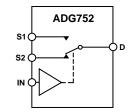


CMOS, Low Voltage RF/Video, SPDT Switch


ADG752

FEATURES

High Off Isolation –80 dB at 30 MHz –3 dB Signal Bandwidth 250 MHz +1.8 V to +5.5 V Single Supply Low On-Resistance (15 Ω Typically) Low On-Resistance Flatness Fast Switching Times t_{ON} Typically 8 ns t_{OFF} Typically 3 ns Typical Power Consumption < 0.01 μ W TTL/CMOS Compatible

APPLICATIONS
Audio and Video Switching
RF Switching
Networking Applications
Battery Powered Systems
Communication Systems
Relay Replacement
Sample-and-Hold Systems

FUNCTIONAL BLOCK DIAGRAM

SWITCH SHOWN FOR A LOGIC "1" INPUT

GENERAL DESCRIPTION

The ADG752 is a low voltage SPDT (single pole, double throw) switch. It is constructed using switches in a T-switch configuration, which results in excellent Off Isolation while maintaining good frequency response in the ON condition.

High off isolation and wide signal bandwidth make this part suitable for switching RF and video signals. Low power consumption and operating supply range of +1.8 V to +5.5 V make it ideal for battery powered, portable instruments.

The ADG752 is designed on a submicron process that provides low power dissipation yet gives high switching speed and low on resistance. This part is a fully bidirectional switch and can handle signals up to and including the supply rails. Break-before-make switching action ensures the input signals are protected against momentary shorting when switching between channels.

The ADG752 is available in 6-lead SOT-23 and 8-lead $\mu SOIC$ packages.

PRODUCT HIGHLIGHTS

- 1. High Off Isolation -80 dB at 30 MHz.
- 2. -3 dB Signal Bandwidth 250 MHz.
- 3. Low On Resistance (15 Ω).
- 4. Low Power Consumption, typically $< 0.01 \mu W$.
- 5. Break-Before-Make Switching Action.
- 6. Tiny 6-lead SOT-23 and 8-lead $\mu SOIC$ packages.

$\label{eq:continuous} \textbf{ADG752-SPECIFICATIONS} \ (\textbf{V}_{DD} = +5 \ \textbf{V} \ \pm \ 10\%, \ \textbf{GND} = 0 \ \textbf{V}, \ unless \ otherwise \ noted.)$

	B Version				
Parameter	+25°C	-40°C to +85°C	Units	Test Conditions/Comments	
ANALOG SWITCH					
Analog Signal Range		$0~\mathrm{V}$ to V_{DD}	V		
On-Resistance (R _{ON})	15		Ω typ	$V_{S} = 0 \text{ V to } V_{DD}, I_{DS} = 10 \text{ mA};$	
	18	20	Ω max	Test Circuit 1	
On-Resistance Match Between	0.1		Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_{DS} = 10 \text{ mA}$	
Channels (ΔR_{ON})	0.6	0.6	Ω max		
On-Resistance Flatness (R _{FLAT(ON)})	2	•	Ω typ	$V_S = 0 \text{ V to } 2.5 \text{ V}, I_{DS} = 10 \text{ mA}$	
		3	Ω max	V_{DD} = + 4.5 V	
LEAKAGE CURRENTS					
Source OFF Leakage I _S (OFF)	±0.01		nA typ	$V_D = 4.5 \text{ V/1 V}, V_S = 1 \text{ V/4.5 V};$	
	±0.25	± 3.0	nA max	Test Circuit 2	
Channel ON Leakage I _D , I _S (ON)	±0.01		nA typ	$V_D = V_S = 1 \text{ V, or } 4.5 \text{ V;}$	
	±0.25	±3.0	nA max	Test Circuit 3	
DIGITAL INPUTS					
Input High Voltage, V _{INH}		2.4	V min		
Input Low Voltage, V _{INL}		0.8	V max		
Input Current					
I _{INL} or I _{INH}	0.001		μA typ	$V_{IN} = V_{INL}$ or V_{INH}	
		± 0.5	μA max		
C _{IN} , Digital Input Capacitance	2		pF typ		
DYNAMIC CHARACTERISTICS ¹					
t_{ON}	8		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$	
		13	ns max	$V_S = 3 V$, Test Circuit 4	
$t_{ m OFF}$	3		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$	
		5	ns max	$V_S = 3 \text{ V}$, Test Circuit 4	
Break-Before-Make Time Delay	6		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$	
OCCI 1	0.0	1	ns min	$V_S = 3 \text{ V}$, Test Circuit 5	
Off Isolation	-80		dB typ	$R_L = 50 \Omega, C_L = 5 pF, f = 30 MHz;$	
Crosstalk	-80		dB typ	Test Circuit 6 $R_L = 50 \Omega$, $C_L = 5 pF$, $f = 30 MHz$;	
Crosstark	-80		ав тур	$R_L = 30 \Omega_2$, $C_L = 3 \text{ pr}$, $T = 30 \text{ MHz}$, Test Circuit 7	
-3 dB Bandwidth	250		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 8	
$C_{\rm S}$ (OFF)	4		pF typ	Journal of the state of the sta	
C_D , C_S (ON)	15		pF typ		
POWER REQUIREMENTS				V _{DD} = +5.5 V	
I _{DD}	0.001		μA typ	$V_{DD} = +5.5 \text{ V}$ Digital Inputs = 0 V or +5.5 V	
T DD	0.001	0.5	μΑ typ μΑ max		
	0.1	0.5	μιπιαλ		

