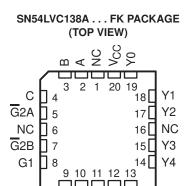
SCAS2911 – MARCH 1993 – REVISED OCTOBER 1998

- *EPIC*TM (Enhanced-Performance Implanted CMOS) Submicron Process
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- Typical V_{OLP} (Output Ground Bounce) < 0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- Typical V_{OHV} (Output V_{OH} Undershoot)
 > 2 V at V_{CC} = 3.3 V, T_A = 25°C
- Inputs Accept Voltages to 5.5 V
- Package Options Include Plastic Small-Outline (D), Shrink Small-Outline (DB), and Thin Shrink Small-Outline (PW) Packages, Ceramic Chip Carriers (FK) and Flat (W) Package, and DIPs (J)


description

The SN54LVC138A 3-line to 8-line decoder/ demultiplexer is designed for 2.7-V to 3.6-V V_{CC} operation and the SN74LVC138A 3-line to 8-line decoder/demultiplexer is designed for 1.65-V to 3.6-V V_{CC} operation.

The 'LVC138A devices are designed for highperformance memory-decoding or data-routing applications requiring very short propagation

01104210100		0.11 11	TAORAGE						
SN74LVC138A.	D, DB	, OR	PW PACKAGE						
(TOP VIEW)									
1									
A		16	V _{CC}						
в [2	15	Y0						
с [3	14	Y1						
G2A	4	13	Y2						
G2B	5	12	Y3						
G1 [6	11	Y4						
Y7 [7	10	Y5						
GND [8	9	Y6						

SN54LVC138A ... J OR W PACKAGE

NC - No internal connection

GND

Υ5

delay times. In high-performance memory systems, these decoders minimize the effects of system decoding. When employed with high-speed memories utilizing a fast enable circuit, the delay times of these decoders and the enable time of the memory are usually less than the typical access time of the memory. This means that the effective system delay introduced by the decoders is negligible.

The conditions at the binary-select inputs and the three enable inputs select one of eight output lines. Two active-low enable inputs and one active-high enable input reduce the need for external gates or inverters when expanding. A 24-line decoder can be implemented without external inverters and a 32-line decoder requires only one inverter. An enable input can be used as a data input for demultiplexing applications.

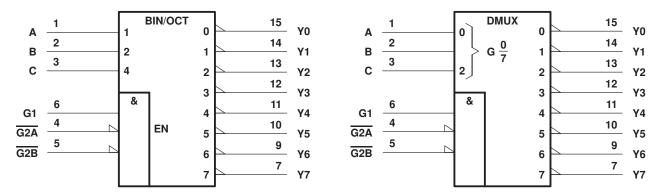
Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators in a mixed 3.3-V/5-V system environment.

The SN54LVC138A is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74LVC138A is characterized for operation from –40°C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC is a trademark of Texas Instruments Incorporated.

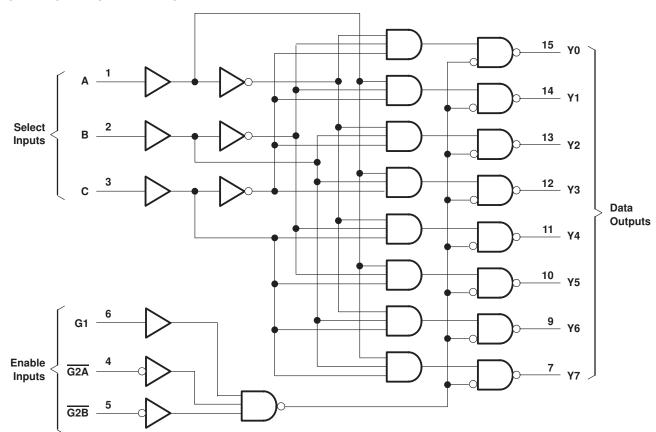
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



Copyright © 1998, Texas Instruments Incorporated On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other production processing does not necessarily include testing of all parameters.

