vo = GN	Vcc = Max., Vo = GND ⁽³⁾		300	_	mA
Vik	Clamp Diode Voltage	Vcc = Min., Inv = -18mA		_	-0.7	-1.2	V
Ron	Switch On Resistance ⁽⁴⁾	VCC = Min., VIN = 0V, ION = 64mA		_	5	7	Ω
		Vcc = Min., V _{IN} = 0V, Io _N = 30mA		_	5	7	Ω
		Vcc = Min., VIN = 2.4V, ION = 15mA		_	10	15	Ω
IOFF	Input/Output Power Off Leakage	$VCC = 0V$, $VIN \text{ or } VO \le 4.5V$		_	_	±1	μA
Icc	Quiescent Power Supply Current	Vcc = Max., Vi = GND or Vcc		_	0.1	3	μA

NOTES:

- 1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at Vcc = 5.0V, +25°C ambient.
- 3. Not more than one output should be tested at one time. Duration of the test should not exceed one second.
- 4. Measured by voltage drop between ports at indicated current through the switch.

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Cor	Test Conditions ⁽¹⁾		Typ. ⁽²⁾	Max.	Unit
Δlcc	Quiescent Power Supply Current TTL Inputs HIGH	$V_{CC} = Max.$ $V_{IN} = 3.4V^{(3)}$		_	0.5	1.5	mA
ICCD	Dynamic Power Supply Current ⁽⁴⁾	VCC = Max. Outputs Open One Enable Pin Toggling 50% Duty Cycle	VIN = VCC VIN = GND	_			μΑ/ MHz/ Switch
Ic	Total Power Supply Current ⁽⁶⁾	Vcc = Max. Outputs Open Two Enable Pins Toggling	VIN = VCC VIN = GND	_			mA
		(2 Switches Toggling) fi = 10MHz 50% Duty Cycle	VIN = 3.4 VIN = GND	_			

NOTES:

- 1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at Vcc = 5.0V, +25°C ambient.
- 3. Per TTL driven input (VIN = 3.4V). All other inputs at Vcc or GND.
- 4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.
- 5. Values for these conditions are examples of the lcc formula. These limits are guaranteed but not tested.
- 6. IC = IQUIESCENT + INPUTS + IDYNAMIC

 $IC = ICC + \Delta ICC DHNT + ICCD (fiN)$

Icc = Quiescent Current

 Δ ICC = Power Supply Current for a TTL High Input (VIN = 3.4V)

DH = Duty Cycle for TTL Inputs High

NT = Number of TTL Inputs at DH

ICCD = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)

fi = Input Frequency

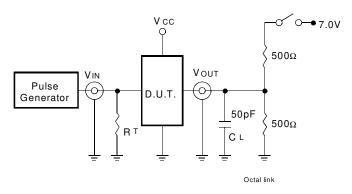
N = Number of Switches Toggling at fi

All currents are in milliamps and all frequencies are in megahertz.

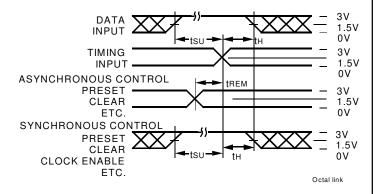
SWITCHING CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

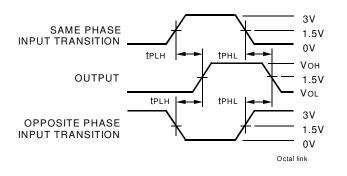
Operating Conditions: $TA = -40^{\circ}C$ to $+85^{\circ}C$, $VCC = 5.0V \pm 10\%$


Symbol	Description	Condition ⁽¹⁾	Min. ⁽²⁾	Тур.	Max.	Unit
tplh tphl	Data Propagation Delay xA to xBy ^(3,4)	$CL = 50pF$ $RL = 500\Omega$	_	_	0.25	ns
tBX	Switch Multiplex Delay Sx to Ax, xBy		1.5	_	6.5	ns
tpzh tpzl	Switch Turn on Delay OE to Ax, xBy		1.5	_	6.5	ns
tPHZ tPLZ	Switch Turn off Delay OE to Ax, xBy (3)		1.5	_	5.5	ns
IQcil	Charge Injection, Typical ^(5,7)		_	1.5	_	pC
 Q CD	Charge Injection, Typical ^(6,7)		_	0.5	_	

NOTES:


- 1. See test circuit and waveforms.
- 2. Minimum limits guaranteed but not tested.
- 3. This parameter is guaranteed by design but not tested.
- 4. The bus switch contributes no propagation delay other than the RC delay of the on resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25 ns for 50 pF load. Since this time is constant and much smaller than the rise/fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.
- 5. Measured at switch turn off, load = 50 pF in parallel with 10 m Ω scope probe, Vin = 0.0 volts.
- 6. Measured at switch turn off through bus multiplexer, (e.g. B1 to A = > B2 to A), load = 50 pF in parallel with 10 MΩ scope probe, VIN at A = 0.0 volts. Charge injection is reduced because the injection from the turn off of the B1 to A switch is compensated by the turn on of the B2 to A switch.
- 7. Characterized parameter. Not 100% tested.

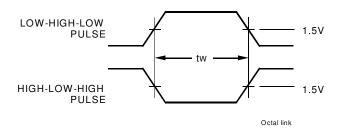
TEST CIRCUITS AND WAVEFORMS


TEST CIRCUITS FOR ALL OUTPUTS

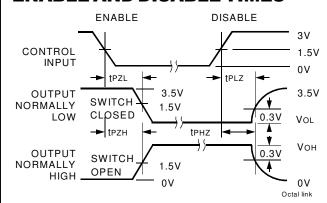
SET-UP, HOLD, AND RELEASE TIMES

PROPAGATION DELAY

SWITCH POSITION

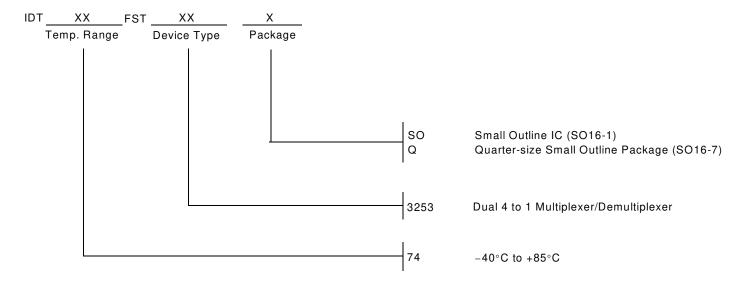

Switch
Closed
Open

DEFINITIONS:


CL = Load capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to ZouT of the Pulse Generator.

PULSE WIDTH


ENABLE AND DISABLE TIMES

NOTES:

- 1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH
- 2. Pulse Generator for All Pulses: Rate \leq 1.0MHz; tF \leq 2.5ns; tR \leq 2.5ns

ORDERING INFORMATION

CORPORATE HEADQUARTERS 2975 Stender Way Santa Clara, CA 95054 for SALES: 800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com*