NOTES

Specifications subject to change without notice.

REV. A -2-

¹Guaranteed by design, not subject to production test.

SPECIFICATIONS ($V_{DD} = +3 \text{ V} \pm 10\%$, GND = 0 V, unless otherwise noted.)

	B Version				
Parameter	+25°C	-40°C to +85°C	Units	Test Conditions/Comments	
ANALOG SWITCH					
Analog Signal Range		0 V to V _{DD}	V		
On-Resistance (R _{ON})	35		Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_{DS} = 10 \text{ mA};$	
		50	Ω max	Test Circuit 1	
On-Resistance Match Between	0.2		Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_{DS} = 10 \text{ mA}$	
Channels (ΔR _{ON})	2.5	2.5	Ω max		
LEAKAGE CURRENTS				$V_{DD} = +3.3 \text{ V}$	
Source OFF Leakage I _S (OFF)	±0.01		nA typ	$V_S = 3 \text{ V/1 V}, V_D = 1 \text{ V/3 V};$	
	±0.25	±3.0	nA max	Test Circuit 2	
Channel ON Leakage I _D , I _S (ON)	±0.01		nA typ	$V_S = V_D = 1 \text{ V or } 3 \text{ V};$	
	±0.25	±3.0	nA max	Test Circuit 3	
DIGITAL INPUTS					
Input High Voltage, V _{INH}		2.0	V min		
Input Low Voltage, V _{INL}		0.4	V max		
Input Current			_		
I_{INL} or I_{INH}	0.001		μA typ	$V_{IN} = V_{INL}$ or V_{INH}	
		±0.5	μA max		
C _{IN} , Digital Input Capacitance	2		pF typ		
DYNAMIC CHARACTERISTICS ¹					
t_{ON}	10		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$	
		18	ns max	$V_S = 2 \text{ V}$, Test Circuit 4	
t_{OFF}	4	0	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;	
Break-Before-Make Time Delay	6	8	ns max	$V_S = 2 \text{ V}$, Test Circuit 4 $R_L = 300 \Omega$, $C_L = 35 \text{ pF}$;	
Dreak-Delore-Wake Time Delay	0	1	ns typ ns min	$V_S = 2 \text{ V}$, Test Circuit 5	
Off Isolation	-80	1	dB typ	$R_{L} = 50 \Omega$, $C_{L} = 5 pF$, $f = 30 MHz$;	
			ub typ	Test Circuit 6	
Crosstalk	-80		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 30 MHz$;	
			31	Test Circuit 7	
−3 dB Bandwidth	250		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 8	
C_{S} (OFF)	4		pF typ		
C_D , C_S (ON)	15		pF typ		
POWER REQUIREMENTS				$V_{\rm DD} = +3.3 \text{ V}$	
I_{DD}	0.001		μA typ	Digital Inputs = $0 \text{ V or } +3.3 \text{ V}$	
	0.1	0.5	μA max		

REV. A -3-

¹Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

ADG752

ABSOLUTE MAXIMUM RATINGS¹

$(T_A = +25^{\circ}C \text{ unless otherwise noted})$
V_{DD} to GND
Analog, Digital Inputs ² -0.3 V to V_{DD} +0.3 V or
30 mA, Whichever Occurs First
Peak Current, S or D100 mA
(Pulsed at 1 ms, 10% Duty Cycle Max)
Continuous Current, S or D
Operating Temperature Range
Industrial (B Version)
Storage Temperature Range65°C to +150°C
Power Dissipation $(T_J Max-T_A)/\theta_{JA}$
Junction Temperature (T _J Max)+150°C
μSOIC Package
θ_{JA} Thermal Impedance
θ_{JC} Thermal Impedance
SOT-23 Package
θ_{JA} Thermal Impedance
θ_{JC} Thermal Impedance
Lead Temperature, Soldering
Vapor Phase (60 sec)+215°C
Infrared (15 sec)