SCAS2911 - MARCH 1993 - REVISED OCTOBER 1998

	FUNCTION TABLE												
ENA	ENABLE INPUTS			ECT INP	UTS		OUTPUTS						
G1	G2A	G2B	С	В	Α	Y0	Y1	Y2	Y3	Y4	Y5	Y6	¥7
Х	Н	Х	Х	Х	Х	н	Н	Н	Н	Н	Н	Н	Н
Х	Х	Н	Х	Х	Х	н	Н	Н	Н	Н	Н	Н	н
L	Х	х	Х	Х	Х	н	Н	Н	Н	Н	Н	Н	Н
н	L	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н
н	L	L	L	L	Н	н	L	Н	Н	Н	Н	Н	Н
н	L	L	L	Н	L	н	Н	L	Н	Н	Н	Н	Н
н	L	L	L	Н	Н	н	Н	Н	L	Н	Н	Н	Н
н	L	L	Н	L	L	н	Н	Н	Н	L	Н	Н	Н
н	L	L	Н	L	Н	н	Н	Н	Н	Н	L	Н	Н
н	L	L	н	Н	L	н	Н	Н	Н	Н	Н	L	Н
н	L	L	н	Н	Н	н	Н	Н	Н	Н	Н	Н	L


logic symbols (alternatives)[†]

[†] These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the D, DB, J, PW, and W packages.

SCAS2911 - MARCH 1993 - REVISED OCTOBER 1998

logic diagram (positive logic)

Pin numbers shown are for the D, DB, J, PW, and W packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	
Input voltage range, V _I (see Note 1)	
Output voltage range, V _O (see Notes 1 and 2)	–0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Continuous output current, IO	±50 mA
Continuous current through V _{CC} or GND	±100 mA
Package thermal impedance, θ_{JA} (see Note 3): D package	113°C/W
DB package	131°C/W
PW package	149°C/W
Storage temperature range, T _{stg}	

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

- 2. The value of V_{CC} is provided in the recommended operating conditions table.
- 3. The package thermal impedance is calculated in accordance with JESD 51.

SCAS2911 - MARCH 1993 - REVISED OCTOBER 1998

recommended operating conditions (see Note 4)

			SN54L	/C138A	SN74L	/C138A		
			MIN	MAX	MIN	MAX	UNIT	
	Current una the me	Operating	2	3.6	1.65	3.6	v	
VCC	Supply voltage	Data retention only	1.5		1.5		v	
		V _{CC} = 1.65 V to 1.95 V			$0.65 \times V_{CC}$			
VIH	High-level input voltage	V _{CC} = 2.3 V to 2.7 V			1.7		V	
		V _{CC} = 2.7 V to 3.6 V	2		2	3.6 CC $0.35 \times V_{CC}$ 0.7 0.8 5.5 V_{CC} -4 -8 -12 -24 4 8 12 24 10		
	Low-level input voltage	V _{CC} = 1.65 V to 1.95 V				$0.35 \times V_{CC}$		
VIL		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$				0.7	V	
		V _{CC} = 2.7 V to 3.6 V		0.8		0.8		
VI	Input voltage		0	5.5	0	5.5	V	
VO	Output voltage		0	V _{CC}	0	V _{CC}	V	
		V _{CC} = 1.65 V				-4		
	High-level output current	V _{CC} = 2.3 V				-8	mA	
ЮН		$\begin{tabular}{ c c c c c } \hline Operating & 2 & 3.6 & 1.65 \\ \hline Data retention only & 1.5 & 1.5 \\ \hline Data retention only & 1.5 & 0.65 \times V_{CC} \\ \hline V_{CC} = 1.65 V to 1.95 V & 0.65 \times V_{CC} \\ \hline V_{CC} = 2.3 V to 2.7 V & 1.7 \\ \hline V_{CC} = 2.7 V to 3.6 V & 2 & 2 \\ \hline V_{CC} = 1.65 V to 1.95 V & 0.8 \\ \hline V_{CC} = 2.7 V to 3.6 V & 0.8 \\ \hline \hline V_{CC} = 2.7 V to 3.6 V & 0.8 \\ \hline \hline V_{CC} = 1.65 V & 0 & 5.5 & 0 \\ \hline V_{CC} = 1.65 V & 0 & 0 \\ \hline \end{array}$	-12	IIIA				
		$V_{CC} = 3 V$		-24		-24		
		V _{CC} = 1.65 V				4		
	Low lovel output ourrept	V _{CC} = 2.3 V				8	mA	
IOL	Low-level output current	$V_{CC} = 2.7 V$		12		12	IIIA	
		$V_{CC} = 3 V$		24		24		
$\Delta t / \Delta v$	Input transition rise or fall rate		0	10	0	10	ns/V	
Тд	Operating free-air temperature		-55	125	-40	85	°C	