NOTES

¹Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

²Overvoltages at IN, S or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

PIN CONFIGURATIONS

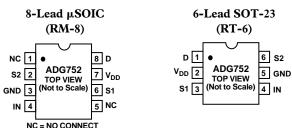


Table I. Truth Table

ADG752 IN	Switch S1	Switch S2
0	ON	OFF
1	OFF	ON

TERMINOLOGY

V_{DD}	Most positive power supply potential.
GND	Ground (0 V) reference.
S	Source terminal. May be an input or output.
D	Drain terminal. May be an input or output.
IN	Logic control input.
R _{ON}	Ohmic resistance between D and S.
ΔR_{ON}	On resistance match between channels, i.e., R _{ON} max–R _{ON} min.
R _{FLAT(ON)}	Flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.
I _S (OFF)	Source leakage current with the switch "OFF."
I_D , I_S (ON)	Channel leakage current with the switch "ON."
$V_{D}(V_{S})$	Analog voltage on terminals D and S.
C _S (OFF)	"OFF" switch source capacitance.
$C_D, C_S (ON)$	"ON" switch capacitance.
t _{ON}	Delay between applying the digital control input and the output switching on. See Test Circuit 4.
t _{OFF}	Delay between applying the digital control input and the output switching off.
t _D	"OFF" time or "ON" time measured between the 90% points of both switches, when switch- ing from one address state to another.
Off Isolation	A measure of unwanted signal coupling through an "OFF" switch.
Crosstalk	A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.
Bandwidth	The frequency at which the output is attenuated by -3 dBs.
On Response	The frequency response of the "ON" switch.
Insertion Loss	Loss due to the ON resistance of the switch.
V _{INL}	Maximum input voltage for Logic "0."
V _{INH}	Minimum input voltage for Logic "1."
$I_{INL}(I_{INH})$	Input current of the digital input.
I_{DD}	Positive supply current.
22	** *

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG752 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Typical Performance Characteristics—ADG752

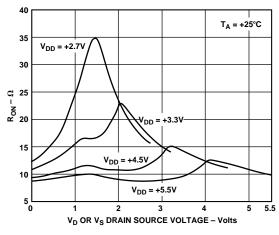


Figure 1. On Resistance as a Function of V_D (V_S) Single Supplies

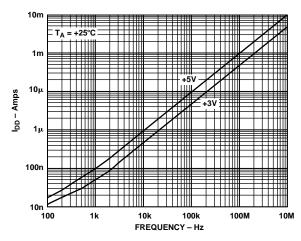


Figure 4. Supply Current vs. Input Switching Frequency

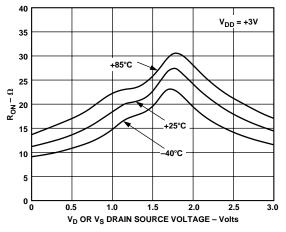


Figure 2. On Resistance as a Function of V_D (V_S) for Different Temperatures $V_{DD} = 3 \ V$

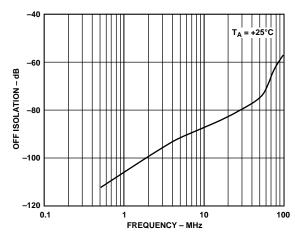


Figure 5. Off Isolation vs. Frequency

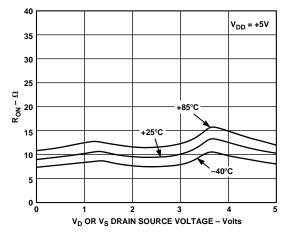


Figure 3. On Resistance as a Function of V_D (V_S) for Different Temperatures $V_{DD} = 5 \ V$

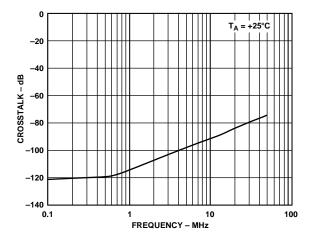


Figure 6. Crosstalk vs. Frequency

REV. A _5_

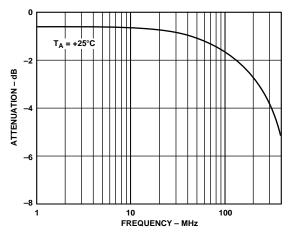


Figure 7. On Response vs. Frequency

GENERAL DESCRIPTION

The ADG752 is an SPDT switch constructed using switches in a T configuration to obtain high "OFF" isolation while maintaining good frequency response in the "ON" condition.

Figure 8 shows the T-switch configuration. While the switch is in the OFF state, the shunt switch is closed and the two series switches are open. The closed shunt switch provides a signal path to ground for any of the unwanted signals that find their way through the off capacitances of the series' MOS devices. This results in more improved isolation between the input and output than with an ordinary series switch. When the switch is in the ON condition, the shunt switch is open and the signal path is through the two series switches which are now closed.