NOTE 4: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCAS2911 - MARCH 1993 - REVISED OCTOBER 1998

PARAMETER	TEST CONDITIONS		SN54	LVC138	4	SN74	UNIT				
PARAMETER	TEST CONDITIONS	Vcc	MIN	TYPT	MAX	MIN	TYPT	MAX	UNIT		
	100.04	1.65 V to 3.6 V				V _{CC} -0.2					
	I _{OH} = -100 μA	2.7 V to 3.6 V	V _{CC} -0.2								
	$I_{OH} = -4 \text{ mA}$	1.65 V				1.2			1		
VOH	I _{OH} = -8 mA	2.3 V				1.7			V		
	10	2.7 V	2.2			2.2					
	I _{OH} = -12 mA	3 V	2.4			2.4	2.4				
	I _{OH} = -24 mA	3 V	2.2			2.2					
	100	1.65 V to 3.6 V						0.2			
	l _{OL} = 100 μA	2.7 V to 3.6 V			0.2						
	I _{OL} = 4 mA	1.65 V						0.45	5		
VOL	I _{OL} = 8 mA	2.3 V						0.7	V		
	I _{OL} = 12 mA	2.7 V			0.4			0.4			
	I _{OL} = 24 mA	3 V			0.55			0.55			
lj –	VI = 5.5 V or GND	3.6 V			±5			±5	μA		
ICC	$V_I = V_{CC}$ or GND, $I_O = 0$	3.6 V			10			10	μA		
ΔICC	One input at $V_{CC} - 0.6 V$, Other inputs at V_{CC} or GND	2.7 V to 3.6 V			500			500	μA		
Ci	V _I = V _{CC} or GND	3.3 V		5			5		pF		

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

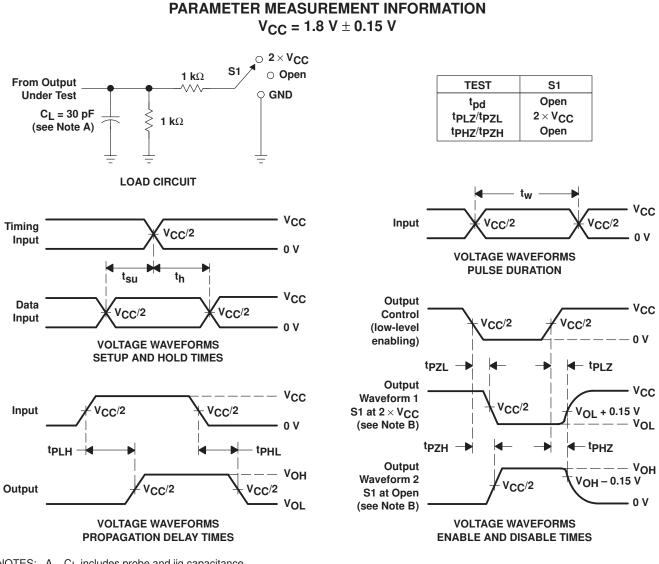
[†] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3)

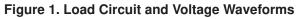
Γ								
	PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 2.7 V		$V_{CC} = 2.7 V$ $V_{CC} = 3.3 V$ $\pm 0.3 V$		UNIT
				MIN	MAX	MIN	MAX	
Γ		A or B or C			7.9	1	6.7	
	^t pd	G2A or G2B	Y		7.4	1	6.5	ns
		G1			6.4	1	5.8	

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)