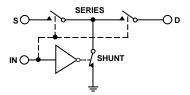


Figure 8. Basic T-Switch Configuration

LAYOUT CONSIDERATIONS

Where accurate high frequency operation is important, careful consideration should be given to the printed circuit board layout and to grounding. Wire wrap boards, prototype boards and sockets are not recommended because of their high parasitic inductance and capacitance. The part should be soldered directly to a printed circuit board. A ground plane should cover all unused areas of the component side of the board to provide a low impedance path to ground. Removing the ground planes from the area around the part reduces stray capacitance.

Good decoupling is important in achieving optimum performance. V_{DD} should be decoupled with a 0.1 μF surface mount capacitor to ground mounted as close as possible to the device itself.

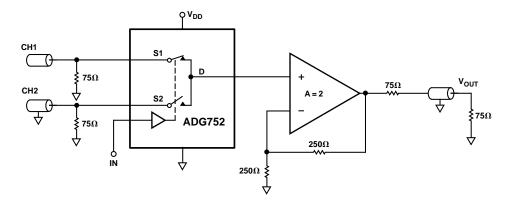
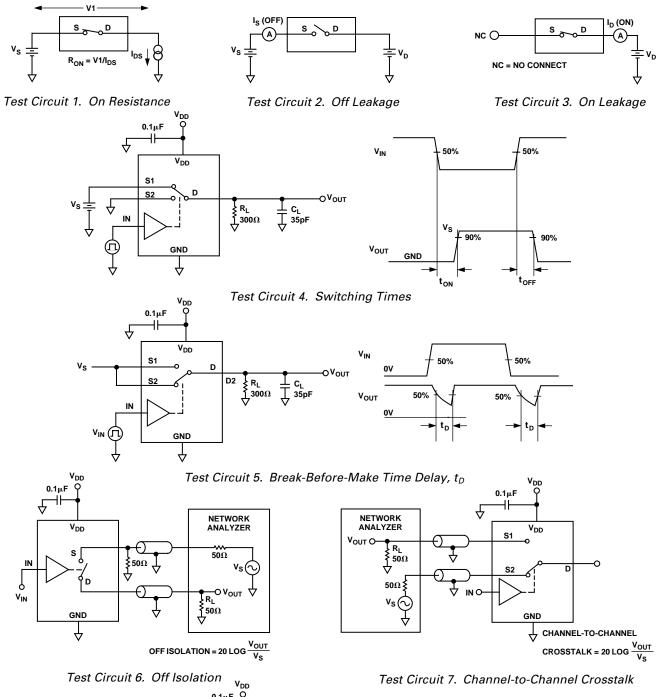
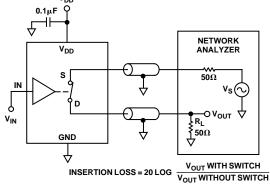




Figure 9. Multiplexing Between Two Video Signals

-6- REV. A

Test Circuits

Test Circuit 8. Bandwidth

OUTLINE DIMENSIONS

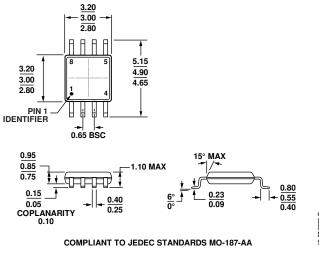
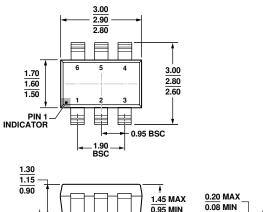
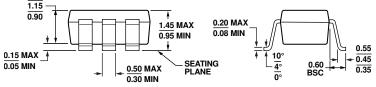




Figure 10. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-178-AB

Figure 11. 6-Lead Small Outline Transistor Package [SOT-23] (RJ-6) Dimensions shown in millimeters

16-2008-A

ADG752

ORDERING GUIDE

Model ¹	Temperature Range	Brand	Package Description	Package Option
ADG752BRM-REEL	-40°C to +85°C	SEB	8-Lead Mini Small Outline Package [MSOP]	RM-8
ADG752BRMZ	-40°C to +85°C	S1H	8-Lead Mini Small Outline Package [MSOP]	RM-8
ADG752BRT-REEL	-40°C to +85°C	SEB	6-Lead Small Outline Transistor Package [SOT-23]	RJ-6
ADG752BRT-REEL7	-40°C to +85°C	SEB	6-Lead Small Outline Transistor Package [SOT-23]	RJ-6
ADG752BRTZ-REEL	-40°C to +85°C	SEB#	6-Lead Small Outline Transistor Package [SOT-23]	RJ-6
ADG752BRTZ-REEL7	-40°C to +85°C	SEB#	6-Lead Small Outline Transistor Package [SOT-23]	RJ-6

 $^{^{1}}$ Z = RoHS Compliant Part.

REVISION HISTORY

10/13—Rev. 0 to Rev. A

4/99—Revision 0: Initial Version