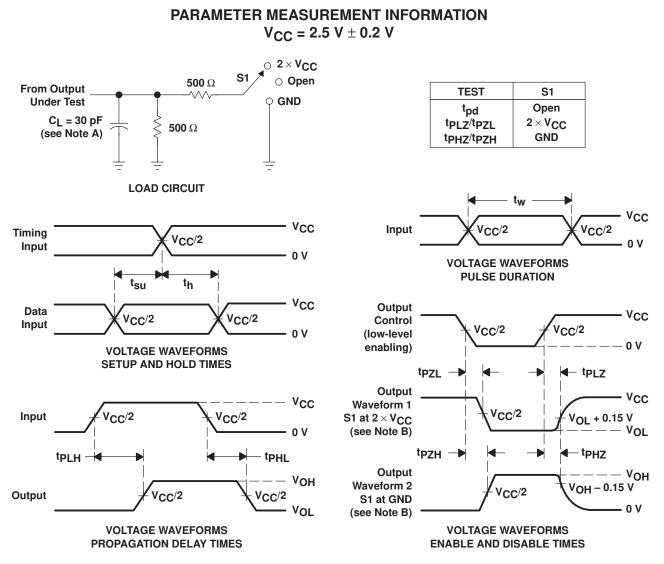
					SN74L	VC138A						
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 1.8 V	V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 2.7 V		V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V		UNIT
			TYP	MIN	MAX	MIN	MAX	MIN	MAX			
	A or B or C	Y	15.9	1	9.9		7.9	1	6.7	ns		
t _{pd}	G2A or G2B		15.4	1	9.4		7.4	1	6.5			
	G1		14.4	1	8.4		6.4	1	5.8			
tsk(o) [‡]									1	ns		


[‡] Skew between any two outputs of the same package switching in the same direction

SCAS2911 - MARCH 1993 - REVISED OCTOBER 1998

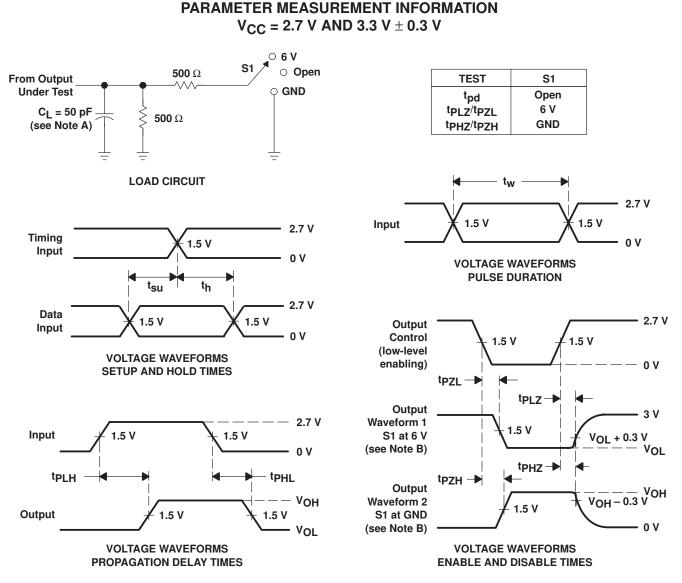

operating characteristics, T_A = 25°C

PARAMETER		TEST	V _{CC} = 1.8 V	V _{CC} = 2.5 V	V _{CC} = 3.3 V	UNIT
		CONDITIONS	ТҮР	ТҮР	ТҮР	UNIT
C _{pd}	Power dissipation capacitance	f = 10 MHz	25	26	27	pF


NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_Q = 50 Ω , t_f \leq 2 ns, t_f \leq 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tPLZ and tPHZ are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tPLH and tPHL are the same as tpd.

SCAS2911 - MARCH 1993 - REVISED OCTOBER 1998

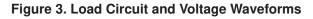

- NOTES: A. C_I includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2 ns, t_f \leq 2 ns.
 - D. The outputs are measured one at a time with one transition per measurement.

 - E. tPLZ and tPHZ are the same as tdis.
 - F. tpzL and tpzH are the same as ten. G. tPI H and tPHI are the same as tpd.

Figure 2. Load Circuit and Voltage Waveforms

SCAS2911 – MARCH 1993 – REVISED OCTOBER 1998

NOTES: A. CL includes probe and jig capacitance.


B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r \leq 2.5 ns, t_f \leq 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.

E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .

F. t_{PZL} and t_{PZH} are the same as t_{en} .

G. t_{PLH} and t_{PHL} are the same as t_{pd} .

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated