
Renesas Flexible Software Package
(FSP) v0.8.0

 User’s Manual

 Renesas RA Family

 All information contained in these materials, including products and
product specifications, represents information on the product at the
time of publication and is subject to change by Renesas Electronics
Corp. without notice. Please review the latest information published
by Renesas Electronics Corp. through various means, including the
Renesas Electronics Corp. website (http://www.renesas.com).

Renesas Electronics Revision 0.81 Nov.08.19
www.renesas.com

Table of Contents

Chapter 1 Introduction ... 6
1.1 Overview ... 6
1.2 How to Read this Manual .. 6
1.3 Documentation Standard .. 6

Chapter 2 Starting Development .. 8
2.1 Starting Development Introduction .. 8

2.1.1 Getting Started with the e2 studio ISDE and FSP ... 8
2.2 e2 studio ISDE User Guide ... 9

2.2.1 What is e2 studio ISDE? .. 9
2.2.2 e2 studio ISDE Prerequisites .. 11

2.2.2.1 Obtaining an RA MCU Kit .. 11
2.2.2.2 PC Requirements .. 11
2.2.2.3 Installing e2 studio, platform installer and the FSP package .. 11
2.2.2.4 Choosing a Toolchain ... 11
2.2.2.5 Licensing .. 12

2.2.3 What is a Project? .. 12
2.2.4 Creating a Project .. 13

2.2.4.1 Creating a New Project ... 14
2.2.4.2 Selecting a Board and Toolchain .. 15
2.2.4.3 Selecting a Project Template .. 16

2.2.5 Configuring a Project ... 17
2.2.5.1 Configuring the BSP with the ISDE ... 18
2.2.5.2 Configuring Clocks ... 19
2.2.5.3 Configuring Pins .. 19
2.2.5.4 Configuring Interrupts .. 22
2.2.5.5 Viewing Event Links .. 23

2.2.6 Adding Threads and Drivers ... 24
2.2.6.1 Adding and Configuring HAL Drivers .. 25
2.2.6.2 Adding Drivers to a Thread and Configuring the Drivers .. 26
2.2.6.3 Configuring Threads .. 29

2.2.7 Reviewing and Adding Components .. 30
2.2.8 Writing the Application .. 30

2.2.8.1 Coding Features .. 30
2.2.8.2 RTOS-independent Applications .. 36
2.2.8.3 RTOS Applications ... 37

2.2.9 Debugging the Project .. 38
2.2.10 Modifying Toolchain Settings ... 39
2.2.11 Importing an Existing Project into e2 studio ISDE .. 40

2.3 Tutorial: Your First RA MCU Project - Blinky ... 44
2.3.1 Tutorial Blinky ... 44
2.3.2 What Does Blinky Do? .. 44
2.3.3 Prerequisites ... 44
2.3.4 Create a New Project for Blinky ... 44

2.3.4.1 Details about the Blinky Configuration ... 47
2.3.4.2 Configuring the Blinky Clocks .. 47
2.3.4.3 Configuring the Blinky Pins ... 47
2.3.4.4 Configuring the Parameters for Blinky Components .. 47
2.3.4.5 Where is main()? .. 47
2.3.4.6 Blinky Example Code .. 47

2.3.5 Build the Blinky Project ... 48
2.3.6 Debug the Blinky Project ... 48

2.3.6.1 Debug prerequisites .. 49
2.3.6.2 Debug steps .. 49
2.3.6.3 Details about the Debug Process .. 50

2.3.7 Run the Blinky Project .. 51
2.4 Tutorial: Using HAL Drivers - Programming the WDT ... 51

2.4.1 Application WDT ... 51
2.4.2 Creating a WDT Application Using the RA MCU FSP and ISDE 51

2.4.2.1 Using the FSP and the e2 studio ISDE ... 51
2.4.2.2 The WDT Application .. 51
2.4.2.3 WDT Application flow .. 52

2.4.3 Creating the Project with the ISDE ... 52
2.4.4 Configuring the Project with the ISDE ... 55

2.4.4.1 BSP Tab .. 56
2.4.4.2 Clocks Tab ... 56
2.4.4.3 Pins Tab .. 57
2.4.4.4 Stacks Tab ... 57
2.4.4.5 Components Tab .. 59

2.4.5 WDT Generated Project Files .. 60
2.4.5.1 WDT hal_data.h .. 61
2.4.5.2 WDT hal_data.c .. 62
2.4.5.3 WDT main.c .. 63
2.4.5.4 WDT hal_entry.c .. 64

2.4.6 Building and Testing the Project .. 66

Chapter 3 FSP Architecture .. 69
3.1 FSP Architecture Overview .. 69

3.1.1 C99 Use .. 69
3.1.2 Doxygen .. 69
3.1.3 Weak Symbols .. 69
3.1.4 Memory Allocation .. 69
3.1.5 FSP Terms .. 69

3.2 FSP Modules ... 71
3.3 FSP Stacks .. 72
3.4 FSP Interfaces .. 72

3.4.1 FSP Interface Enumerations .. 73
3.4.2 FSP Interface Callback Functions ... 73
3.4.3 FSP Interface Data Structures ... 75

3.4.3.1 FSP Interface Configuration Structure ... 75
3.4.3.2 FSP Interface API Structure .. 76
3.4.3.3 FSP Interface Instance Structure .. 79

3.5 FSP Instances .. 79
3.5.1 FSP Instance Control Structure ... 80
3.5.2 FSP Interface Extensions .. 80

3.5.2.1 FSP Extended Configuration Structure ... 80
3.5.3 FSP Instance API ... 81

3.6 FSP API Standards ... 81
3.6.1 FSP Function Names .. 81
3.6.2 Use of const in API parameters ... 81
3.6.3 FSP Version Information ... 81

3.7 FSP Build Time Configurations ... 82
3.8 FSP File Structure .. 83
3.9 FSP Architecture in Practice ... 83

3.9.1 FSP Connecting Layers ... 83
3.9.2 Using FSP Modules in an Application ... 84

3.9.2.1 Create a Module Instance in the RA Configuration Tool .. 84
3.9.2.2 Use the Instance API in the Application ... 84

Chapter 4 API Reference ... 86
4.1 BSP ... 90

4.1.1 Common Error Codes .. 90
4.1.2 MCU Board Support Package ... 101

4.1.2.1 RA2A1 .. 108
4.1.2.2 RA4M1 .. 111
4.1.2.3 RA6M1 .. 114
4.1.2.4 RA6M2 .. 117
4.1.2.5 RA6M3 .. 120

4.1.3 BSP I/O access ... 123
4.2 Modules ... 134

4.2.1 High-Speed Analog Comparator (r_acmphs) .. 139
4.2.2 Low-Power Analog Comparator (r_acmplp) ... 140
4.2.3 Analog to Digital Converter (r_adc) .. 142
4.2.4 Asynchronous General Purpose Timer (r_agt) ... 143
4.2.5 Clock Frequency Accuracy Measurement Circuit (r_cac) 145
4.2.6 Clock Generation Circuit (r_cgc) ... 146
4.2.7 Cyclic Redundancy Check (CRC) Calculator (r_crc) .. 148
4.2.8 Capacitive Touch Sensing Unit (r_ctsu) ... 150
4.2.9 Digital to Analog Converter (r_dac) .. 151
4.2.10 Direct Memory Access Controller (r_dmac) .. 152
4.2.11 Data Operation Circuit (r_doc) .. 155
4.2.12 D/AVE 2D Port Interface (r_drw) .. 156
4.2.13 Data Transfer Controller (r_dtc) ... 157
4.2.14 Event Link Controller (r_elc) ... 162
4.2.15 Ethernet (r_ether) ... 164
4.2.16 Ethernet PHY (r_ether_phy) ... 167
4.2.17 High-Performance Flash Driver (r_flash_hp) .. 170
4.2.18 Low-Power Flash Driver (r_flash_lp) .. 172
4.2.19 Graphics LCD Controller (r_glcdc) ... 174
4.2.20 General PWM Timer (r_gpt) ... 176
4.2.21 Interrupt Controller Unit (r_icu) ... 178
4.2.22 I2C Master on IIC (r_iic_master) .. 179
4.2.23 I2C Slave on IIC (r_iic_slave) .. 181
4.2.24 I/O Ports (r_ioport) .. 182
4.2.25 Independent Watchdog Timer (r_iwdt) ... 184
4.2.26 JPEG Codec (r_jpeg) ... 185
4.2.27 Key Interrupt (r_kint) ... 188
4.2.28 Low Power Modes (r_lpm) .. 189
4.2.29 Low Voltage Detection (r_lvd) .. 190
4.2.30 Realtime Clock (r_rtc) .. 191
4.2.31 Serial Communications Interface (SCI) I2C (r_sci_i2c) .. 193
4.2.32 Serial Communications Interface (SCI) SPI (r_sci_spi) .. 195
4.2.33 Serial Communications Interface (SCI) UART (r_sci_uart) 196
4.2.34 SD/MMC Host Interface (r_sdhi) .. 198
4.2.35 Serial Peripheral Interface (r_spi) .. 199
4.2.36 Serial Sound Interface (r_ssi) .. 201
4.2.37 Universal Serial Bus (r_usb_basic) ... 202
4.2.38 Host Mass Storage Class Driver (r_usb_hmsc) .. 208
4.2.39 Universal Serial Bus Peripheral Communication Device Class (r_usb_pcdc) 213
4.2.40 Watchdog Timer (r_wdt) ... 218
4.2.41 SEGGER emWin Port (rm_emwin_port) .. 220
4.2.42 FreeRTOS Plus FAT (rm_freertos_plus_fat) .. 222
4.2.43 Amazon FreeRTOS Port (rm_freertos_port) .. 224

4.2.44 Crypto Middleware (rm_psa_crypto) .. 243
4.2.45 Capacitive Touch Middleware (rm_touch) ... 258

4.3 Interfaces .. 259
4.3.1 ADC Interface .. 262
4.3.2 CAC Interface .. 281
4.3.3 CGC Interface .. 290
4.3.4 Comparator Interface .. 303
4.3.5 CRC Interface .. 312
4.3.6 CTSU Interface ... 317
4.3.7 DAC Interface .. 330
4.3.8 Display Interface .. 335
4.3.9 DOC Interface .. 353
4.3.10 ELC Interface ... 358
4.3.11 Ethernet Interface ... 363
4.3.12 Ethernet PHY Interface .. 372
4.3.13 External IRQ Interface .. 378
4.3.14 Flash Interface ... 384
4.3.15 I2C Master Interface ... 400
4.3.16 I2C Slave Interface .. 408
4.3.17 I2S Interface .. 415
4.3.18 I/O Port Interface ... 427
4.3.19 JPEG Codec Interface .. 441
4.3.20 Key Matrix Interface .. 453
4.3.21 Low Power Modes Interface ... 459
4.3.22 Low Voltage Detection Interface .. 473
4.3.23 RTC Interface ... 483
4.3.24 SD/MMC Interface .. 494
4.3.25 SPI Interface .. 510
4.3.26 Timer Interface .. 521
4.3.27 Transfer Interface ... 533
4.3.28 UART Interface .. 545
4.3.29 USB Interface ... 555
4.3.30 USB HMSC Interface ... 580
4.3.31 USB PCDC Interface ... 584
4.3.32 WDT Interface ... 585
4.3.33 Touch Middleware Interface ... 594

Flexible Software Package

User’s Manual
Introduction

Chapter 1 Introduction

1.1 Overview
This manual describes how to use the Renesas Flexible Software Package (FSP) for writing
applications for the RA microcontroller series.

1.2 How to Read this Manual
For help getting started with the FSP, see:

Starting Development

To learn about the FSP architecture and about board and chip-level support included in the FSP, see:

FSP Architecture
MCU Board Support Package

For user guides describing the FSP modules, see:

Modules

For shared interface API documentation, see:

Interfaces

1.3 Documentation Standard
Each module user guide outlines the following:

Features: A bullet list of high level features provided by the module.
Configuration: A description of module specific configurations available in the configuration
tool.
Usage Notes: Module specific documentation and limitations.
Examples: Example code provided to help the user get started.
API Reference: Usage notes for each API in the module, including the function prototype and
hyperlinks to the interface documentation for parameter definitions.

Interface documentation includes typed enumerations and structures–including a structure of
function pointers that defines the API–that are shared by all modules that implement the interface.

Introduction to FSP
Purpose

The Renesas Flexible Software Package (FSP) is an optimized software package designed to provide
easy to use, scalable, high quality software for embedded system design. The primary goal is to

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 6 / 601

Flexible Software Package

User’s Manual
Introduction > Documentation Standard

provide lightweight, efficient drivers that meet common use cases in embedded systems.

Quality

FSP code quality is enforced by peer reviews, automated requirements-based testing, and
automated static analysis.

Ease of Use

The FSP provides uniform and intuitive APIs that are well documented. Each module is supported
with detailed user documentation including example code.

Scalability

FSP modules can be used on any MCU in the RA family, provided the MCU has any peripherals
required by the module.

FSP modules also have build time configurations that can be used to optimize the size of the module
for the feature set required by the application.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 7 / 601

Flexible Software Package

User’s Manual
Starting Development

Chapter 2 Starting Development

2.1 Starting Development Introduction
The Renesas Flexible Software Package (FSP) provides a host of efficiency enhancing tools for
developing projects targeting the Renesas RA series of MCU devices. The e2 studio Integrated
System Development Environment (ISDE) provides a familiar development cockpit from which the
key steps of project creation, module selection and configuration, code development, code
generation, and debugging are all managed. FSP runs within e2 studio and enables the module
selection, configuration, and code generation steps. FSP uses a Graphical User Interface (GUI) to
simplify the selection, configuration, code generation and code development of high level modules
and their associated Application Program Interfaces (APIs) to dramatically accelerate the
development process.

The wealth of resources available to learn about and use e2 studio and FSP can be overwhelming on
first inspection, so the following section provides a Getting Started Guide with a list of the most
important first steps. Following these highly recommended first 10 steps will bring you up to speed
on the development environment in record time. Even experienced developers can benefit from the
use of this guide, to learn the terminology that might be unfamiliar or different from previous
environments.

2.1.1 Getting Started with the e2 studio ISDE and FSP

This section describes how to use the Renesas e2 Integrated Solutions Development Environment
(ISDE) to develop applications with the Renesas Flexible Software Package (FSP). Here is the
recommended sequence for quickly Getting Started with using e2 when developing with the RA MCU
Family:

1. Read over the section What is e2 studio ISDE?, up to but not including e2 studio ISDE
Prerequisites. This will provide a description of the various windows and views to use e2 to
create a project, add modules and threads, configure module properties, add code, and
debug a project. It also describes how to use key coding 'accelerators' like Developer Assist
(to drag and drop parameter populated API function calls right into your code), a context
aware Autocomplete (to easily find and select from suggested enumerations, functions,
types, and many other coding elements), and many other similar productivity enhancers.

2. Read over the FSP Architecture sections FSP Architecture, FSP Modules and FSP Stacks.
These provide the basic background on how FSP modules and stacks are used to construct
your application. Understanding their definitions and the theory behind how they combine
will make it easier to develop with FSP.

3. Read over a few "Module User Guide" sections to see how to use API function calls,
structures, enumerations, types and callbacks. These user guides provide the information
you will use to implement your project code. (Much of the details are provided with
Developer Assistance, covered in step 5, below.

4. If you don't have a kit. you can order one using the link included in the e2 studio ISDE
Prerequisites section. Then, if you haven't yet downloaded and installed e2 studio and FSP,
use the link included in the e2 studio ISDE Prerequisites section to download the tools. Then
you can build and debug a simple project to prove out you installation, tool flow, and the
kit. The simple "Blinky" project, that blinks an LED on and off, is located in the Tutorial: Your
First RA MCU Project - Blinky section. Follow the instructions for importing and running this

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 8 / 601

Flexible Software Package

User’s Manual
Starting Development > Starting Development Introduction > Getting Started with the e2 studio ISDE and FSP

project. It will use some of the key steps for managing projects within e2 and is a good way
to learn the basics.

5. Once you have successfully run Blinky you have a good starting point for using FSP for more
complex projects. The Watchdog Timer hands-on lab, available in the Tutorial: Using HAL
Drivers - Programming the WDT section, shows how to create a project from scratch and
use FSP API functions, and demonstrates the use of some of the coding efficiency tools like
Developer Assistance and Autocomplete. Run through this lab to establish a good starting
point for developing custom projects.

6. The balance of the FSP Architecture sections, those not called out in step 2 above, contain
additional reference material that may be helpful in the future. Scan them over so you know
what they contain, in case you need them.

7. The balance of the e2 ISDE User Guide, starting with the What is a Project? section up to
Writing the Application section, provides a detailed description of each of the key steps,
windows, and entries used to create, manage, configure, build and debug a project. Most of
this will be familiar after doing the Blinky and WDT exercises from steps 4 and 5 above.
Skim over these references so you know to come back to them when questions come up.
Make sure you have a good grasp of what each of the configuration tabs are used for since
that is where the bulk of the project preparation work takes place prior to writing code.

8. Read over the Writing the Application section to get a short introduction to the steps used
when creating application code with FSP. It covers both RTOS-independent and RTOS-
dependent applications. The Tutorial: Using HAL Drivers - Programming the WDT section is
a good introduction to the key steps for an RTOS-independent application. Make sure you
have run through it at least once before doing a custom project.

9. Scan the Debugging the Project section to see the steps required to download and start a
debug session.

10. Explore the additional material available on the following web pages and bookmark the
resources that look most valuable to you:

a. RA Landing Page: https://www.renesas.com/ra
b. FSP Landing Page: https://www.renesas.com/fsp

2.2 e2 studio ISDE User Guide
2.2.1 What is e2 studio ISDE?

The Renesas e2 studio ISDE, or Integrated Solution Development Environment, is a development tool
encompassing code development, build, and debug. The ISDE is based on the open-source Eclipse
IDE and the associated C/C++ Development Tooling (CDT).

When developing for RA MCUs, the ISDE hosts the Renesas Flexible Software Package (FSP). FSP
provides a wide range of time saving tools to simplify the selection, configuration, and management
of modules and threads, to easily implement complex applications. The time saving tools available in
e2 studio and FSP include the following:

A Graphical User Interface (GUI) (see Adding Threads and Drivers) with numerous wizards
for configuring and auto-generating code
A context sensitive Autocomplete (see Tutorial: Using HAL Drivers - Programming the WDT)
feature that provides intelligent options for completing a programming element
A Developer Assistance) tool for selection of and drag and drop placement of API functions
directly in application code
A Smart Manual provides driver and device documentation in the form of tooltips right in
the code
An Edit Hover feature to show detailed descriptions of code elements while editing
A Welcome Window with links to example projects, application notes and a variety of other
self-help support resources

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 9 / 601

https://www.renesas.com/ra
https://www.renesas.com/fsp

Flexible Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > What is e2 studio ISDE?

An Information Icon, from each module, is provided in the graphic configuration viewer that
links to specific design resources, including code 'cheat sheets' that provide useful starting
points for common application implementations.

Figure 1: e2 studio Splash Screen

 The e2 studio ISDE organizes project work based on Perspectives, Views, Windows, Panes, and Pages
(sometimes called Tabs). Windows are a section of the ISDE GUI that presents information on a key
topic. Windows often use tabs to select sub-topics. For example, an editor window might have a tab
available for each open file, so it is easy to switch back and forth between them. A window Pane is a
section of a window. Within a window, multiple Panes can be opened and viewed simultaneously, as
opposed to a tabbed window, where only individual content is displayed. A memory-display Window,
for example, might have multiple Panes that allow the data to be displayed in different formats,
simultaneously. A Perspective is a collection of Views and Windows typical for a specific stage of
development. The default perspectives are a C/C++ Perspective, an FSP Configuration Perspective
and a Debug Perspective. These provide specific Views, Windows, Tabs, and Panes tailored for the
common tasks needed during the specific development stage. These three default perspectives are
each illustrated in the below screen shots, along with graphic indicators helpful in identifying
example Views, Windows, Tabs and Panes.

Figure 2: Default Perspective

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 10 / 601

Flexible Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > What is e2 studio ISDE?

 In addition to managing project development, selecting modules, configuring them and simplifying
code development, e2 studio also hosts the engine for automatically generating code based on
module selections and configurations. The engine continually checks for dependencies and
automatically adds any needed lower level modules to the module stack. It also identifies any lower
level modules that require configuration (for example, an interrupt that needs to have a priority
assigned). It also provides a guide for selecting between multiple choices or options to make it easy
to complete a fully functional module stack.

The Generate Project Content function takes the selected and configured modules and automatically
generates the complete and correct configuration code. The code is added to the folders visible in
the Project Explorer window in e2 studio. The configuration.xml file in the project folder holds all
the configuration settings generated by the ISDE. This file can be opened in the GUI-based
configuration editor to make further edits and changes. Once a project has been generated, you can
go back and reconfigure any of the modules and settings if required using this editor.

Figure 3: Project Explorer Window showing generated folders and configuration.xml file

2.2.2 e2 studio ISDE Prerequisites
2.2.2.1 Obtaining an RA MCU Kit

To develop applications with FSP, start with one of the Renesas RA MCU Evaluation Kits. The Renesas
RA MCU Evaluation Kits are designed to seamlessly integrate with the e2 studio ISDE.

Ordering information, Quick Start Guides, User Manuals, and other related documents for all RA MCU
Evaluation Kits are available at https://www.renesas.com/ra.

2.2.2.2 PC Requirements

The following are the minimum PC requirements to use the e2 studio ISDE:

Windows 10 with Intel i5 or i7, or AMD A10-7850K or FX
Memory: 8-GB DDR3 or DDR4 DRAM (16-GB DDR4/2400-MHz RAM is preferred)
Minimum 250-GB hard disk

2.2.2.3 Installing e2 studio, platform installer and the FSP package

Detailed installation instructions for the e2 studio ISDE and the FSP are available on the Renesas
website https://www.renesas.com/fsp. Review the release notes for e2 studio to ensure that the e2

studio version supports the selected FSP version. The starting version of the installer includes all
features of the RA MCUs.

2.2.2.4 Choosing a Toolchain

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 11 / 601

https://www.renesas.com/ra
https://www.renesas.com/fsp

Flexible Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > e2 studio ISDE Prerequisites > Choosing a Toolchain

The e2 studio ISDE can work with several toolchains and toolchain versions such as the GNU ARM
compiler, AC6. A version of the GNU ARM compiler is included in the e2 studio installer and has been
verified to run with the FSP version.

2.2.2.5 Licensing

FSP licensing includes full source code, limited to Renesas hardware only.

2.2.3 What is a Project?

In e2 studio, all FSP applications are organized in RA MCU projects. Setting up an RA MCU project
involves:

1. Creating a Project
2. Configuring a Project

These steps are described in detail in the next two sections. When you have existing projects
already, after you launch e2 studio and select a workspace, all projects previously saved in the
selected workspace are loaded and displayed in the Project Explorer window. Each project has an
associated configuration file named configuration.xml, which is located in the project's root directory.

Figure 4: e2 studio Project Configuration file

Double-click on the configuration.xml file to open the RA MCU Project Editor. To edit the project
configuration, make sure that the RA Configuration perspective is selected in the upper right hand
corner of the e2 studio window. Once selected, you can use the editor to view or modify the
configuration settings associated with this project.

Figure 5: e2 studio RA Configuration Perspective

Note
Whenever the RA project configuration (that is, the configuration.xml file) is saved, a verbose RA Project Report
file (ra_cfg.txt) with all the project settings is generated. The format allows differences to be easily viewed using a
text comparison tool. The generated file is located in the project root directory.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 12 / 601

Flexible Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > What is a Project?

Figure 6: RA Project Report

 The RA Project Editor has a number of tabs. The configuration steps and options for individual tabs
are discussed in the following sections.

Note
Which tabs are available with the RA Project Editor depends on the e2 studio version.

Figure 7: RA Project Summary tabs

Click on the YouTube icon to visit the Renesas FSP playlist on YouTube
Click on the Support icon to visit RA support pages at Renesas.com
Click on the user manual (owl) icon to open the RA software package User's Manual

2.2.4 Creating a Project

During project creation, you specify the type of project, give it a project name and location, and
configure the project settings for version, target board, whether an RTOS is included, the toolchain
version, and the beginning template. This section includes easy-to-follow step-by-step instructions
for all of the project creation tasks. Once you have created the project, you can move to configuring
the project hardware (clocks, pins, interrupts) and the parameters of all the modules that are part of

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 13 / 601

Flexible Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Creating a Project

your application.

2.2.4.1 Creating a New Project

For RA MCU applications, generate a new project using the following steps:

1. Click on File > New > RA C/C++ Project.

Figure 8: New RA MCU Project

 Then click on the type of template for the type of project you are creating.

Figure 9: New Project Templates

2. Select a project name and location.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 14 / 601

Flexible Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Creating a Project > Creating a New Project

Figure 10: RA MCU Project Generator (Screen 1)

3. Click Next.

2.2.4.2 Selecting a Board and Toolchain

In the Project Configuration window select the hardware and software environment:

1. Select the FSP version.
2. Select the Board for your application. You can select an existing RA MCU Evaluation Kit or

select Custom User Board for any of the RA MCU devices with your own BSP definition.
3. Select the Device. The Device is automatically populated based on the Board selection.

Only change the Device when using the Custom User Board (Any Device) board
selection.

4. To add threads, select RTOS, or No RTOS if an RTOS is not being used.
5. The Toolchain selection defaults to GCC ARM Embedded.
6. Select the Toolchain version. This should default to the installed toolchain version.
7. Select the Debugger. The J-Link ARM Debugger is preselected.

8. Click Next.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 15 / 601

Flexible Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Creating a Project > Selecting a Board and Toolchain

Figure 11: RA MCU Project Generator (Screen 2)

 Click on the Help icon (?) for user guides, RA contents, and other documents.

2.2.4.3 Selecting a Project Template

In the next window, select a project template from the list of available templates. By default, this
screen shows the templates that are included in your current RA MCU pack. Once you have selected
the appropriate template, click Finish.

Note
If you want to develop your own application, select the basic template for your board, Bare Metal - Minimal.

Figure 12: RA MCU Project Generator (Screen 3)

 When the project is created, the ISDE displays a summary of the current project configuration in the

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 16 / 601

Flexible Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Creating a Project > Selecting a Project Template

RA MCU Project Editor.

Figure 13: RA MCU Project Editor and available editor tabs

 On the bottom of the RA MCU Project Editor view, you can find the tabs for configuring multiple
aspects of your project:

With the BSP tab, you can change board specific parameters from the initial project
selection.
With the Clocks tab, you can configure the MCU clock settings for your project.
With the Pins tab, you can configure the electrical characteristics and functions of each
port pin.
With the Stacks tab, you can add FSP modules for non-RTOS applications and configure the
modules. For each module selected in this tab, the Properties window provides access to
the configuration parameters, interrupt priorities, and pin selections.
With the Interrupt tab, you can add new user events/interrupts.
With the Event Links tab, you can configure events used by the Event Link Controller.
The Components tab provides an overview of the selected modules. You can also add
drivers for specific FSP releases and application sample code here.

The functions and use of each of these tabs is explained in detail in the next section.

2.2.5 Configuring a Project

Each of the configurable elements in an FSP project can be edited using the appropriate tab in the
configuration editor window. Importantly, the initial configuration of the MCU after reset and before
any user code is executed is set by the configuration settings in the BSP, Clocks and Pins tabs.
When you select a project template during project creation, the ISDE configures default values that
are appropriate for the associated board. You can change those default values as needed. The
following sections detail the process of configuring each of the project elements for each of the
associated tabs.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 17 / 601

Flexible Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Configuring a Project

Figure 14: RA MCU Project Editor and available editor tabs

2.2.5.1 Configuring the BSP with the ISDE

The BSP tab shows the currently selected board (if any) and device. The Properties view is located in
the lower left of the Project Configurations view as shown below.

Note
If the Properties view is not visible, click Window > Show View > Properties in the top menu bar.

Figure 15: ISDE BSP tab

 The Properties view shows the configurable options available for the BSP. These can be changed
as required. The BSP is the FSP layer above the MCU hardware. The ISDE checks the entry fields to
flag invalid entries. For example, only valid numeric values can be entered for the stack size.

When you click the Generate Project Content button, the BSP configuration contents are written
to ra_cfg/fsp_cfg/bsp/bsp_cfg.h

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 18 / 601

Flexible Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Configuring a Project > Configuring the BSP with the ISDE

This file is created if it does not already exist.

Warning
Do not edit this file as it is overwritten whenever the Generate Project Content button is
clicked.

2.2.5.2 Configuring Clocks

The Clocks tab presents a graphical view of the MCU's clock tree, allowing the various clock dividers
and sources to be modified. If a clock setting is invalid, the offending clock value is highlighted in
red. It is still possible to generate code with this setting, but correct operation cannot be guaranteed.
In the figure below, the USB clock HOCO has been changed so the resulting clock frequency is 24
MHz instead of the required 48 MHz. This parameter is colored red.

Figure 16: ISDE Clocks tab

 When you click the Generate Project Content button, the clock configuration contents are written
to: ra_gen/bsp_clock_cfg.h

This file will be created if it does not already exist.

Warning
Do not edit this file as it is overwritten whenever the Generate Project Content button is
clicked.

2.2.5.3 Configuring Pins

The Pins tab provides flexible configuration of the MCU's pins. As many pins are able to provide
multiple functions, they can be configured on a peripheral basis. For example, selecting a serial
channel via the SCI peripheral offers multiple options for the location of the receive and transmit pins
for that module and channel. Once a pin is configured, it is shown as green in the Package view.

Note
If the Package view window is not open in the ISDE, select Window > Show View > Pin Configurator > Package

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 19 / 601

Flexible Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Configuring a Project > Configuring Pins

from the top menu bar to open it.

The Pins tab simplifies the configuration of large packages with highly multiplexed pins by
highlighting errors and presenting the options for each pin or for each peripheral. If you selected a
project template for a specific board such as the RA6M3, some peripherals connected on the board
are preselected.

Figure 17: Pins Configuration

 The pin configurator includes a built-in conflict checker, so if the same pin is allocated to another
peripheral or I/O function the pin will be shown as red in the package view and also with white cross
in a red square in the Pin Selection pane and Pin Configuration pane in the main Pins tab. The
Pin Conflicts view provides a list of conflicts, so conflicts can be quickly identified and fixed.

In the example shown below, port P611 is already used by the CAC, and the attempt to connect this
port to the Serial Communications Interface (SCI) results in a dangling connection error. To fix this
error, select another port from the pin drop-down list or disable the CAC in the Pin Selection pane
on the left side of the tab.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 20 / 601

Flexible Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Configuring a Project > Configuring Pins

Figure 18: ISDE Pin configurator

The pin configurator also shows a package view and the selected electrical or functional
characteristics of each pin.

Figure 19: ISDE Pin configurator package view

 When you click the Generate Project Content button, the pin configuration contents are written
to: ra_gen\bsp_pin_cfg.h

This file will be created if it does not already exist.

Warning
Do not edit this file as it is overwritten whenever the Generate Project Content button is
clicked.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 21 / 601

Flexible Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Configuring a Project > Configuring Pins

To make it easy to share pinning information for your project, the ISDE exports your pin
configuration settings to a csv format and copies the csv file to ra_gen/<MCU package>.csv.

2.2.5.4 Configuring Interrupts

You can use the Properties view in the Stacks tab to enable interrupts by setting the interrupt
priority. Select the driver in the Stacks pane to view and edit its properties.

Figure 20: Configuring Interrupt on the Stacks tab

Interrupts

In the Interrupt tab, the user can bypass a peripheral interrupt and have user-defined ISRs for the
peripheral interrupt. This can be done by adding a new event with the user define tab (New User
Event).

Figure 21: Configuring interrupt in Interrupt Tab

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 22 / 601

Flexible Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Configuring a Project > Configuring Interrupts

Figure 22: Adding user-defined event

 Enter the name of ISR for new user event.

Figure 23: User-defined event ISR

Figure 24: Using a user-defined event

2.2.5.5 Viewing Event Links

The Event Links tab can be used to view the Event Link Controller events. The events are sorted by
peripheral to make it easy to find and verify them.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 23 / 601

Flexible Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Configuring a Project > Viewing Event Links

Figure 25: Viewing Event Links

2.2.6 Adding Threads and Drivers

Every FreeRTOS-based RA Project includes at least one RTOS Thread and a stack of FSP modules
running in that thread. The Stacks tab is a graphical user interface which helps you to add the right
modules to a thread and configure the properties of both the threads and the modules associated
with each thread. Once you have configured the thread, the ISDE automatically generates the code
reflecting your configuration choices.

For any driver, or, more generally, any module that you add to a thread, the ISDE automatically
resolves all dependencies with other modules and creates the appropriate stack. This stack is
displayed in the Stacks pane, which the ISDE populates with the selected modules and module
options for the selected thread.

The default view of the Stacks tab includes a Common Thread called HAL/Common. This thread
includes the driver for I/O control (IOPORT). The default stack is shown in the HAL/Common Stacks
pane. The default modules added to the HAL/Common driver are special in that the FSP only requires
a single instance of each, which the ISDE then includes in every user-defined thread by default.

In applications that do not use an RTOS or run outside of the RTOS, the HAL/Common thread
becomes the default location where you can add additional drivers to your application.

For a detailed description on how to add and configure modules and stacks, see the following
sections:

Adding and Configuring HAL Drivers
Adding Drivers to a Thread and Configuring the Drivers

Once you have added a module either to HAL/Common or to a new thread, you can access the
driver's configuration options in the Properties view. If you added thread objects, you can access
the objects configuration options in the Properties view in the same way.

You can find details about how to configure threads here: Configuring Threads

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 24 / 601

Flexible Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Adding Threads and Drivers

Note
Driver and module selections and configuration options are defined in the FSP pack and can therefore change
when the FSP version changes.

2.2.6.1 Adding and Configuring HAL Drivers

For applications that run outside or without the RTOS, you can add additional HAL drivers to your
application using the HAL/Common thread. To add drivers, follow these steps:

1. Click on the HAL/Common icon in the Stacks pane. The Modules pane changes to
HAL/Common Stacks.

Figure 26: ISDE Project configurator - Adding drivers

2. Click New Stack to see a drop-down list of HAL level drivers available in the FSP.

3. Select a driver from the menu New Stack > Driver.

Figure 27: Select a driver

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 25 / 601

Flexible Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Adding Threads and Drivers > Adding and Configuring HAL Drivers

4. Select the driver module in the HAL/Common Modules pane and configure the driver
properties in the Properties view.

The ISDE adds the following files when you click the Generate Project Content button:

The selected driver module and its files to the ra/fsp directory
The main() function and configuration structures and header files for your application as
shown in the table below.

File Contents Overwritten by Generate
Project Content?

ra_gen/main.c Contains main() calling
generated and user code. When
called, the BSP already has
Initialized the MCU.

Yes

ra_gen/hal_data.c Configuration structures for HAL
Driver only modules.

Yes

ra_gen/hal_data.h Header file for HAL driver only
modules.

Yes

src/hal_entry.c User entry point for HAL Driver
only code. Add your code here.

No

The configuration header files for all included modules are created or overwritten in this folder:
ra_cfg/fsp_cfg

2.2.6.2 Adding Drivers to a Thread and Configuring the Drivers

For an application that uses the RTOS, you can add one or more threads, and for each thread at least
one module that runs in the thread. You can select modules from the Driver dropdown menu. To add
modules to a thread, follow these steps:

1. In the Threads pane, click New Thread to add a Thread.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 26 / 601

Flexible Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Adding Threads and Drivers > Adding Drivers to a Thread and Configuring the Drivers

Figure 28: Adding a new RTOS Thread on the Stacks tab

2. In the Properties view, click on the Name and Symbol entries and enter a distinctive
name and symbol for the new thread.

Note
The ISDE updates the name of the thread stacks pane to My Thread Stacks.

3. In the My Thread Stacks pane, click on New Stack to see a list of modules and drivers.
HAL-level drivers can be added here.

Figure 29: Adding Modules and Drivers to a thread

4. Select a module or driver from the list.

5. Click on the added driver and configure the driver as required by the application by
updating the configuration parameters in the Properties view. To see the selected module
or driver and be able to edit its properties, make sure the Thread containing the driver is

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 27 / 601

Flexible Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Adding Threads and Drivers > Adding Drivers to a Thread and Configuring the Drivers

highlighted in the Threads pane.

Figure 30: Configuring Module or Driver properties

6. If needed, add another thread by clicking New Thread in the Threads pane.

When you press the Generate Project Content button for the example above, the ISDE creates the
files as shown in the following table:

File Contents Overwritten by Generate
Project Content?

ra_gen/main.c Contains main() calling
generated and user code. When
called the BSP will have
initialized the MCU.

Yes

ra_gen/my_thread.c Generated thread "my_thread"
and configuration structures for
modules added to this thread.

Yes

ra_gen/my_thread.h Header file for thread
"my_thread"

Yes

ra_gen/hal_data.c Configuration structures for HAL
Driver only modules.

Yes

ra_gen/hal_data.h Header file for HAL Driver only
modules.

Yes

src/hal_entry.c User entry point for HAL Driver
only code. Add your code here.

No

src/my_thread_entry.c User entry point for thread
"my_thread". Add your code
here.

No

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 28 / 601

Flexible Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Adding Threads and Drivers > Adding Drivers to a Thread and Configuring the Drivers

The configuration header files for all included modules and drivers are created or overwritten in the
following folders: ra_cfg/fsp_cfg/<header files>

2.2.6.3 Configuring Threads

If the application uses the FreeRTOS, the Stacks tab can be used to simplify the creation of
FreeRTOS threads, semaphores, mutexes, and event flags.

The components of each thread can be configured from the Properties view as shown below.

Figure 31: New Thread Properties

 The Properties view contains settings common for all Threads (Common) and settings for this
particular thread (Thread).

For this thread instance, the thread's name and properties (such as priority level or stack size) can
be easily configured. The ISDE checks that the entries in the property field are valid. For example,
the ISDE ensures that the field Priority, which requires an integer value, only contains numeric
values between 0 and 9.

To add FreeRTOS resources to a Thread, select a thread and click on New Object in the Thread
Objects pane. The pane takes on the name of the selected thread, in this case My Thread Objects.

Figure 32: Configuring Thread Object Properties

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 29 / 601

Flexible Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Adding Threads and Drivers > Configuring Threads

 Make sure to give each thread object a unique name and symbol by updating the Name and
Symbol entries in the Properties view.

2.2.7 Reviewing and Adding Components

The Components tab enables the individual modules required by the application to be included or
excluded. Modules common to all RA MCU projects are preselected (for example: BSP > BSP >
Board-specific BSP and HAL Drivers > all > r_cgc). All modules that are necessary for the
modules selected in the Stacks tab are included automatically. You can include or exclude
additional modules by ticking the box next to the required component.

Figure 33: Components Tab

 While the components tab selects modules for a project, you must configure the modules
themselves in the other tabs. clicking the Generate Project Content button copies the .c and .h
files for each component for a Pack file into the following folders:

ra/fsp/inc/api
ra/fsp/inc/instances
ra/fsp/src/bsp
ra/fsp/src/<Driver_Name>

The ISDE also creates configuration files in the ra_cfg/fsp_cfg folder with configuration options
included from the remaining Stacks tabs.

2.2.8 Writing the Application

Once you have added Modules and drivers and set their configuration parameters in the Stacks tab,
you can add the application code that calls the Modules and drivers.

Note
To check your configuration, build the project once without errors before adding any of your own application code.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 30 / 601

Flexible Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Writing the Application > Coding Features

2.2.8.1 Coding Features

The ISDE provides several efficiency improving features that help write code. Review these features
prior to digging into the code development step-by-step sections that follow.

Edit Hover

e2 studio supports hovers in the textual editor. This function can be enabled or disabled via Window
> Preferences > C/C++ > Editor > Hovers.

Figure 34: Hover preference

 To enable hover, check Combined Hover box. To disable it, uncheck this box. By default, it is
enabled. The Hover function allows a user to view detailed information about any identifiers in the
source code by hovering the mouse over an identifier and checking the pop-up.

Figure 35: Hover Example

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 31 / 601

Flexible Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Writing the Application > Coding Features

Welcome Window

The e2 studio Welcome window displays useful information and common links to assist in
development. Check out these resources to see what is available. They are updated with each
release, so check back to see what has been added after a new release.

Figure 36: Welcome window

Cheat Sheets

Cheat sheets are macro driven illustrations of some common tasks. They show, step-by-step, what
commands and menus are used. These will be populated with more examples on each release.
Cheat Sheets are available from the Help menu.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 32 / 601

Flexible Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Writing the Application > Coding Features

Figure 37: Cheat Sheets

Developer Assistance

FSP Developer Assistance provides developers with module and Application Programming Interface
(API) reference documentation in e2 studio. After configuring the threads and software stacks for an
FSP project with the Configuration Editor, Developer Assistance quickly helps you get started writing
C/C++ application code for the project using the configured stack modules.

1. Expand the project explorer to view Developer Assistance

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 33 / 601

Flexible Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Writing the Application > Coding Features

Figure 38: Developer Assistance

2. Expand a stack module to show its APIs

Figure 39: Developer Assistance APIs

3. Dragging and dropping an API from Develop Assistance to a source file helps to write source
code quickly.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 34 / 601

Flexible Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Writing the Application > Coding Features

Figure 40: Dragging and Dropping an API in Developer Assistance

Information Icon

Information icons are available on each module in the thread stack. Clicking on these icons opens a
module folder on GitHub that contains additional information on the module. An example information
Icon is shown below:

Figure 41: Information icon

Smart Manual

Smart Manual is the view that displays information (register information/search results by keyword)
extracted from the hardware user's manual. Smart Manual provides search capability of hardware
manual information (register information search and keyword search result) and provides a view
displaying result.

You can open Smart Manual view by selecting the menu: Renesas Views > Solution Toolkit >
Smart Manual. Register search and Keyword search are both available by selecting the appropriate
tab.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 35 / 601

Flexible Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Writing the Application > Coding Features

Figure 42: Smart Manual

2.2.8.2 RTOS-independent Applications

To write application code:

1. Add all drivers and modules in the Stacks tab and resolve all dependencies flagged by the
ISDE such as missing interrupts or drivers.

2. Configure the drivers in the Properties view.
3. In the Project Configuration view, click the Generate Project Content button.

4. In the Project Explorer view, double-click on the src/hal_entry.c file to edit the source file.

Note
All configuration structures necessary for the driver to be called in the application are initialized in
ra_gen/hal_data.c.

Warning
Do not modify the files in the directory ra_gen. These files are overwritten every
time you push the Generate Project Content button.

5. Add your application code here:

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 36 / 601

Flexible Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Writing the Application > RTOS-independent Applications

Figure 43: Adding user code to hal_entry.c

6. Build the project without errors by clicking on Project > Build Project.

The following tutorial shows how execute the steps above and add application code: Tutorial: Using
HAL Drivers - Programming the WDT.

The WDT example is a HAL level application which does not use an RTOS. The user guides for each
module also include basic application code that you can add to hal_entry.c.

2.2.8.3 RTOS Applications

To write RTOS-aware application code using FreeRTOS, follow these steps:

1. Add a thread using the Stacks tab.
2. Provide a unique name for the thread in the Properties view for this thread.
3. Configure all drivers and resources for this thread and resolve all dependencies flagged by

the ISDE such as missing interrupts or drivers.
4. Configure the thread objects.
5. Provide unique names for each thread object in the Properties view for each object.
6. Add more threads if needed and repeat steps 1 to 5.
7. In the RA Project Editor, click the Generate Project Content button.

8. In the Project Explorer view, double-click on the src/my_thread_1_entry.c file to edit the
source file.

Figure 44: ISDE generated files for an RTOS application

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 37 / 601

Flexible Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Writing the Application > RTOS Applications

Note
All configuration structures necessary for the driver to be called in the application are initialized in
ra_gen/my_thread_1.c and my_thread_2.c

Warning
Do not modify the files in the directory ra_gen. These files are overwritten every
time you push the Generate Project Content button.

9. Add your application code here:

Figure 45: Adding user code to my_thread_1.entry

10. Repeat steps 1 to 9 for the next thread.
11. Build your project without errors by clicking on Project > Build Project.

2.2.9 Debugging the Project

Once your project builds without errors, you can use the Debugger to download your application to
the board and execute it.

To debug an application follow these steps:

1. On the drop-down list next to the debug icon, select Debug Configurations.

2. In the Debug Configurations view, click on your project listed as MyProject Debug.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 38 / 601

Flexible Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Debugging the Project

3. Connect the board to your PC via either a standalone Segger J-Link debugger or a Segger J-
Link On-Board (included on all RA EKs) and click Debug.

Note
For details on using J-Link and connecting the board to the PC, see the Quick Start Guide included in the RA MCU
Kit.

2.2.10 Modifying Toolchain Settings

There are instances where it may be necessary to make changes to the toolchain being used (for
example, to change optimization level of the compiler or add a library to the linker). Such
modifications can be made from within the ISDE through the menu Project > Properties >
Settings when the project is selected. The following screenshot shows the settings dialog for the
GNU ARM toolchain. This dialog will look slightly different depending upon the toolchain being used.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 39 / 601

Flexible Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Modifying Toolchain Settings

Figure 46: ISDE Project toolchain settings

 The scope for the settings is project scope which means that the settings are valid only for the
project being modified.

The settings for the linker which control the location of the various memory sections are contained in
a script file specific for the device being used. This script file is included in the project when it is
created and is found in the script folder (for example, /script/a6m3.ld).

2.2.11 Importing an Existing Project into e2 studio ISDE

1. Start by opening e2 studio.
2. Open an existing Workspace to import the project and skip to step d. If the workspace

doesn't exist, proceed with the following steps:

a. At the end of e2 studio startup, you will see the Workspace Launcher Dialog box as
shown in the following figure.

Figure 47: Workspace Launcher dialog

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 40 / 601

Flexible Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Importing an Existing Project into e2 studio ISDE

b. Enter a new workspace name in the Workspace Launcher Dialog as shown in the
following figure. e2 studio creates a new workspace with this name.

Figure 48: Workspace Launcher dialog - Select Workspace

c. Click Launch.

d. When the workspace is opened, you may see the Welcome Window. Click on the
Workbench arrow button to proceed past the Welcome Screen as seen in the
following figure.

Figure 49: Workbench arrow button

3. You are now in the workspace that you want to import the project into. Click the File menu
in the menu bar, as shown in the following figure.

Figure 50: Menu and tool bar

4. Click Import on the File menu or in the menu bar, as shown in the following figure.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 41 / 601

Flexible Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Importing an Existing Project into e2 studio ISDE

Figure 51: File drop-down menu

5. In the Import dialog box, as shown in the following figure, choose the General option, then
Existing Projects into Workspace, to import the project into the current workspace.

Figure 52: Project Import dialog with

Existing Projects into Workspace" option selected"

6. Click Next.
7. To import the project, use either Select archive file or Select root directory.

a. Click Select archive file as shown in the following figure.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 42 / 601

Flexible Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Importing an Existing Project into e2 studio ISDE

Figure 53: Import Existing Project dialog 1 - Select archive file

b. Click Select root directory as shown in the following figure.

Figure 54: Import Existing Project dialog 1 - Select root directory

8. Click Browse.
9. For Select archive file, browse to the folder where the zip file for the project you want to

import is located. For Select root directory, browse to the project folder that you want to
import.

10. Select the file for import. In our example, it is CAN_HAL_MG_AP.zip or CAN_HAL_MG_AP.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 43 / 601

Flexible Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Importing an Existing Project into e2 studio ISDE

11. Click Open.

12. Select the project to import from the list of Projects, as shown in the following figure.

Figure 55: Import Existing Project dialog 2

13. Click Finish to import the project.

2.3 Tutorial: Your First RA MCU Project - Blinky
2.3.1 Tutorial Blinky

The goal of this tutorial is to quickly get acquainted with the Flexible Platform by moving through the
steps of creating a simple application using e2 studio and running that application on an RA MCU
board.

2.3.2 What Does Blinky Do?

The application used in this tutorial is Blinky, traditionally the first program run in a new embedded
development environment.

Blinky is the "Hello World" of microcontrollers. If the LED blinks you know that:

The toolchain is setup correctly and builds a working executable image for your chip.
The debugger has installed with working drivers and is properly connected to the board.
The board is powered up and its jumper and switch settings are probably correct.
The microcontroller is alive, the clocks are running, and the memory is initialized.

The Blinky example application used in this tutorial is designed to run the same way on all boards
offered by Renesas that hold the RA microcontroller. The code in Blinky is completely board
independent. It does the work by calling into the BSP (board support package) for the particular
board it is running on. This works because:

Every board has at least one LED connected to a GPIO pin.
That one LED is always labeled LED1 on the silk screen.
Every BSP supports an API that returns a list of LEDs on a board, and their port and pin
assignments.

2.3.3 Prerequisites

To follow this tutorial, you need:

Windows based PC
e2 studio
Flexible Software Package
An RA MCU board kit

2.3.4 Create a New Project for Blinky

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 44 / 601

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Your First RA MCU Project - Blinky > Create a New Project for Blinky

The creation and configuration of an RA MCU project is the first step in the creation of an application.
The base RA MCU pack includes a pre-written Blinky example application that is simple and works on
all Renesas RA MCU boards.

Follow these steps to create an RA MCU project:

1. In e2 studio ISDE, click File > New > RA Project and select Renesas RA C Executable
Project.

2. Assign a name to this new project. Blinky is a good name to use for this tutorial.

3. Click Next. The Project Configuration window shows your selection.

Figure 56: e2 studio ISDE Project Configuration window (part 1)

4. Select the board support package by selecting the name of your board from the Device
Selection drop-down list and click Next.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 45 / 601

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Your First RA MCU Project - Blinky > Create a New Project for Blinky

Figure 57: e2 studio ISDE Project Configuration window (part 2)

5. Select the Blinky template for your board and click Finish.

Figure 58: e2 studio ISDE Project Configuration window (part 3)

 Once the project has been created, the name of the project will show up in the Project
Explorer window of the ISDE. Now click the Generate Project Content button in the top
right corner of the Project Configuration window to generate your board specific files.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 46 / 601

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Your First RA MCU Project - Blinky > Create a New Project for Blinky

Figure 59: e2 studio ISDE Project Configuration tab

 Your new project is now created, configured, and ready to build.

2.3.4.1 Details about the Blinky Configuration

The Generate Project Content button creates configuration header files, copies source files from
templates, and generally configures the project based on the state of the Project Configuration
screen.

For example, if you check a box next to a module in the Components tab and click the Generate
Project Content button, all the files necessary for the inclusion of that module into the project will
be copied or created. If that same check box is then unchecked those files will be deleted.

2.3.4.2 Configuring the Blinky Clocks

By selecting the Blinky template, the clocks are configured by the ISDE for the Blinky application.
The ISDE clock configuration tab (see Configuring Clocks) shows the Blinky clock configuration. The
Blinky clock configuration is stored in the BSP clock configuration file (see BSP Clock Configuration).

2.3.4.3 Configuring the Blinky Pins

By selecting the Blinky template, the GPIO pins used to toggle the LED1 are configured by the ISDE
for the Blinky application. The ISDE pin configuration tab shows the pin configuration for the Blinky
application (see Configuring Pins). The Blinky pin configuration is stored in the BSP configuration file
(see BSP Pin Configuration).

2.3.4.4 Configuring the Parameters for Blinky Components

The Blinky project automatically selects the following HAL components in the ISDE Component:

r_ioport

To see the configuration parameters for any of the components, check the Properties tab in the
HAL window for the respective driver (see Adding and Configuring HAL Drivers).

2.3.4.5 Where is main()?

The main function is located in < project >/ra_gen/main.c. It is one of the files that are generated
during the project creation stage and only contains a call to hal_entry(). For more information on
generated files, see Adding and Configuring HAL Drivers.

2.3.4.6 Blinky Example Code

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 47 / 601

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Your First RA MCU Project - Blinky > Create a New Project for Blinky > Blinky Example Code

The blinky application is stored in the hal_entry.c file. This file is generated by the ISDE when you
select the Blinky Project template and is located in the project's src/ folder.

The application performs the following steps:

1. Get the LED information for the selected board by bsp_leds_t structure.
2. Define the output level HIGH for the GPIO pins controlling the LEDs for the selected board.
3. Get the selected system clock speed and scale down the clock, so the LED toggling can be

observed.
4. Toggle the LED by writing to the GPIO pin with R_BSP_PinWrite((bsp_io_port_pin_t) pin,

pin_level);

2.3.5 Build the Blinky Project

Highlight the new project in the Project Explorer window by clicking on it and build it.

There are three ways to build a project:

a. Click on Project in the menu bar and select Build Project.

b. Click on the hammer icon.

c. Right-click on the project and select Build Project.

Figure 60: e2 studio ISDE Project Explorer window

 Once the build is complete a message is displayed in the build Console window that displays the
final image file name and section sizes in that image.

Figure 61: e2 studio ISDE Project Build console

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 48 / 601

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Your First RA MCU Project - Blinky > Debug the Blinky Project

2.3.6 Debug the Blinky Project
2.3.6.1 Debug prerequisites

To debug the project on a board, you need

The board to be connected to the ISDE
The debugger to be configured to talk to the board
The application to be programmed to the microcontroller

Applications run from the internal flash of your microcontroller. To run or debug the application, the
application must first be programmed to the microcontroller's flash. There are two ways to do this:

JTAG debugger
Built-in boot-loader via UART or USB

Some boards have an on-board JTAG debugger and others require an external JTAG debugger
connected to a header on the board.

Refer to your board's user manual to learn how to connect the JTAG debugger to your ISDE.

2.3.6.2 Debug steps

To debug the Blinky application, follow these steps:

1. Configure the debugger for your project by clicking Run > Debugger Configurations ...

Figure 62: e2 studio ISDE Debug icon

 or by selecting the drop-down menu next to the bug icon and selecting Debugger
Configurations ...

Figure 63: e2 studio ISDE Debugger Configurations selection option

2. Select your debugger configuration in the window. If it is not visible then it must be created

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 49 / 601

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Your First RA MCU Project - Blinky > Debug the Blinky Project > Debug steps

by clicking the New icon in the top left corner of the window. Once selected, the Debug
Configuration window displays the Debug configuration for your Blinky project.

Figure 64: e2 studio ISDE Debugger Configurations window with Blinky project

3. Click Debug to begin debugging the application.

4. Extracting RA Debug.

2.3.6.3 Details about the Debug Process

In debug mode, the ISDE executes the following tasks:

1. Downloading the application image to the microcontroller and programming the image to
the internal flash memory.

2. Setting a breakpoint at main().
3. Setting the stack pointer register to the stack.
4. Loading the program counter register with the address of the reset vector.
5. Displaying the startup code where the program counter points to.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 50 / 601

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Your First RA MCU Project - Blinky > Debug the Blinky Project > Details about the Debug Process

Figure 65: e2 studio ISDE Debugger memory window

2.3.7 Run the Blinky Project

While in Debug mode, click Run > Resume or click on the Play icon twice.

Figure 66: e2 studio ISDE Debugger Play icon

 The LEDs on the board marked LED1, LED2, and LED3 should now be blinking.

2.4 Tutorial: Using HAL Drivers - Programming the WDT
2.4.1 Application WDT

This application uses the WDT Interface implemented by the WDT HAL Driver WDT. This document
describes how to use the ISDE and FSP to create an application for the RA MCU Watchdog Timer
(WDT) peripheral. This application makes use of the following FSP modules:

MCU Board Support Package
Watchdog Timer (r_wdt)
I/O Ports (r_ioport)

2.4.2 Creating a WDT Application Using the RA MCU FSP and ISDE
2.4.2.1 Using the FSP and the e2 studio ISDE

The Flexible Software Package (FSP) from Renesas provides a complete driver library for developing
RA MCU applications. The FSP provides Hardware Abstraction Layer (HAL) drivers, Board Support
Package (BSP) drivers for the developer to use to create applications. The FSP is integrated into the
Renesas e2 studio Integrated Solution Development Environment (ISDE) based on eclipse providing
build (editor, compiler and linker) and debug phases with an extended GNU Debug (GDB) interface.

2.4.2.2 The WDT Application

The flowchart for the WDT application is shown below.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 51 / 601

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Creating a WDT Application Using the RA MCU FSP and ISDE > The WDT Application

Figure 67: WDT Application flow diagram

2.4.2.3 WDT Application flow

These are the main parts of the WDT application:

1. main() calls hal_entry(). The function hal_entry() is created by the FSP with a placeholder for
user code. The code for the WDT will be added to this function.

2. Initialize the WDT, but do not start it.
3. Start the WDT by refreshing it.
4. The red LED is flashed 30 times and refreshes the watchdog each time the LED state is

changed.
5. Flash the green LED but DO NOT refresh the watchdog. After the timeout period of the

watchdog the device will reset which can be observed by the flashing red LED again as the
sequence repeats.

2.4.3 Creating the Project with the ISDE

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 52 / 601

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Creating the Project with the ISDE

Start the ISDE and choose a workspace folder in the Workspace Launcher. Configure a new RA MCU
project as follows.

1. Select File > New > RA C/C++ Project. Then select the template for the project.

Figure 68: Creating a new project

2. In the ISDE Project Configuration (RA Project) window enter a project name, for
example, WDT_Application. In addition select the toolchain. If you want to choose new
locations for the project unselect Use default location. Click Next.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 53 / 601

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Creating the Project with the ISDE

Figure 69: Project configuration (part 1)

3. This application runs on the RA6M3 board. So, for the Board select EK-RA6M3.

This will automatically populate the Device drop-down with the correct device used on this
board. Select the Toolchain version. Select J-Link ARM as the Debugger. Click Next to
configure the project.

Figure 70: Project configuration (part 2)

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 54 / 601

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Creating the Project with the ISDE

 The project template is now selected. As no RTOS is required select Bare Metal - Blinky.

Figure 71: Project configuration (part 3)

4. Click Finish.

The ISDE creates the project and opens the Project Explorer and Project Configuration
Settings views with the Summary page showing a summary of the project configuration.

2.4.4 Configuring the Project with the ISDE

The e2 studio ISDE simplifies and accelerates the project configuration process by providing a GUI
interface for selecting the options to configure the project.

The ISDE offers a selection of perspectives presenting different windows to the user depending on
the operation in progress. The default perspectives are C/C++, RA Configuration and Debug. The
perspective can be changed by selecting a new one from the buttons at the top right of the ISDE.

Figure 72: Selecting a perspective

 The C/C++ perspective provides a layout selected for code editing. The RA Configuration
perspective provides elements for configuring a RA MCU project, and the Debug perspective
provides a view suited for debugging.

1. In order to configure the project settings ensure the RA Configuration perspective is
selected.

2. Ensure the Project Configuration [WDT Application] is open. It is already open if the
Summary information is visible. To open the Project Configuration now or at any time make
sure the RA Configuration perspective is selected and double-click on the
configuration.xml file in the Project Explorer pane on the right side of the ISDE.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 55 / 601

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Configuring the Project with the ISDE

Figure 73: RA MCU Project Configuration Settings

 At the base of the Project Configuration view there are several tabs for configuring the project. A
project may require changes to some or all of these tabs. The tabs are shown below.

Figure 74: Project Configuration Tabs

2.4.4.1 BSP Tab

The BSP tab allows the Board Support Package (BSP) options to be modified from their defaults. For
this particular WDT project no changes are required. However, if you want to use the WDT in auto-
start mode, you can configure the settings of the OFS0 (Option Function Select Register 0) register in
the BSP tab. See the RA Hardware User's Manual for details on the WDT autostart mode.

2.4.4.2 Clocks Tab

The Clocks tab presents a graphical view of the clock tree of the device. The drop-down boxes in the
GUI enables configuration of the various clocks. The WDT uses PCLCKB. The default output frequency
for this clock is 60 MHz. Ensure this clock is outputting this value.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 56 / 601

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Configuring the Project with the ISDE > Clocks Tab

Figure 75: Clock configuration

2.4.4.3 Pins Tab

The Pins tab provides a graphical tool for configuring the functionality of the pins of the device. For
the WDT project no pin configuration is required. Although the project uses two LEDs connected to
pins on the device, these pins are pre-configured as output GPIO pins by the BSP.

2.4.4.4 Stacks Tab

You can add any driver to the project using the Stacks tab. The HAL driver IO port pins are added
automatically by the ISDE when the project is configured. The WDT application uses no RTOS
Resources, so you only need to add the HAL WDT driver.

Figure 76: Stacks tab

1. Click on the HAL/Common Panel in the Threads Window as indicated in the figure above.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 57 / 601

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Configuring the Project with the ISDE > Stacks Tab

The Stacks Panel becomes a HAL/Common Stacks panel and is populated with the
modules preselected by the ISDE.

2. Click on New Stack to find a pop-up window with the available HAL level drivers.
3. Select WATCHDOG Driver on r_wdt.

Figure 77: Module Selection

 The selected HAL WDT driver is added to the HAL/Common Stacks Panel and the Property
Window shows all configuration options for the selected module. The Property tab for the WDT
should be visible at the bottom left of the screen. If it is not visible, check that the RA
Configuration perspective is selected.

Figure 78: Module Properties

 All parameters can be left with their default values.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 58 / 601

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Configuring the Project with the ISDE > Stacks Tab

Figure 79: g_wdt WATCHDOG Driver on WDT properties

 With PCLKB running at 60 MHz the WDT will reset the device 2.23 seconds after the last refresh.

WDT clock = 60 MHz / 8192 = 7.32 kHz

Cycle time = 1 / 7.324 kHz = 136.53 us

Timeout = 136.53 us x 16384 = 2.23 seconds

Save the Project Configuration file and click the Generate Project Content button in the top
right corner of the Project Configuration pane.

Figure 80: Generate Project Content button

 The ISDE generates the project files.

2.4.4.5 Components Tab

The components tab is included for reference to see which modules are included in the project.
Modules are selected automatically in the Components view after they are added in the Stacks Tab.

For the WDT project ensure that the following modules are selected:

1. HAL_Drivers -> r_ioport
2. HAL_Drivers -> r_wdt

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 59 / 601

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Configuring the Project with the ISDE > Components Tab

Figure 81: Component Selection

Note
The list of modules displayed in the Components tab depends on the installed FSP version.

2.4.5 WDT Generated Project Files

Clicking the Generate Project Content button performs the following tasks.

r_wdt folder and WDT driver contents created at:

ra/fsp/src

r_wdt_api.h created in:

ra/fsp/inc/api

r_wdt.h created in:

ra/fsp/inc/instance

The above files are the standard files for the WDT HAL module. They contain no specific project
contents. They are the driver files for the WDT. Further information on the contents of these files can
be found in the documentation for the WDT HAL module.

Configuration information for the WDT HAL module in the WDT project is found in:

ra_cfg/fsp_cfg/r_wdt_cfg.h

The above file's contents are based upon the Common settings in the g_wdt WATCHDOG Driver
on WDT Properties pane.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 60 / 601

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > WDT Generated Project Files

Figure 82: r_wdt_cfg.h contents

Warning
Do not edit any of these files as they are recreated every time the Generate Project Content
button is clicked and so any changes will be overwritten.

The r_ioport folder is not created at ra/fsp/src as this module is required by the BSP and so already
exists. It is included in the WDT project in order to include the correct header file in
ra_gen/hal_data.c–see later in this document for further details. For the same reason the other
IOPORT header files– ra/fsp/inc/api/r_ioport_api.handra/fsp/inc/instances/r_ioport.h–are not created as
they already exist.

In addition to generating the HAL driver files for the WDT and IOPORT files the ISDE also generates
files containing configuration data for the WDT and a file where user code can safely be added.
These files are shown below.

Figure 83: WDT project files

2.4.5.1 WDT hal_data.h

The contents of hal_data.h are shown below.

/* generated HAL header file - do not edit */

#ifndef HAL_DATA_H_

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 61 / 601

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > WDT Generated Project Files > WDT hal_data.h

 #define HAL_DATA_H_

 #include <stdint.h>

 #include "bsp_api.h"

 #include "common_data.h"

 #include "r_wdt.h"

 #include "r_wdt_api.h"

 #ifdef __cplusplus

extern "C"

{

 #endif

extern const wdt_instance_t g_wdt0;

 #ifndef NULL

void NULL(wdt_callback_args_t * p_args);

 #endif

extern wdt_instance_ctrl_t g_wdt0_ctrl;

extern const wdt_cfg_t g_wdt0_cfg;

void hal_entry(void);

void g_hal_init(void);

 #ifdef __cplusplus

} /* extern "C" */

 #endif

#endif /* HAL_DATA_H_ */

 hal_data.h contains the header files required by the ISDE generated project. In addition this file
includes external references to the g_wdt instance structure which contains pointers to the
configuration, control, api structures used for WDT HAL driver.

Warning
This file is regenerated each time Generate Project Content is clicked and must not be
edited.

2.4.5.2 WDT hal_data.c

The contents of hal_data.c are shown below.

/* generated HAL source file - do not edit */

#include "hal_data.h"

wdt_instance_ctrl_t g_wdt0_ctrl;

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 62 / 601

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > WDT Generated Project Files > WDT hal_data.c

const wdt_cfg_t g_wdt0_cfg =

{

 .timeout = WDT_TIMEOUT_16384,

 .clock_division = WDT_CLOCK_DIVISION_8192,

 .window_start = WDT_WINDOW_START_100,

 .window_end = WDT_WINDOW_END_0,

 .reset_control = WDT_RESET_CONTROL_RESET,

 .stop_control = WDT_STOP_CONTROL_ENABLE,

 .p_callback = NULL,

};

/* Instance structure to use this module. */

const wdt_instance_t g_wdt0 =

{.p_ctrl = &g_wdt0_ctrl, .p_cfg = &g_wdt0_cfg, .p_api = &g_wdt_on_wdt};

void g_hal_init (void)

{

 g_common_init();

}

 hal_data.c contains g_wdt_ctrl which is the control structure for this instance of the WDT HAL driver.
This structure should not be initialized as this is done by the driver when it is opened.

The contents of g_wdt_cfg are populated in this file using the g_wdt WATCHDOG Driver on WDT
Properties pane in the ISDE Project Configuration HAL tab. If the contents of this structure do
not reflect the settings made in the ISDE, ensure the Project Configuration settings are saved in
the ISDE before clicking the Generate Project Content button.

Warning
This file is regenerated each time Generate Project Content is clicked and so should not be
edited.

2.4.5.3 WDT main.c

Contains main() called by the BSP start-up code. main() calls hal_entry() which contains user
developed code (see next file). Here are the contents of main.c.

/* generated main source file - do not edit*/

#include "hal_data.h"

int main (void)

{

 hal_entry();

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 63 / 601

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > WDT Generated Project Files > WDT main.c

 return 0;

}

Warning
This file is regenerated each time Generate Project Content is clicked and so should not be
edited.

2.4.5.4 WDT hal_entry.c

This file contains the function hal_entry() called from main(). User developed code should be placed
in this file and function.

For the WDT project edit the contents of this file to contain the code below. This code implements
the flowchart in overview section of this document.

#include "hal_data.h"

#include "bsp_pin_cfg.h"

#include "r_ioport.h"

#define RED_LED_NO_OF_FLASHES 30

#define RED_LED_PIN BSP_IO_PORT_01_PIN_00

#define GREEN_LED_PIN BSP_IO_PORT_04_PIN_00

#define RED_LED_DELAY_COUNT 1500000

#define GRN_LED_DELAY_COUNT 1200000

volatile uint32_t delay_counter;

volatile uint16_t loop_counter;

void R_BSP_WarmStart(bsp_warm_start_event_t event);

/* global variable to access board LEDs */

extern bsp_leds_t g_bsp_leds;

/**

*******************************/

void hal_entry (void) {

 /* Open the WDT */

 R_WDT_Open(&g_wdt0_ctrl, &g_wdt0_cfg);

 /* Start the WDT by refreshing it */

 R_WDT_Refresh(&g_wdt0_ctrl);

 /* Flash the red LED and tickle the WDT for a few seconds */

 for (loop_counter = 0; loop_counter < RED_LED_NO_OF_FLASHES; loop_counter++)

 {

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 64 / 601

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > WDT Generated Project Files > WDT hal_entry.c

 /* Turn red LED on */

 R_IOPORT_PinWrite(&g_ioport_ctrl, RED_LED_PIN, BSP_IO_LEVEL_LOW);

 /* Delay */

 for (delay_counter = 0; delay_counter < RED_LED_DELAY_COUNT; delay_counter++)

 {

 /* Do nothing. */

 }

 /* Refresh WDT */

 R_WDT_Refresh(&g_wdt0_ctrl);

 R_IOPORT_PinWrite(&g_ioport_ctrl, RED_LED_PIN, BSP_IO_LEVEL_HIGH);

 /* Delay */

 for (delay_counter = 0; delay_counter < RED_LED_DELAY_COUNT; delay_counter++)

 {

 /* Do nothing. */

 }

 /* Refresh WDT */

 R_WDT_Refresh(&g_wdt0_ctrl);

 }

 /* Flash green LED but STOP tickling the WDT. WDT should reset the

 * device */

 while (1)

 {

 /* Turn green LED on */

 R_IOPORT_PinWrite(&g_ioport_ctrl, GREEN_LED_PIN, BSP_IO_LEVEL_LOW);

 /* Delay */

 for (delay_counter = 0; delay_counter < GRN_LED_DELAY_COUNT; delay_counter++)

 {

 /* Do nothing. */

 }

 /* Turn green off */

 R_IOPORT_PinWrite(&g_ioport_ctrl, GREEN_LED_PIN, BSP_IO_LEVEL_HIGH);

 /* Delay */

 for (delay_counter = 0; delay_counter < GRN_LED_DELAY_COUNT; delay_counter++)

 {

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 65 / 601

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > WDT Generated Project Files > WDT hal_entry.c

 /* Do nothing. */

 }

 }

}

/**

*******************************/

void R_BSP_WarmStart (bsp_warm_start_event_t event)

{

 if (BSP_WARM_START_POST_C == event)

 {

 /* C runtime environment and system clocks are setup. */

 /* Configure pins. */

 R_IOPORT_Open(&g_ioport_ctrl, &g_bsp_pin_cfg);

 }

}

 The WDT HAL driver is called through the interface g_wdt_on_wdt defined in r_wdt.h. The WDT
HAL driver is opened through the open API call using the instance defined in r_wdt_api.h:

 /* Open the WDT */

 R_WDT_Open(&g_wdt0_ctrl, &g_wdt0_cfg);

 The first passed parameter is the pointer to the control structure g_wdt_ctrl instantiated
inhal_data.c. The second parameter is the pointer to the configuration data g_wdt_cfg instantiated in
the same hal_data.c file.

The WDT is started and refreshed through the API call:

 /* Start the WDT by refreshing it */

 R_WDT_Refresh(&g_wdt0_ctrl);

 Again the first (and only in this case) parameter passed to this API is the pointer to the control
structure of this instance of the driver.

2.4.6 Building and Testing the Project

Build the project in the ISDE Build > Build Project. The project should build without errors.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 66 / 601

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Building and Testing the Project

To debug the project

1. Connect the JLink debugger between the target board and host PC. Apply power to the
board.

2. In the Project Explorer pane on the right side of the ISDE right-click on the WDT project
WDT_Application and select Debug As > Debug Configurations.

3. Under Renesas GDB Hardware Debugging select WDT_Application Debug as shown
below.

Figure 84: Debug configuration

4. Click the Debug button. Click Yes to the debug perspective if asked.

5. The code should run the Reset_Handler() function.
6. Resume execution via Run > Resume. Execution will stop in main() at the call to

hal_entry().
7. Resume execution again.

The red LED should start flashing. After 30 flashes the green LED will start flashing and the red LED
will stop flashing.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 67 / 601

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Building and Testing the Project

While the green LED is flashing the WDT will underflow and reset the device resulting in the red LED
to flash again as the sequence repeats. However, this sequence does not occur when using the
debugger because the WDT does not run when connected to the debugger.

1. Stop the debugger in the ISDE via Run > Terminate.
2. Click the reset button on the target board. The LEDs begin flashing.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 68 / 601

Flexible Software Package

User’s Manual
FSP Architecture

Chapter 3 FSP Architecture

3.1 FSP Architecture Overview
This guide describes the Renesas Flexible Software Package (FSP) architecture and how to use the
FSP Application Programming Interface (API).

3.1.1 C99 Use

The FSP uses the ISO/IEC 9899:1999 (C99) C programming language standard. Specific features
introduced in C99 that are used include standard integer types (stdint.h), booleans (stdbool.h),
designated initializers, and the ability to intermingle declarations and code.

3.1.2 Doxygen

Doxygen is the default documentation tool used by FSP. You can find Doxygen comments throughout
the FSP source.

3.1.3 Weak Symbols

Weak symbols are used occasionally in the FSP. They are used to ensure that a project builds even
when the user has not defined an optional function.

3.1.4 Memory Allocation

Dynamic memory allocation through use of the malloc() and free() functions are not used in FSP
modules; all memory required by FSP modules is allocated in the application and passed to the
module in a pointer. Exceptions are considered only for ports of 3rd party code that require dynamic
memory.

3.1.5 FSP Terms

Term Description Reference

BSP Short for Board Support
Package. In the FSP the BSP
provides just enough
foundation to allow other FSP
modules to work together
without issue.

MCU Board Support Package

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 69 / 601

Flexible Software Package

User’s Manual
FSP Architecture > FSP Architecture Overview > FSP Terms

Module Modules can be peripheral
drivers, purely software, or
anything in between. Each
module consists of a folder with
source code, documentation,
and anything else that the
customer needs to use the code
effectively. Modules are
independent units, but they
may depend on other modules.
Applications can be built by
combining multiple modules to
provide the user with the
features they need.

FSP Modules

Driver A driver is a specific kind of
module that directly modifies
registers on the MCU.

-

Interface An interface contains API
definitions that can be shared
by modules with similar
features. Interfaces are
definitions only and do not add
to code size.

FSP Interfaces

Stacks The FSP architecture is
designed such that modules
work together to form a stack.
A stack consists of a top level
module and all its
dependencies.

FSP Stacks

Module Instance Single and independent
instantiation of a module. An
application may require two
GPT timers. Each of these
timers is a module instance of
the r_gpt module.

-

Application Code that is owned and
maintained by the user.
Application code may be based
on sample application code
provided by Renesas, but it is
the responsibility of the user to
maintain as necessary.

-

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 70 / 601

Flexible Software Package

User’s Manual
FSP Architecture > FSP Architecture Overview > FSP Terms

Callback Function This term refers to a function
that is called when an event
occurs. As an example, suppose
the user would like to be
notified every second based on
the RTC. As part of the RTC
configuration, a callback
function can be supplied that
will be jumped to during each
RTC interrupt. When a single
callback services multiple
events, the arguments contain
the triggering event. Callback
functions for interrupts should
be kept short and handled
carefully because when they
are called the MCU is still inside
of an interrupt, delaying any
pending interrupts.

-

3.2 FSP Modules
Modules are the core building block of FSP. Modules can do many different things, but all modules
share the basic concept of providing functionality upwards and requiring functionality from below.

Figure 85: Modules

 The amount of functionality provided by a module is determined based on functional use cases.
Common functionality required by multiple modules is often placed into a self-contained submodule
so it can be reused. Code size, speed and complexity are also considered when defining a module.

The simplest FSP application consists of one module with the Board Support Package (BSP) and the
user application on top.

Figure 86: Module with application

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 71 / 601

Flexible Software Package

User’s Manual
FSP Architecture > FSP Modules

 The Board Support Package (BSP) is the foundation for FSP modules, providing functionality to
determine the MCU used as well as configuring clocks, interrupts and pins. For the sake of clarity,
the BSP will be omitted from further diagrams.

3.3 FSP Stacks
When modules are layered atop one another, an FSP stack is formed. The stacking process is
performed by matching what one module provides with what another module requires. For example,
the SPI module (Serial Peripheral Interface (r_spi)) requires a module that provides the transfer
interface (Transfer Interface) to send or receive data without a CPU interrupt. The transfer interface
requirement can be fulfilled by the DTC driver module (Data Transfer Controller (r_dtc)).

Through this methodology the same code can be shared by several modules simultaneously. The
example below illustrates how the same DTC module can be used with SPI (Serial Peripheral
Interface (r_spi)), UART (Serial Communications Interface (SCI) UART (r_sci_uart)) and SDHI (SD/MMC
Host Interface (r_sdhi)).

Figure 87: Stacks -- Shared DTC Module

 The ability to stack modules ensures the flexibility of the architecture as a whole. If multiple
modules include the same functionality issues arise when application features must work across
different user designs. To ensure that modules are reusable, any dependent modules must be
capable of being swapped out for other modules that provide the same features. The FSP
architecture provides this flexibility to swap modules in and out through the use of FSP interfaces.

3.4 FSP Interfaces
At the architecture level, interfaces are the way that modules provide common features. This
commonality allows modules that adhere to the same interface to be used interchangeably.
Interfaces can be thought of as a contract between two modules - the modules agree to work
together using the information that was established in the contract.

On RA hardware there is occasionally an overlap of features between different peripherals. For
example, I2C communications can be achieved through use of the IIC peripheral or the SCI
peripheral. However, there is a difference in the level of features provided by both peripherals; in I2C
mode the SCI peripheral will only support a subset of the capabilities of the fully-featured IIC.

Interfaces aim to provide support for the common features that most users would expect. This
means that some of the advanced features of a peripheral (such as IIC) might not be available in the
interface. In most cases these features are still available through interface extensions.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 72 / 601

Flexible Software Package

User’s Manual
FSP Architecture > FSP Interfaces

In FSP design, interfaces are defined in header files. All interface header files are located in the folder
ra/fsp/inc/api and end with *_api.h. Interface extensions are defined in header files in the folder
ra/fsp/inc/instances. The following sections detail what makes up an interface.

3.4.1 FSP Interface Enumerations

Whenever possible, interfaces use typed enumerations for function parameters and structure
members.

typedef enum e_i2c_master_addr_mode

{

 I2C_MASTER_ADDR_MODE_7BIT = 1, ///< Use 7-bit addressing mode

 I2C_MASTER_ADDR_MODE_10BIT = 2, ///< Use 10-bit addressing mode

} i2c_master_addr_mode_t;

Enumerations remove uncertainty when deciding what values are available for a parameter. FSP
enumeration options follow a strict naming convention where the name of the type is prefixed on the
available options. Combining the naming convention with the autocomplete feature available in e2

studio (Ctrl + Space) provides the benefits of rapid coding while maintaining high readability.

3.4.2 FSP Interface Callback Functions

Callback functions allow modules to asynchronously alert the user application when an event has
occurred, such as when a byte has been received over a UART channel or an IRQ pin is toggled. FSP
driver modules define and handle the interrupt service routines for RA MCU peripherals to ensure
any required hardware procedures are implemented. The interrupt service routines in FSP modules
then call the user-defined callbacks to allow the application to respond.

Callback functions must be defined in the user application. They always return void and take a
structure for their one parameter. The structure is defined in the interface for the module and is
named <interface>_callback_args_t. The contents of the structure may vary depending on the
interface, but two members are common: event and p_context.

The event member is an enumeration defined in the interface used by the application to determine
why the callback was called. Using the UART example, the callback could be triggered for many
different reasons, including when a byte is received, all bytes have been transmitted, or a framing
error has occurred. The event member allows the application to determine which of these three
events has occurred and handle it appropriately.

The p_context member is used for providing user-specified data to the callback function. In many
cases a callback function is shared between multiple channels or module instances; when the
callback occurs, the code handling the callback needs context information so that it can determine
which module instance the callback is for. For example, if the callback wanted to make a FSP API call
in the callback, then at a minimum the callback will need a reference to the relevant control
structure. To make this easy, the user can provide a pointer to the control structure as the
p_context. When the callback occurs, the control structure is passed in the p_context element of the
callback structure.

Callback functions are called from within an interrupt service routine. For this reason callback
functions should be kept as short as possible so they do not affect the real time performance of the

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 73 / 601

Flexible Software Package

User’s Manual
FSP Architecture > FSP Interfaces > FSP Interface Callback Functions

user's system. An example skeleton function for the flash interface callback is shown below.

void flash_callback (flash_callback_args_t * p_args)

{

 /* See what event caused this callback. */

 switch (p_args->event)

 {

 case FLASH_EVENT_ERASE_COMPLETE:

 {

 /* Handle event. */

 break;

 }

 case FLASH_EVENT_WRITE_COMPLETE:

 {

 /* Handle event. */

 break;

 }

 case FLASH_EVENT_BLANK:

 {

 /* Handle event. */

 break;

 }

 case FLASH_EVENT_NOT_BLANK:

 {

 /* Handle event. */

 break;

 }

 case FLASH_EVENT_ERR_DF_ACCESS:

 {

 /* Handle error. */

 break;

 }

 case FLASH_EVENT_ERR_CF_ACCESS:

 {

 /* Handle error. */

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 74 / 601

Flexible Software Package

User’s Manual
FSP Architecture > FSP Interfaces > FSP Interface Callback Functions

 break;

 }

 case FLASH_EVENT_ERR_CMD_LOCKED:

 {

 /* Handle error. */

 break;

 }

 case FLASH_EVENT_ERR_FAILURE:

 {

 /* Handle error. */

 break;

 }

 case FLASH_EVENT_ERR_ONE_BIT:

 {

 /* Handle error. */

 break;

 }

 }

}

 When a module is not directly used in the user application (that is, it is not the top layer of the
stack), its callback function will be handled by the module above. For example, if a module requires
a UART interface module the upper layer module will control and use the UART's callback function. In
this case the user would not need to create a callback function for the UART module in their
application code.

3.4.3 FSP Interface Data Structures

At a minimum, all FSP interfaces include three data structures: a configuration structure, an API
structure, and an instance structure.

3.4.3.1 FSP Interface Configuration Structure

The configuration structure is used for the initial configuration of a module during the
<MODULE>_Open() call. The structure consists of members such as channel number, bitrate, and
operating mode.

The configuration structure is used purely as an input into the module. It may be stored and
referenced by the module, so the configuration structure and anything it references must persist as
long as the module is open.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 75 / 601

Flexible Software Package

User’s Manual
FSP Architecture > FSP Interfaces > FSP Interface Data Structures > FSP Interface Configuration Structure

The configuration structure is allocated for each module instance in files generated by the RA
configuration tool.

When FSP stacks are used, it is also important to understand that configuration structures only have
members that apply to the current interface. If multiple layers in the same stack define the same
configuration parameters then it becomes difficult to know where to modify the option. For example,
the baud rate for a UART is only defined in the UART module instance. Any modules that use the
UART interface rely on the baud rate being provided in the UART module instance and do not offer it
in their own configuration structures.

3.4.3.2 FSP Interface API Structure

All interfaces include an API structure which contains function pointers for all the supported interface
functions. An example structure for the Digital to Analog Converter (r_dac) is shown below.

typedef struct st_dac_api

{

 /** Initial configuration.

 * @par Implemented as

 * - R_DAC_Open()

 * - R_DAC8_Open()

 *

 * @param[in] p_ctrl Pointer to control block. Must be declared by user. Elements

set here.

 * @param[in] p_cfg Pointer to configuration structure. All elements of this

structure must be set by user.

 */

 fsp_err_t (* open)(dac_ctrl_t * p_ctrl, dac_cfg_t const * const p_cfg);

 /** Close the D/A Converter.

 * @par Implemented as

 * - R_DAC_Close()

 * - R_DAC8_Close()

 *

 * @param[in] p_ctrl Control block set in dac_api_t::open call for this timer.

 */

 fsp_err_t (* close)(dac_ctrl_t * p_ctrl);

 /** Write sample value to the D/A Converter.

 * @par Implemented as

 * - R_DAC_Write()

 * - R_DAC8_Write()

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 76 / 601

Flexible Software Package

User’s Manual
FSP Architecture > FSP Interfaces > FSP Interface Data Structures > FSP Interface API Structure

 *

 * @param[in] p_ctrl Control block set in dac_api_t::open call for this timer.

 * @param[in] value Sample value to be written to the D/A Converter.

 */

 fsp_err_t (* write)(dac_ctrl_t * p_ctrl, uint16_t value);

 /** Start the D/A Converter if it has not been started yet.

 * @par Implemented as

 * - R_DAC_Start()

 * - R_DAC8_Start()

 *

 * @param[in] p_ctrl Control block set in dac_api_t::open call for this timer.

 */

 fsp_err_t (* start)(dac_ctrl_t * p_ctrl);

 /** Stop the D/A Converter if the converter is running.

 * @par Implemented as

 * - R_DAC_Stop()

 * - R_DAC8_Stop()

 *

 * @param[in] p_ctrl Control block set in dac_api_t::open call for this timer.

 */

 fsp_err_t (* stop)(dac_ctrl_t * p_ctrl);

 /** Get version and store it in provided pointer p_version.

 * @par Implemented as

 * - R_DAC_VersionGet()

 * - R_DAC8_VersionGet()

 *

 * @param[out] p_version Code and API version used.

 */

 fsp_err_t (* versionGet)(fsp_version_t * p_version);

 /** Get information about DAC Resolution and store it in provided pointer p_info.

 * @par Implemented as

 * - R_DAC_InfoGet()

 * - R_DAC8_InfoGet()

 *

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 77 / 601

Flexible Software Package

User’s Manual
FSP Architecture > FSP Interfaces > FSP Interface Data Structures > FSP Interface API Structure

 * @param[out] p_info Collection of information for this DAC.

 */

 fsp_err_t (* infoGet)(dac_info_t * const p_info);

} dac_api_t;

The API structure is what allows for modules to easily be swapped in and out for other modules that
are instances of the same interface. Let's look at an example application using the DAC interface
above.

RA MCUs have an internal DAC peripheral. If the DAC API structure in the DAC interface is not used
the application can make calls directly into the module. In the example below the application is
making calls to the R_DAC_Write() function which is provided in the r_dac module.

Figure 88: DAC Write example

 Now let's assume that the user needs more DAC channels than are available on the MCU and
decides to add an external DAC module named dac_external using I2C for communications. The
application must now distinguish between the two modules, adding complexity and further
dependencies to the application.

Figure 89: DAC Write with two write modules

 The use of interfaces and the API structure allows for the use of an abstracted DAC. This means that
no extra logic is needed if the user's dac_external module implements the FSP DAC interface, so the
application no longer depends upon hard-coded module function names. Instead the application now
depends on the DAC interface API which can be implemented by any number of modules.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 78 / 601

Flexible Software Package

User’s Manual
FSP Architecture > FSP Interfaces > FSP Interface Data Structures > FSP Interface API Structure

Figure 90: DAC Interface

3.4.3.3 FSP Interface Instance Structure

Every FSP interface also has an instance structure. The instance structure encapsulates everything
required to use the module:

A pointer to the instance API structure (FSP Instance API)
A pointer to the configuration structure
A pointer to the control structure

The instance structure is not required at the application layer. It is used to connect modules to their
dependencies (other than the BSP).

Instance structures have a standardized name of <interface>_instance_t. An example from the
Transfer Interface is shown below.

typedef struct st_transfer_instance

{

 transfer_ctrl_t * p_ctrl; ///< Pointer to the control structure for this

instance

 transfer_cfg_t const * p_cfg; ///< Pointer to the configuration structure

for this instance

 transfer_api_t const * p_api; ///< Pointer to the API structure for this

instance

} transfer_instance_t;

Note that when an instance structure variable is declared, the API is the only thing that is instance
specific, not module instance specific. This is because all module instances of the same module
share the same underlying module source code. If SPI is being used on SCI channels 0 and 2 then
both module instances use the same API while the configuration and control structures are typically
different.

3.5 FSP Instances
While interfaces dictate the features that are provided, instances actually implement those features.
Each instance is tied to a specific interface. Instances use the enumerations, data structures, and API

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 79 / 601

Flexible Software Package

User’s Manual
FSP Architecture > FSP Instances

prototypes from the interface. This allows an application that uses an interface to swap out the
instance when needed.

On RA MCUs some peripherals are used to implement multiple interfaces. In the example below the
IIC and SPI peripherals map to only one interface each while the SCI peripheral implements three
interfaces.

Figure 91: Instances

 In FSP design, instances consist of the interface extension and API defined in the instance header
file located in the folder ra/fsp/inc/instances and the module source ra/fsp/src/<module>.

3.5.1 FSP Instance Control Structure

The control structure is used as a unique identifier for the module instance and contains memory
required by the module. Elements in the control structure are owned by the module and must not be
modified by the application. The user allocates storage for a control structure, often as a global
variable, then sends a pointer to it into the <MODULE>_Open() call for a module. At this point, the
module initializes the structure as needed. The user must then send in a pointer to the control
structure for all subsequent module calls.

3.5.2 FSP Interface Extensions

In some cases, instances require more information than is provided in the interface. This situation
can occur in the following cases:

An instance offers extra features that are not common to most instances of the interface.
An example of this is the start source selection of the GPT (General PWM Timer (r_gpt)). The
GPT can be configured to start based on hardware events such as a falling edge on a trigger
pin. This feature is not common to all timers, so it is included in the GPT instance.
An interface must be very generic out of necessity. As an interface becomes more generic,
the number of possible instances increases. An example of an interface that must be
generic is a block media interface that abstracts functions required by a file system.
Possible instances include SD card, SPI Flash, SDRAM, USB, and many more.

The p_extend member provides this extension function.

Use of interface extensions is not always necessary. Some instances do not offer an extension since
all functionality is provided in the interface. In these cases the p_extend member can be set to NULL.
The documentation for each instance indicates whether an interface extension is available and
whether it is mandatory or optional.

3.5.2.1 FSP Extended Configuration Structure

When extended configuration is required it can be supplied through the p_extend parameter of the
interface configuration structure.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 80 / 601

Flexible Software Package

User’s Manual
FSP Architecture > FSP Instances > FSP Interface Extensions > FSP Extended Configuration Structure

The extended configuration structure is part of the instance, but it is also still considered to be part
of the configuration structure. All usage notes about the configuration structure described in FSP
Interface Configuration Structure apply to the extended configuration structure as well.

The extended configuration structure and all typed structures and enumerations required to define it
make up the interface extension.

3.5.3 FSP Instance API

Each instance includes a constant global variable tying the interface API functions to the functions
provided by the module. The name of this structure is standardized as
g_<interface>_on_<instance>. Examples include g_spi_on_spi, g_transfer_on_dtc, and
g_adc_on_adc. This structure is available to be used through an extern in the instance header file
(r_spi.h, r_dtc.h, and r_adc.h respectively).

3.6 FSP API Standards
3.6.1 FSP Function Names

FSP functions start with the uppercase module name (<MODULE>). All modules have
<MODULE>_Open() and <MODULE>_Close() functions. The <MODULE>_Open() function must be
called before any of the other functions. The only exception is the <MODULE>_VersionGet() function
which is not dependent upon any user provided information.

Other functions that will commonly be found are <MODULE>_Read(), <MODULE>_Write(),
<MODULE>_InfoGet(), and <MODULE>_StatusGet(). The <MODULE>_StatusGet() function provides
a status that could change asynchronously, while <MODULE>_InfoGet() provides information that
cannot change after open or can only be updated by API calls. Example function names include:

R_SPI_Read(), R_SPI_Write(), R_SPI_WriteRead()
R_SDHI_StatusGet()
R_RTC_CalendarAlarmSet(), R_RTC_CalendarAlarmGet()
R_FLASH_HP_AccessWindowSet(), R_FLASH_HP_AccessWindowClear()

3.6.2 Use of const in API parameters

The const qualifier is used with API parameters whenever possible. An example case is shown below.

fsp_err_t R_FLASH_HP_Open(flash_ctrl_t * const p_api_ctrl, flash_cfg_t const * const

p_cfg);

In this example, flash_cfg_t is a structure of configuration parameters for the r_flash_hp module. The
parameter p_cfg is a pointer to this structure. The first const qualifier on p_cfg ensures the
flash_cfg_t structure cannot be modified by R_FLASH_HP_Open(). This allows the structure to be
allocated as a const variable and stored in ROM instead of RAM.

The const qualifier after the pointer star for both p_ctrl and p_cfg ensures the FSP function does not
modify the input pointer addresses. While not fool-proof by any means this does provide some extra
checking inside the FSP code to ensure that arguments that should not be altered are treated as
such.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 81 / 601

Flexible Software Package

User’s Manual
FSP Architecture > FSP API Standards > FSP Version Information

3.6.3 FSP Version Information

All instances supply a <MODULE>_VersionGet() function which fills in a structure of type
fsp_version_t. This structure is made up of two version numbers: one for the interface (the API) and
one for the underlying instance that is currently being used.

typedef union st_fsp_version

{

 /** Version id */

 uint32_t version_id;

 /** Code version parameters */

 struct

 {

 uint8_t code_version_minor; ///< Code minor version

 uint8_t code_version_major; ///< Code major version

 uint8_t api_version_minor; ///< API minor version

 uint8_t api_version_major; ///< API major version

 };

} fsp_version_t;

The API version ideally never changes, and only rarely if it does. A change to the API may require
users to go back and modify their code. The code version (the version of the current instance) may
be updated more frequently due to bug fixes, enhancements, and additional features. Changes to
the code version typically do not require changes to user code.

3.7 FSP Build Time Configurations
All modules have a build-time configuration header file. Most configuration options are supplied at
run time, though options that are rarely used or apply to all instances of a module may be moved to
build time. The advantage of using a build-time configuration option is to potentially reduce code
size reduction by removing an unused feature.

All modules have a build time option to enable or disable parameter checking for the module. FSP
modules check function arguments for validity when possible, though this feature is disabled by
default to reduce code size. Enabling it can help catch parameter errors during development and
debugging. By default, each module's parameter checking configuration inherits the BSP parameter
checking setting (set on the BSP tab of the RA configuration tool). Leaving each module's parameter
checking configuration set to Default (BSP) allows parameter checking to be enabled or disabled
globally in all FSP code through the parameter checking setting on the BSP tab.

If an error condition can reasonably be avoided it is only checked in a section of code that can be
disabled by disabling parameter checking. Most Flex APIs can only return FSP_SUCCESS if parameter
checking is disabled. An example of an error that cannot be reasonably avoided is the "bus busy"
error that occurs when another master is using an I2C bus. This type of error can be returned even if

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 82 / 601

Flexible Software Package

User’s Manual
FSP Architecture > FSP Build Time Configurations

parameter checking is disabled.

3.8 FSP File Structure
The high-level file structure of an FSP project is shown below.

ra_gen

ra

+---fsp

 +---inc

 | +---api

 | \---instances

 \---src

 +---bsp

 \---r_module

ra_cfg

+---fsp_cfg

 +---bsp

 +---driver

Directly underneath the base ra folder the folders are split into the source and include folders.
Include folders are kept separate from the source for easy browsing and easy setup of include paths.

The ra_gen folder contains code generated by the RA configuration tool. This includes global
variables for the control structure and configuration structure for each module.

The ra_cfg folder is where configuration header files are stored for each module. See FSP Build Time
Configurations for information on what is provided in these header files.

3.9 FSP Architecture in Practice
3.9.1 FSP Connecting Layers

FSP modules are meant to be both reusable and stackable. It is important to remember that modules
are not dependent upon other modules, but upon other interfaces. The user is then free to fulfill the
interface using the instance that best fits their needs.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 83 / 601

Flexible Software Package

User’s Manual
FSP Architecture > FSP Architecture in Practice > FSP Connecting Layers

Figure 92: Connecting layers

 In the image above interface Y is a dependency of interface X and has its own dependency on
interface Z. Interface X only has a dependency on interface Y. Interface X has no knowledge of
interface Z. This is a requirement for ensuring that layers can easily be swapped out.

3.9.2 Using FSP Modules in an Application

The typical use of an FSP module involves generating required module data then using the API in the
application.

3.9.2.1 Create a Module Instance in the RA Configuration Tool

The RA configuration tool in the Renesas e2 studio IDE provides a graphical user interface for setting
the parameters of the interface and instance configuration structures. e2 studio also automatically
includes those structures (once they are configured in the GUI) in application-specific header files
that can be included in application code.

The RA configuration tool allocates storage for the control structures, all required configuration
structures, and the instance structure in generated files in the ra_gen folder. Use the e2 studio
Properties view to set the values for the members of the configuration structures as needed. Refer
to the Configuration section of the module usage notes for documentation about the configuration
options.

If the interface has a callback function option then the application must declare and define the
function. The return value is always of type void and the parameter to the function is a typed
structure of name <interface>_callback_args_t. Once the function has been defined, assign its name
to the p_callback member of the configuration structure. Callback function names can be assigned
through the e2 studio Properties window for the selected module.

3.9.2.2 Use the Instance API in the Application

Call the module's <MODULE>_Open() function. Pass pointers to the generated control structure and
configuration structure. The names of these structures are based on the 'Name' field provided in the
RA configuration tool. The control structure is <Name>_ctrl and the configuration structure is
<Name>_cfg. An example <MODULE>_Open() call for an r_rtc module instance named g_clock is:

 R_RTC_Open(&g_clock_ctrl, &g_clock_cfg);

Note
Each layer in the FSP Stack is responsible for calling the API functions of its dependencies. This means that users

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 84 / 601

Flexible Software Package

User’s Manual
FSP Architecture > FSP Architecture in Practice > Using FSP Modules in an Application > Use the Instance API in the Application

are only responsible for calling the API functions at the layer at which they are interfacing. Using the example
above of a SPI module with a DTC dependency, the application uses only SPI APIs. The application starts by
calling R_SPI_Open(). Internally, the SPI module opens the DTC. It locates R_DTC_Open() by accessing the
dependent transfer interface function pointers from the pointers DTC instances (spi_cfg_t::p_transfer_tx and
spi_cfg_t::p_transfer_rx) to open the DTC.

Refer to the module usage notes for example code to help get started with any particular module.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 85 / 601

Flexible Software Package

User’s Manual
API Reference

Chapter 4 API Reference
This section includes the FSP API Reference for the Module and Interface level functions.

 ▼BSP Common code shared by FSP drivers

 Common Error Codes

 ▼MCU Board Support Package The BSP is responsible for getting the MCU from
reset to the user's application. Before reaching
the user's application, the BSP sets up the
stacks, heap, clocks, interrupts, C runtime
environment, and stack monitor

 RA2A1

 RA4M1

 RA6M1

 RA6M2

 RA6M3

 BSP I/O access This module provides basic read/write access to
port pins

 ▼Modules Modules are the smallest unit of software
available in the FSP. Each module implements
one interface

 High-Speed Analog Comparator (r_acmphs) This module implements the Comparator
Interface using the high-speed analog
comparator

 Low-Power Analog Comparator (r_acmplp) Driver for the ACMPLP peripheral on RA MCUs.
This module implements the Comparator
Interface

 Analog to Digital Converter (r_adc) Driver for the ADC12, ADC14, and ADC16
peripherals on RA MCUs. This module
implements the ADC Interface

 Asynchronous General Purpose Timer (r_agt) Driver for the AGT peripheral on RA MCUs. This
module implements the Timer Interface

 Clock Frequency Accuracy Measurement Circuit
(r_cac)

Driver for the CAC peripheral on RA MCUs. This
module implements the CAC Interface

 Clock Generation Circuit (r_cgc) Driver for the CGC peripheral on RA MCUs. This
module implements the CGC Interface

 Cyclic Redundancy Check (CRC) Calculator
(r_crc)

Driver for the CRC peripheral on RA MCUs. This
module implements the CRC Interface

 Capacitive Touch Sensing Unit (r_ctsu) This HAL driver supports the Capacitive Touch
Sensing Unit (CTSU). It implements the CTSU

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 86 / 601

Flexible Software Package

User’s Manual
API Reference

Interface

 Digital to Analog Converter (r_dac) Driver for the DAC12 peripheral on RA MCUs.
This module implements the DAC Interface

 Direct Memory Access Controller (r_dmac) Driver for the DMAC peripheral on RA MCUs. This
module implements the Transfer Interface

 Data Operation Circuit (r_doc) Driver for the DOC peripheral on RA MCUs. This
module implements the DOC Interface

 D/AVE 2D Port Interface (r_drw) Driver for the DRW peripheral on RA MCUs. This
module is a port of D/AVE 2D

 Data Transfer Controller (r_dtc) Driver for the DTC peripheral on RA MCUs. This
module implements the Transfer Interface

 Event Link Controller (r_elc) Driver for the ELC peripheral on RA MCUs. This
module implements the ELC Interface

 Ethernet (r_ether) Driver for the Ethernet peripheral on RA MCUs.
This module implements the Ethernet Interface

 Ethernet PHY (r_ether_phy) The Ethernet PHY module (r_ether_phy) provides
an API for standard Ethernet PHY
communications applications and uses the
ETHERC peripherals. It implements the Ethernet
PHY Interface

 High-Performance Flash Driver (r_flash_hp) Driver for the flash memory on RA high-
performance MCUs. This module implements the
Flash Interface

 Low-Power Flash Driver (r_flash_lp) Driver for the flash memory on RA low-power
MCUs. This module implements the Flash
Interface

 Graphics LCD Controller (r_glcdc) Driver for the GLCDC peripheral on RA MCUs.
This module implements the Display Interface

 General PWM Timer (r_gpt) Driver for the GPT32 and GPT16 peripherals on
RA MCUs. This module implements the Timer
Interface

 Interrupt Controller Unit (r_icu) Driver for the ICU peripheral on RA MCUs. This
module implements the External IRQ Interface

 I2C Master on IIC (r_iic_master) Driver for the IIC peripheral on RA MCUs. This
module implements the I2C Master Interface

 I2C Slave on IIC (r_iic_slave) Driver for the IIC peripheral on RA MCUs. This
module implements the I2C Slave Interface

 I/O Ports (r_ioport) Driver for the I/O Ports peripheral on RA MCUs.
This module implements the I/O Port Interface

 Independent Watchdog Timer (r_iwdt) Driver for the IWDT peripheral on RA MCUs. This
module implements the WDT Interface

 JPEG Codec (r_jpeg) Driver for the JPEG peripheral on RA MCUs. This
module implements the JPEG Codec Interface

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 87 / 601

Flexible Software Package

User’s Manual
API Reference

 Key Interrupt (r_kint) Driver for the KINT peripheral on RA MCUs. This
module implements the Key Matrix Interface

 Low Power Modes (r_lpm) Driver for the LPM peripheral on RA MCUs. This
module implements the Low Power Modes
Interface

 Low Voltage Detection (r_lvd) Driver for the LVD peripheral on RA MCUs. This
module implements the Low Voltage Detection
Interface

 Realtime Clock (r_rtc) Driver for the RTC peripheral on RA MCUs. This
module implements the RTC Interface

 Serial Communications Interface (SCI) I2C
(r_sci_i2c)

Driver for the SCI peripheral on RA MCUs. This
module implements the I2C Master Interface

 Serial Communications Interface (SCI) SPI
(r_sci_spi)

Driver for the SCI peripheral on RA MCUs. This
module implements the SPI Interface

 Serial Communications Interface (SCI) UART
(r_sci_uart)

Driver for the SCI peripheral on RA MCUs. This
module implements the UART Interface

 SD/MMC Host Interface (r_sdhi) Driver for the SD/MMC Host Interface (SDHI)
peripheral on RA MCUs. This module implements
the SD/MMC Interface

 Serial Peripheral Interface (r_spi) Driver for the SPI peripheral on RA MCUs. This
module implements the SPI Interface

 Serial Sound Interface (r_ssi) Driver for the SSIE peripheral on RA MCUs. This
module implements the I2S Interface

 Universal Serial Bus (r_usb_basic) The USB module (r_usb_basic) provides an API to
perform H / W control of USB communication. It
implements the USB Interface

 Host Mass Storage Class Driver (r_usb_hmsc) The USB module (r_usb_hmsc) provides an API to
perform hardware control of USB
communications. It implements the USB
Interface

 Universal Serial Bus Peripheral Communication
Device Class (r_usb_pcdc)

This module is USB Peripheral Communication
Device Class Driver (PCDC).
This module works in combination with
(r_usb_basic module)

 Watchdog Timer (r_wdt) Driver for the WDT peripheral on RA MCUs. This
module implements the WDT Interface

 SEGGER emWin Port (rm_emwin_port) SEGGER emWin port for RA MCUs

 FreeRTOS Plus FAT (rm_freertos_plus_fat) Middleware for the Fat File System control on RA
MCUs

 Amazon FreeRTOS Port (rm_freertos_port) Amazon FreeRTOS port for RA MCUs

 Crypto Middleware (rm_psa_crypto) Hardware acceleration for the mbedCrypto
implementation of the ARM PSA Crypto API

 Capacitive Touch Middleware (rm_touch) This module supports the Capacitive Touch
Sensing Unit (CTSU). It implements the Touch

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 88 / 601

Flexible Software Package

User’s Manual
API Reference

Middleware Interface

 ▼Interfaces The FSP interfaces provide APIs for common
functionality. They can be implemented by one
or more modules. Modules can use other
modules as dependencies using this interface
layer

 ADC Interface Interface for A/D Converters

 CAC Interface Interface for clock frequency accuracy
measurements

 CGC Interface Interface for clock generation

 Comparator Interface Interface for comparators

 CRC Interface Interface for cyclic redundancy checking

 CTSU Interface Interface for Capacitive Touch Sensing Unit
(CTSU) functions

 DAC Interface Interface for D/A converters

 Display Interface Interface for LCD panel displays

 DOC Interface Interface for the Data Operation Circuit

 ELC Interface Interface for the Event Link Controller

 Ethernet Interface Interface for Ethernet functions

 Ethernet PHY Interface Interface for Ethernet phy functions

 External IRQ Interface Interface for detecting external interrupts

 Flash Interface Interface for the Flash Memory

 I2C Master Interface Interface for I2C master communication

 I2C Slave Interface Interface for I2C slave communication

 I2S Interface Interface for I2S audio communication

 I/O Port Interface Interface for accessing I/O ports and configuring
I/O functionality

 JPEG Codec Interface Interface for JPEG functions

 Key Matrix Interface Interface for key matrix functions

 Low Power Modes Interface Interface for accessing low power modes

 Low Voltage Detection Interface Interface for Low Voltage Detection

 RTC Interface Interface for accessing the Realtime Clock

 SD/MMC Interface Interface for accessing SD, eMMC, and SDIO
devices

 SPI Interface Interface for SPI communications

 Timer Interface Interface for timer functions

 Transfer Interface Interface for data transfer functions

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 89 / 601

Flexible Software Package

User’s Manual
API Reference

 UART Interface Interface for UART communications

 USB Interface Interface for USB functions

 USB HMSC Interface Interface for USB HMSC functions

 USB PCDC Interface Interface for USB PCDC functions

 WDT Interface Interface for watch dog timer functions

 Touch Middleware Interface Interface for Touch Middleware functions

4.1 BSP

Detailed Description

Common code shared by FSP drivers.

Modules

Common Error Codes

MCU Board Support Package

 The BSP is responsible for getting the MCU from reset to the user's
application. Before reaching the user's application, the BSP sets up
the stacks, heap, clocks, interrupts, C runtime environment, and
stack monitor.

BSP I/O access

 This module provides basic read/write access to port pins.

4.1.1 Common Error Codes
BSP

Detailed Description

All FSP modules share these common error codes.

Data Structures

union fsp_version_t

struct fsp_version_t.__unnamed__

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 90 / 601

Flexible Software Package

User’s Manual
API Reference > BSP > Common Error Codes

Macros

#define FSP_PARAMETER_NOT_USED(p)

#define FSP_CPP_HEADER

#define FSP_HEADER

Enumerations

enum fsp_err_t

Data Structure Documentation

◆ fsp_version_t

union fsp_version_t

Common version structure

Data Fields

uint32_t version_id Version id

struct fsp_version_t __unnamed__ Code version parameters

◆ fsp_version_t.__unnamed__

struct fsp_version_t.__unnamed__

Code version parameters

Data Fields

uint8_t code_version_minor Code minor version.

uint8_t code_version_major Code major version.

uint8_t api_version_minor API minor version.

uint8_t api_version_major API major version.

Macro Definition Documentation

◆ FSP_PARAMETER_NOT_USED

#define FSP_PARAMETER_NOT_USED (p)

This macro is used to suppress compiler messages about a parameter not being used in a function.
The nice thing about using this implementation is that it does not take any extra RAM or ROM.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 91 / 601

Flexible Software Package

User’s Manual
API Reference > BSP > Common Error Codes

◆ FSP_CPP_HEADER

#define FSP_CPP_HEADER

Determine if a C++ compiler is being used. If so, ensure that standard C is used to process the API
information.

◆ FSP_HEADER

#define FSP_HEADER

FSP Header and Footer definitions

Enumeration Type Documentation

◆ fsp_err_t

enum fsp_err_t

Common error codes

Enumerator

FSP_ERR_ASSERTION A critical assertion has failed.

FSP_ERR_INVALID_POINTER Pointer points to invalid memory location.

FSP_ERR_INVALID_ARGUMENT Invalid input parameter.

FSP_ERR_INVALID_CHANNEL Selected channel does not exist.

FSP_ERR_INVALID_MODE Unsupported or incorrect mode.

FSP_ERR_UNSUPPORTED Selected mode not supported by this API.

FSP_ERR_NOT_OPEN Requested channel is not configured or API not
open.

FSP_ERR_IN_USE Channel/peripheral is running/busy.

FSP_ERR_OUT_OF_MEMORY Allocate more memory in the driver's cfg.h.

FSP_ERR_HW_LOCKED Hardware is locked.

FSP_ERR_IRQ_BSP_DISABLED IRQ not enabled in BSP.

FSP_ERR_OVERFLOW Hardware overflow.

FSP_ERR_UNDERFLOW

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 92 / 601

Flexible Software Package

User’s Manual
API Reference > BSP > Common Error Codes

Hardware underflow.

FSP_ERR_ALREADY_OPEN Requested channel is already open in a
different configuration.

FSP_ERR_APPROXIMATION Could not set value to exact result.

FSP_ERR_CLAMPED Value had to be limited for some reason.

FSP_ERR_INVALID_RATE Selected rate could not be met.

FSP_ERR_ABORTED An operation was aborted.

FSP_ERR_NOT_ENABLED Requested operation is not enabled.

FSP_ERR_TIMEOUT Timeout error.

FSP_ERR_INVALID_BLOCKS Invalid number of blocks supplied.

FSP_ERR_INVALID_ADDRESS Invalid address supplied.

FSP_ERR_INVALID_SIZE Invalid size/length supplied for operation.

FSP_ERR_WRITE_FAILED Write operation failed.

FSP_ERR_ERASE_FAILED Erase operation failed.

FSP_ERR_INVALID_CALL Invalid function call is made.

FSP_ERR_INVALID_HW_CONDITION Detected hardware is in invalid condition.

FSP_ERR_INVALID_FACTORY_FLASH Factory flash is not available on this MCU.

FSP_ERR_INVALID_STATE API or command not valid in the current state.

FSP_ERR_NOT_ERASED Erase verification failed.

FSP_ERR_SECTOR_RELEASE_FAILED Sector release failed.

FSP_ERR_INTERNAL Internal error.

Start of RTOS only error codes

FSP_ERR_WAIT_ABORTED Wait.

FSP_ERR_FRAMING Framing error occurs.

Start of UART specific

FSP_ERR_BREAK_DETECT Break signal detects.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 93 / 601

Flexible Software Package

User’s Manual
API Reference > BSP > Common Error Codes

FSP_ERR_PARITY Parity error occurs.

FSP_ERR_RXBUF_OVERFLOW Receive queue overflow.

FSP_ERR_QUEUE_UNAVAILABLE Can't open s/w queue.

FSP_ERR_INSUFFICIENT_SPACE Not enough space in transmission circular
buffer.

FSP_ERR_INSUFFICIENT_DATA Not enough data in receive circular buffer.

FSP_ERR_TRANSFER_ABORTED The data transfer was aborted.

Start of SPI specific

FSP_ERR_MODE_FAULT Mode fault error.

FSP_ERR_READ_OVERFLOW Read overflow.

FSP_ERR_SPI_PARITY Parity error.

FSP_ERR_OVERRUN Overrun error.

FSP_ERR_CLOCK_INACTIVE Inactive clock specified as system clock.

Start of CGC Specific

FSP_ERR_CLOCK_ACTIVE Active clock source cannot be modified without
stopping first.

FSP_ERR_NOT_STABILIZED Clock has not stabilized after its been turned
on/off.

FSP_ERR_PLL_SRC_INACTIVE PLL initialization attempted when PLL source is
turned off.

FSP_ERR_OSC_STOP_DET_ENABLED Illegal attempt to stop LOCO when Oscillation
stop is enabled.

FSP_ERR_OSC_STOP_DETECTED The Oscillation stop detection status flag is
set.

FSP_ERR_OSC_STOP_CLOCK_ACTIVE Attempt to clear Oscillation Stop Detect Status
with PLL/MAIN_OSC active.

FSP_ERR_CLKOUT_EXCEEDED Output on target output clock pin exceeds
maximum supported limit.

FSP_ERR_USB_MODULE_ENABLED USB clock configure request with USB Module
enabled.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 94 / 601

Flexible Software Package

User’s Manual
API Reference > BSP > Common Error Codes

FSP_ERR_HARDWARE_TIMEOUT A register read or write timed out.

FSP_ERR_LOW_VOLTAGE_MODE Invalid clock setting attempted in low voltage
mode.

FSP_ERR_PE_FAILURE Unable to enter Programming mode.

Start of FLASH Specific

FSP_ERR_CMD_LOCKED Peripheral in command locked state.

FSP_ERR_FCLK FCLK must be >= 4 MHz.

FSP_ERR_INVALID_LINKED_ADDRESS Function or data are linked at an invalid region
of memory.

FSP_ERR_BLANK_CHECK_FAILED Blank check operation failed.

FSP_ERR_INVALID_CAC_REF_CLOCK Measured clock rate < reference clock rate.

Start of CAC Specific

FSP_ERR_CLOCK_GENERATION Clock cannot be specified as system clock.

Start of GLCD Specific

FSP_ERR_INVALID_TIMING_SETTING Invalid timing parameter.

FSP_ERR_INVALID_LAYER_SETTING Invalid layer parameter.

FSP_ERR_INVALID_ALIGNMENT Invalid memory alignment found.

FSP_ERR_INVALID_GAMMA_SETTING Invalid gamma correction parameter.

FSP_ERR_INVALID_LAYER_FORMAT Invalid color format in layer.

FSP_ERR_INVALID_UPDATE_TIMING Invalid timing for register update.

FSP_ERR_INVALID_CLUT_ACCESS Invalid access to CLUT entry.

FSP_ERR_INVALID_FADE_SETTING Invalid fade-in/fade-out setting.

FSP_ERR_INVALID_BRIGHTNESS_SETTING Invalid gamma correction parameter.

FSP_ERR_JPEG_ERR JPEG error.

Start of JPEG Specific

FSP_ERR_JPEG_SOI_NOT_DETECTED SOI not detected until EOI detected.

FSP_ERR_JPEG_SOF1_TO_SOFF_DETECTED

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 95 / 601

Flexible Software Package

User’s Manual
API Reference > BSP > Common Error Codes

SOF1 to SOFF detected.

FSP_ERR_JPEG_UNSUPPORTED_PIXEL_FORMAT Unprovided pixel format detected.

FSP_ERR_JPEG_SOF_ACCURACY_ERROR SOF accuracy error: other than 8 detected.

FSP_ERR_JPEG_DQT_ACCURACY_ERROR DQT accuracy error: other than 0 detected.

FSP_ERR_JPEG_COMPONENT_ERROR1 Component error1: the number of SOF0 header
components detected is other than 1,3,or 4.

FSP_ERR_JPEG_COMPONENT_ERROR2 Component error2: the number of components
differs between SOF0 header and SOS.

FSP_ERR_JPEG_SOF0_DQT_DHT_NOT_DETECTED SOF0, DQT, and DHT not detected when SOS
detected.

FSP_ERR_JPEG_SOS_NOT_DETECTED SOS not detected: SOS not detected until EOI
detected.

FSP_ERR_JPEG_EOI_NOT_DETECTED EOI not detected (default)

FSP_ERR_JPEG_RESTART_INTERVAL_DATA_NUMB
ER_ERROR

Restart interval data number error detected.

FSP_ERR_JPEG_IMAGE_SIZE_ERROR Image size error detected.

FSP_ERR_JPEG_LAST_MCU_DATA_NUMBER_ERRO
R

Last MCU data number error detected.

FSP_ERR_JPEG_BLOCK_DATA_NUMBER_ERROR Block data number error detected.

FSP_ERR_JPEG_BUFFERSIZE_NOT_ENOUGH User provided buffer size not enough.

FSP_ERR_JPEG_UNSUPPORTED_IMAGE_SIZE JPEG Image size is not aligned with MCU.

FSP_ERR_CALIBRATE_FAILED Calibration failed.

Start of touch panel framework specific

FSP_ERR_IP_HARDWARE_NOT_PRESENT Requested IP does not exist on this device.

Start of IP specific

FSP_ERR_IP_UNIT_NOT_PRESENT Requested unit does not exist on this device.

FSP_ERR_IP_CHANNEL_NOT_PRESENT Requested channel does not exist on this
device.

FSP_ERR_USB_FAILED Start of USB specific

FSP_ERR_NO_MORE_BUFFER

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 96 / 601

Flexible Software Package

User’s Manual
API Reference > BSP > Common Error Codes

No more buffer found in the memory block
pool.

Start of Message framework specific

FSP_ERR_ILLEGAL_BUFFER_ADDRESS Buffer address is out of block memory pool.

FSP_ERR_INVALID_WORKBUFFER_SIZE Work buffer size is invalid.

FSP_ERR_INVALID_MSG_BUFFER_SIZE Message buffer size is invalid.

FSP_ERR_TOO_MANY_BUFFERS Number of buffer is too many.

FSP_ERR_NO_SUBSCRIBER_FOUND No message subscriber found.

FSP_ERR_MESSAGE_QUEUE_EMPTY No message found in the message queue.

FSP_ERR_MESSAGE_QUEUE_FULL No room for new message in the message
queue.

FSP_ERR_ILLEGAL_SUBSCRIBER_LISTS Message subscriber lists is illegal.

FSP_ERR_BUFFER_RELEASED Buffer has been released.

FSP_ERR_D2D_ERROR_INIT Dave/2d has an error in the initialization.

Start of 2DG Driver specific

FSP_ERR_D2D_ERROR_DEINIT Dave/2d has an error in the initialization.

FSP_ERR_D2D_ERROR_RENDERING Dave/2d has an error in the rendering.

FSP_ERR_D2D_ERROR_SIZE Dave/2d has an error in the rendering.

FSP_ERR_ETHER_ERROR_NO_DATA No Data in Receive buffer.

Start of ETHER Driver specific

FSP_ERR_ETHER_ERROR_LINK ETHERC/EDMAC has an error in the Auto-
negotiation.

FSP_ERR_ETHER_ERROR_MAGIC_PACKTE_MODE As a Magic Packet is being detected, and
transmission/reception is not enabled.

FSP_ERR_ETHER_ERROR_TRANSMIT_BUFFER_FUL
L

Transmit buffer is not empty.

FSP_ERR_ETHER_ERROR_FILTERING Detect multicast frame when multicast frame
filtering enable.

FSP_ERR_ETHER_ERROR_PHY_COMMUNICATION ETHERC/EDMAC has an error in the phy

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 97 / 601

Flexible Software Package

User’s Manual
API Reference > BSP > Common Error Codes

communication.

FSP_ERR_ETHER_PHY_ERROR_LINK PHY is not link up.

Start of ETHER_PHY Driver specific

FSP_ERR_ETHER_PHY_NOT_READY PHY has an error in the Auto-negotiation.

FSP_ERR_QUEUE_FULL Queue is full, cannot queue another data.

Start of BYTEQ library specific

FSP_ERR_QUEUE_EMPTY Queue is empty, no data to dequeue.

FSP_ERR_CTSU_SC_OVERFLOW Sensor count overflowed when performing
CTSU scan.

Note
User must clear the CTSUSCOVF bit manually.

FSP_ERR_CTSU_RC_OVERFLOW Reference count overflowed when performing
CTSU scan.

Note
User must clear the CTSURCOVF bit manually.

FSP_ERR_CTSU_ICOMP Abnormal TSCAP voltage.

Note
User must clear the CTSUICOMP bit manually.

FSP_ERR_CTSU_OFFSET_ADJUSTMENT_FAILED Auto tuning algorithm failed.

FSP_ERR_CTSU_SAFETY_CHECK_FAILED Safety check failed

FSP_ERR_CARD_INIT_FAILED SD card or eMMC device failed to initialize.

Start of SDMMC specific

FSP_ERR_CARD_NOT_INSERTED SD card not installed.

FSP_ERR_DEVICE_BUSY Device is holding DAT0 low or another
operation is ongoing.

FSP_ERR_CARD_NOT_INITIALIZED SD card was removed.

FSP_ERR_CARD_WRITE_PROTECTED Media is write protected.

FSP_ERR_TRANSFER_BUSY Transfer in progress.

FSP_ERR_RESPONSE Card did not respond or responded with an
error.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 98 / 601

Flexible Software Package

User’s Manual
API Reference > BSP > Common Error Codes

FSP_ERR_MEDIA_FORMAT_FAILED Media format failed.

Start of FX_IO specific

FSP_ERR_MEDIA_OPEN_FAILED Media open failed.

FSP_ERR_CAN_DATA_UNAVAILABLE No data available.

Start of CAN specific

FSP_ERR_CAN_MODE_SWITCH_FAILED Switching operation modes failed.

FSP_ERR_CAN_INIT_FAILED Hardware initialization failed.

FSP_ERR_CAN_TRANSMIT_NOT_READY Transmit in progress.

FSP_ERR_CAN_RECEIVE_MAILBOX Mailbox is setup as a receive mailbox.

FSP_ERR_CAN_TRANSMIT_MAILBOX Mailbox is setup as a transmit mailbox.

FSP_ERR_CAN_MESSAGE_LOST Receive message has been overwritten or
overrun.

FSP_ERR_WIFI_CONFIG_FAILED WiFi module Configuration failed.

Start of SF_WIFI Specific

FSP_ERR_WIFI_INIT_FAILED WiFi module initialization failed.

FSP_ERR_WIFI_TRANSMIT_FAILED Transmission failed.

FSP_ERR_WIFI_INVALID_MODE API called when provisioned in client mode.

FSP_ERR_WIFI_FAILED WiFi Failed.

FSP_ERR_CELLULAR_CONFIG_FAILED Cellular module Configuration failed.

Start of SF_CELLULAR Specific

FSP_ERR_CELLULAR_INIT_FAILED Cellular module initialization failed.

FSP_ERR_CELLULAR_TRANSMIT_FAILED Transmission failed.

FSP_ERR_CELLULAR_FW_UPTODATE Firmware is uptodate.

FSP_ERR_CELLULAR_FW_UPGRADE_FAILED Firmware upgrade failed.

FSP_ERR_CELLULAR_FAILED Cellular Failed.

FSP_ERR_CELLULAR_INVALID_STATE API Called in invalid state.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 99 / 601

Flexible Software Package

User’s Manual
API Reference > BSP > Common Error Codes

FSP_ERR_CELLULAR_REGISTRATION_FAILED Cellular Network registration failed.

FSP_ERR_BLE_FAILED BLE operation failed.

Start of SF_BLE specific

FSP_ERR_BLE_INIT_FAILED BLE device initialization failed.

FSP_ERR_BLE_CONFIG_FAILED BLE device configuration failed.

FSP_ERR_BLE_PRF_ALREADY_ENABLED BLE device Profile already enabled.

FSP_ERR_BLE_PRF_NOT_ENABLED BLE device not enabled.

FSP_ERR_CRYPTO_CONTINUE Continue executing function.

Start of Crypto specific (0x10000)

Note
Refer to sf_cryoto_err.h for Crypto error code.

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT Hardware resource busy.

FSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty.

FSP_ERR_CRYPTO_SCE_HRK_INVALID_INDEX Invalid index.

FSP_ERR_CRYPTO_SCE_RETRY Retry.

FSP_ERR_CRYPTO_SCE_VERIFY_FAIL Verify is failed.

FSP_ERR_CRYPTO_SCE_ALREADY_OPEN HW SCE module is already opened.

FSP_ERR_CRYPTO_NOT_OPEN Hardware module is not initialized.

FSP_ERR_CRYPTO_UNKNOWN Some unknown error occurred.

FSP_ERR_CRYPTO_NULL_POINTER Null pointer input as a parameter.

FSP_ERR_CRYPTO_NOT_IMPLEMENTED Algorithm/size not implemented.

FSP_ERR_CRYPTO_RNG_INVALID_PARAM An invalid parameter is specified.

FSP_ERR_CRYPTO_RNG_FATAL_ERROR A fatal error occurred.

FSP_ERR_CRYPTO_INVALID_SIZE Size specified is invalid.

FSP_ERR_CRYPTO_INVALID_STATE Function used in an valid state.

FSP_ERR_CRYPTO_ALREADY_OPEN

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 100 / 601

Flexible Software Package

User’s Manual
API Reference > BSP > Common Error Codes

control block is already opened

FSP_ERR_CRYPTO_INSTALL_KEY_FAILED Specified input key is invalid.

FSP_ERR_CRYPTO_AUTHENTICATION_FAILED Authentication failed.

FSP_ERR_CRYPTO_COMMON_NOT_OPENED Crypto Framework Common is not opened.

Start of SF_CRYPTO specific

FSP_ERR_CRYPTO_HAL_ERROR Cryoto HAL module returned an error.

FSP_ERR_CRYPTO_KEY_BUF_NOT_ENOUGH Key buffer size is not enough to generate a
key.

FSP_ERR_CRYPTO_BUF_OVERFLOW Attempt to write data larger than what the
buffer can hold.

FSP_ERR_CRYPTO_INVALID_OPERATION_MODE Invalid operation mode.

FSP_ERR_MESSAGE_TOO_LONG Message for RSA encryption is too long.

FSP_ERR_RSA_DECRYPTION_ERROR RSA Decryption error.

4.1.2 MCU Board Support Package
BSP

Functions

fsp_err_t R_FSP_VersionGet (fsp_pack_version_t *const p_version)

void Reset_Handler (void)

void Default_Handler (void)

void SystemInit (void)

void R_BSP_WarmStart (bsp_warm_start_event_t event)

fsp_err_t R_BSP_VersionGet (fsp_version_t *p_version)

void R_BSP_SoftwareDelay (uint32_t delay, bsp_delay_units_t units)

fsp_err_t R_BSP_GroupIrqWrite (bsp_grp_irq_t irq,
void(*p_callback)(bsp_grp_irq_t irq))

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 101 / 601

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

void NMI_Handler (void)

void R_BSP_RegisterProtectEnable (bsp_reg_protect_t regs_to_protect)

void R_BSP_RegisterProtectDisable (bsp_reg_protect_t regs_to_unprotect)

Detailed Description

The BSP is responsible for getting the MCU from reset to the user's application. Before reaching the
user's application, the BSP sets up the stacks, heap, clocks, interrupts, C runtime environment, and
stack monitor.

BSP Features
BSP Clock Configuration
System Interrupts
Group Interrupts
External and Peripheral Interrupts
Error Logging
BSP Weak Symbols
Warm Start Callbacks
Register Protection
ID Codes
Software Delay
Board Specific Features
Configuration

Overview
BSP Features

BSP Clock Configuration

All system clocks are set up during BSP initialization based on the settings in bsp_clock_cfg.h. These
settings are derived from clock configuration information provided from the ISDE Clocks tab setting.

Clock configuration is performed prior to initializing the C runtime environment to speed up
the startup process, as it is possible to start up on a relatively slow (that is, 32 kHz) clock.
The BSP implements the required delays to allow the selected clock to stabilize.
The BSP will configure the CMSIS SystemCoreClock variable after clock initialization with the
current system clock frequency.

System Interrupts

As RA MCUs are based on the Cortex-M ARM architecture, the NVIC Nested Vectored Interrupt
Controller (NVIC) handles exceptions and interrupt configuration, prioritization and interrupt
masking. In the ARM architecture, the NVIC handles exceptions. Some exceptions are known as
System Exceptions. System exceptions are statically located at the "top" of the vector table and
occupy vector numbers 1 to 15. Vector zero is reserved for the MSP Main Stack Pointer (MSP). The
remaining 15 system exceptions are shown below:

Reset
NMI

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 102 / 601

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

Cortex-M4 Hard Fault Handler
Cortex-M4 MPU Fault Handler
Cortex-M4 Bus Fault Handler
Cortex-M4 Usage Fault Handler
Reserved
Reserved
Reserved
Reserved
Cortex-M4 SVCall Handler
Cortex-M4 Debug Monitor Handler
Reserved
Cortex-M4 PendSV Handler
Cortex-M4 SysTick Handler

NMI and Hard Fault exceptions are enabled out of reset and have fixed priorities. Other exceptions
have configurable priorities and some can be disabled.

Group Interrupts

Group interrupt is the term used to describe the 12 sources that can trigger the Non-Maskable
Interrupt (NMI). When an NMI occurs the NMI Handler examines the NMISR (status register) to
determine the source of the interrupt. NMI interrupts take precedence over all interrupts, are usable
only as CPU interrupts, and cannot activate the RA peripherals Data Transfer Controller (DTC) or
Direct Memory Access Controller (DMAC).

Possible group interrupt sources include:

IWDT Underflow/Refresh Error
WDT Underflow/Refresh Error
Voltage-Monitoring 1 Interrupt
Voltage-Monitoring 2 Interrupt
VBATT monitor Interrupt
Oscillation Stop is detected
NMI pin
RAM Parity Error
RAM ECC Error
MPU Bus Slave Error
MPU Bus Master Error
MPU Stack Error

A user may enable notification for one or more group interrupts by registering a callback using the
BSP API function R_BSP_GroupIrqWrite(). When an NMI interrupt occurs, the NMI handler checks to
see if there is a callback registered for the cause of the interrupt and if so calls the registered
callback function.

External and Peripheral Interrupts

User configurable interrupts begin with slot 16. These may be external, or peripheral generated
interrupts.

Although the number of available slots for the NVIC interrupt vector table may seem small, the BSP
defines up to 512 events that are capable of generating an interrupt. By using Event Mapping, the
BSP maps user-enabled events to NVIC interrupts. For an RA6M3 MCU, only 96 of these events may
be active at any one time, but the user has flexibility by choosing which events generate the active
event.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 103 / 601

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

By allowing the user to select only the events they are interested in as interrupt sources, we are able
to provide an interrupt service routine that is fast and event specific.

For example, on other microcontrollers a standard NVIC interrupt vector table might contain a single
vector entry for the SCI0 (Serial Communications Interface) peripheral. The interrupt service routine
for this would have to check a status register for the 'real' source of the interrupt. In the RA
implementation there is a vector entry for each of the SCI0 events that we are interested in.

BSP Weak Symbols

You might wonder how the BSP is able to place ISR addresses in the NVIC table without the user
having explicitly defined one. All that is required by the BSP is that the interrupt event be given a
priority.

This is accomplished through the use of the 'weak' attribute. The weak attribute causes the
declaration to be emitted as a weak symbol rather than a global. A weak symbol is one that can be
overridden by an accompanying strong reference with the same name. When the BSP declares a
function as weak, user code can define the same function and it will be used in place of the BSP
function. By defining all possible interrupt sources as weak, the vector table can be built at compile
time and any user declarations (strong references) will be used at runtime.

Weak symbols are supported for ELF targets and also for a.out targets when using the GNU
assembler and linker.

Note that in CMSIS system.c, there is also a weak definition (and a function body) for the Warm Start
callback function R_BSP_WarmStart(). Because this function is defined in the same file as the weak
declaration, it will be called as the 'default' implementation. The function may be overridden by the
user by copying the body into their user application and modifying it as necessary. The linker
identifies this as the 'strong' reference and uses it.

Warm Start Callbacks

As the BSP is in the process of bringing up the board out of reset, there are three points where the
user can request a callback. These are defined as the 'Pre Clock Init', 'Post Clock Init' and 'Post C'
warm start callbacks.

As described above, this function is already weakly defined as R_BSP_WarmStart(), so it is a simple
matter of redefining the function or copying the existing body from CMSIS system.c into the
application code to get a callback. R_BSP_WarmStart() takes an event parameter of type
bsp_warm_start_event_t which describes the type of warm start callback being made.

This function is not enabled/disabled and is always called for both events as part of the BSP startup.
Therefore it needs a function body, which will not be called if the user is overriding it. The function
body is located in system. To use this function just copy this function into your own code and modify
it to meet your needs.

Error Logging

When error logging is enabled, the error logging function can be redefined on the command line by
defining FSP_ERROR_LOG(err) to the desired function call. The default function implementation is
FSP_ERROR_LOG(err)=fsp_error_log(err, FILE, LINE). This implementation uses the predefined
macros FILE and LINE to help identify the location where the error occurred. Removing the line from
the function call can reduce code size when error logging is enabled. Some compilers may support
other predefined macros like FUNCTION, which could be helpful for customizing the error logger.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 104 / 601

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

Register Protection

The BSP register protection functions utilize reference counters to ensure that an application which
has specified a certain register and subsequently calls another function doesn't have its register
protection settings inadvertently modified.

Each time RegisterProtectDisable() is called, the respective reference counter is incremented.

Each time RegisterProtectEnable() is called, the respective reference counter is decremented.

Both functions will only modify the protection state if their reference counter is zero.

 /* Enable writing to protected CGC registers */

 R_BSP_RegisterProtectDisable(BSP_REG_PROTECT_CGC);

 /* Insert code to modify protected CGC registers. */

 /* Disable writing to protected CGC registers */

 R_BSP_RegisterProtectEnable(BSP_REG_PROTECT_CGC);

ID Codes

The ID code is 16 byte value that can be used to protect the MCU from being connected to a
debugger or from connecting in Serial Boot Mode. There are different settings that can be set for the
ID code; please refer to the hardware manual for your device for available options.

Software Delay

Implements a blocking software delay. A delay can be specified in microseconds, milliseconds or
seconds. The delay is implemented based on the system clock rate.

 /* Delay at least 1 second. Depending on the number of wait states required for the

region of memory

 * that the software_delay_loop has been linked in this could take longer. The

default is 4 cycles per loop.

 * This can be modified by redefining DELAY_LOOP_CYCLES. BSP_DELAY_UNITS_SECONDS,

BSP_DELAY_UNITS_MILLISECONDS,

 * and BSP_DELAY_UNITS_MICROSECONDS can all be used with R_BSP_SoftwareDelay. */

 R_BSP_SoftwareDelay(1, BSP_DELAY_UNITS_SECONDS);

Critical Section Macors

Implements a critical section. Some MCUs (MCUs with the BASEPRI register) support allowing high
priority interrupts to execute during critical sections. On these MCUs, interrupts with priority less
than or equal to BSP_CFG_IRQ_MASK_LEVEL_FOR_CRITICAL_SECTION are not serviced in critical
sections. Interrupts with higher priority than BSP_CFG_IRQ_MASK_LEVEL_FOR_CRITICAL_SECTION still

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 105 / 601

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

execute in critical sections.

 FSP_CRITICAL_SECTION_DEFINE;

 /* Store the current interrupt posture. */

 FSP_CRITICAL_SECTION_ENTER;

 /* Interrupts cannot run in this section unless their priority is less than

BSP_CFG_IRQ_MASK_LEVEL_FOR_CRITICAL_SECTION. */

 /* Restore saved interrupt posture. */

 FSP_CRITICAL_SECTION_EXIT;

Board Specific Features
The BSP will call the board's initialization function (bsp_init) which can initialize board specific
features. Possible board features are listed below.

Board Feature Description

SDRAM Support The BSP will initialize SDRAM if the board
supports it

QSPI Support The BSP will initialize QSPI if the board supports
it and put it into ROM mode. Use the R_QSPI
module to write and erase the QSPI chip.

Configuration
The BSP is heavily data driven with most features and functionality being configured based on the
content from configuration files. Configuration files represent the settings specified by the user and
are generated by the ISDE when the Generate Project Content button is clicked.

Build Time Configurations for fsp_common

The following build time configurations are defined in fsp_cfg/bsp/bsp_cfg.h:

Configuration Options Description

Main stack size (bytes) Value must be an integer
multiple of 8 and between 8
and 0xFFFFFFFF

Heap size (bytes) - A minimum
of 4K (0x1000) is required if
standard library functions are to
be used.

Value must be 0 or an integer
multiple of 8 between 8 and
0xFFFFFFFF. A minimum of 4K
(0x1000) is required if standard
library functions are to be used.

MCU Vcc (mV) Value must between 0 and
4600 (4.6V)

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 106 / 601

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

Parameter checking Enabled
Disabled

Assert Failures Return
FSP_ERR_ASSERTION
Call fsp_error_log then
Return
FSP_ERR_ASSERTION
Use assert() to Halt
Execution
Disable checks that
would return
FSP_ERR_ASSERTION

Error Log No Error Log
Errors Logged in
fsp_error_log

ID Code Mode Unlocked (Ignore ID)
Locked with All Erase
support
Locked

ID Code (32 Hex Characters) Value must be a 32 character
long hex string

Soft Reset Disabled
Enabled

Support for soft reset. If
disabled, registers are assumed
to be set to their default value
during startup.

PFS Protect Disabled
Enabled

Keep the PFS registers locked
when they are not being
modified. If disabled they will
be unlocked during startup.

Main Oscillator Wait Time 0.25 us
128 us
256 us
512 us
1024 us
2048 us
4096 us
8192 us
16384 us
32768 us

Number of cycles to wait for the
main oscillator clock to
stabilize. This setting can be
overridden in board_cfg.h

Main Oscillator Clock Source External Oscillator
Crystal or Resonator

Select the main oscillator clock
source. This setting can be
overridden in board_cfg.h

Subclock Populated Populated
Not Populated

Select whether or not there is a
subclock on the board. This
setting can be overridden in
board_cfg.h.

Subclock Drive Middle (4.4pf)
Standard (12.5pf)

Select the subclock oscillator
drive capacitance. This setting
can be overridden in

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 107 / 601

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

board_cfg.h

Subclock Stabilization Time
(ms)

Value must between 0 and
10000

Select the subclock oscillator
stabilization time. This is only
used in the startup code if the
subclock is selected as the
system clock on the Clocks tab.
This setting can be overridden
in board_cfg.h

4.1.2.1 RA2A1
BSP » MCU Board Support Package

Detailed Description

Build Time Configurations for ra2a1_fsp

The following build time configurations are defined in fsp_cfg/bsp/bsp_mcu_family_cfg.h:

Configuration Options Description

OFS0 register
settings|Independent WDT|Start
Mode

IWDT is Disabled
IWDT is automatically
activated after a reset
(Autostart mode)

OFS0 register
settings|Independent
WDT|Timeout Period

128 cycles
512 cycles
1024 cycles
2048 cycles

OFS0 register
settings|Independent
WDT|Dedicated Clock
Frequency Divisor

1
16
32
64
128
256

OFS0 register
settings|Independent
WDT|Window End Position

75%
50%
25%
0% (no window end
position)

OFS0 register
settings|Independent
WDT|Window Start Position

25%
50%
75%
100% (no window start
position)

OFS0 register
settings|Independent

NMI request or interrupt
request is enabled

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 108 / 601

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2A1

WDT|Reset Interrupt Request
Select

Reset is enabled

OFS0 register
settings|Independent WDT|Stop
Control

Counting continues
Stop counting when in
Sleep, Snooze mode, or
Software Standby

OFS0 register
settings|WDT|Start Mode Select

Automatically activate
WDT after a reset (auto-
start mode)
Stop WDT after a reset
(register-start mode)

OFS0 register
settings|WDT|Timeout Period

1024 cycles
4096 cycles
8192 cycles
16384 cycles

OFS0 register
settings|WDT|Clock Frequency
Division Ratio

4
64
128
512
2048
8192

OFS0 register
settings|WDT|Window End
Position

75%
50%
25%
0% (no window end
position)

OFS0 register
settings|WDT|Window Start
Position

25%
50%
75%
100% (no window start
position)

OFS0 register
settings|WDT|Reset Interrupt
Request

NMI
Reset

OFS0 register
settings|WDT|Stop Control

Counting continues
Stop counting when
entering Sleep mode

OFS1 register settings|Voltage
Detection 0 Circuit Start

Voltage monitor 0 reset
is enabled after reset
Voltage monitor 0 reset
is disabled after reset

OFS1 register settings|Voltage
Detection 0 Level

3.84 V
2.82 V
2.51 V
1.90 V
1.70 V

OFS1 register settings|HOCO
Oscillation Enable

HOCO oscillation is enabled
after reset

HOCO must be enabled out of
reset because the MCU starts

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 109 / 601

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2A1

up in low voltage mode and the
HOCO must be operating in low
voltage mode.

Use Low Voltage Mode Enable
Disable

Use the low voltage mode. This
limits the ICLK operating
frequency to 4 MHz and
requires all clock dividers to be
at least 4 when oscillation stop
detection is used.

MPU|Enable or disable PC
Region 0

Enabled
Disabled

MPU|PC0 Start Value must be an integer
between 0 and 0x000FFFFC
(ROM) or between 0x1FF00000
and 0x200FFFFC (RAM)

MPU|PC0 End Value must be an integer
between 0x00000003 and
0x000FFFFF (ROM) or between
0x1FF00003 and 0x200FFFFF
(RAM)

MPU|Enable or disable PC
Region 1

Enabled
Disabled

MPU|PC1 Start Value must be an integer
between 0 and 0x000FFFFC
(ROM) or between 0x1FF00000
and 0x200FFFFC (RAM)

MPU|PC1 End Value must be an integer
between 0x00000003 and
0x000FFFFF (ROM) or between
0x1FF00003 and 0x200FFFFF
(RAM)

MPU|Enable or disable Memory
Region 0

Enabled
Disabled

MPU|Memory Region 0 Start Value must be an integer
between 0 and 0x000FFFFC

MPU|Memory Region 0 End Value must be an integer
between 0x00000003 and
0x000FFFFF

MPU|Enable or disable Memory
Region 1

Enabled
Disabled

MPU|Memory Region 1 Start Value must be an integer
between 0x1FF00000 and
0x200FFFFC

MPU|Memory Region 1 End Value must be an integer
between 0x1FF00003 and
0x200FFFFF

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 110 / 601

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2A1

MPU|Enable or disable Memory
Region 2

Enabled
Disabled

MPU|Memory Region 2 Start Value must be an integer
between 0x400C0000 and
0x400DFFFC or between
0x40100000 and 0x407FFFFC

MPU|Memory Region 2 End Value must be an integer
between 0x400C0003 and
0x400DFFFF or between
0x40100003 and 0x407FFFFF

MPU|Enable or disable Memory
Region 3

Enabled
Disabled

MPU|Memory Region 3 Start Value must be an integer
between 0x400C0000 and
0x400DFFFC or between
0x40100000 and 0x407FFFFC

MPU|Memory Region 3 End Value must be an integer
between 0x400C0003 and
0x400DFFFF or between
0x40100003 and 0x407FFFFF

4.1.2.2 RA4M1
BSP » MCU Board Support Package

Detailed Description

Build Time Configurations for ra4m1_fsp

The following build time configurations are defined in fsp_cfg/bsp/bsp_mcu_family_cfg.h:

Configuration Options Description

OFS0 register
settings|Independent WDT|Start
Mode

IWDT is Disabled
IWDT is automatically
activated after a reset
(Autostart mode)

OFS0 register
settings|Independent
WDT|Timeout Period

128 cycles
512 cycles
1024 cycles
2048 cycles

OFS0 register
settings|Independent
WDT|Dedicated Clock
Frequency Divisor

1
16
32
64
128
256

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 111 / 601

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4M1

OFS0 register
settings|Independent
WDT|Window End Position

75%
50%
25%
0% (no window end
position)

OFS0 register
settings|Independent
WDT|Window Start Position

25%
50%
75%
100% (no window start
position)

OFS0 register
settings|Independent
WDT|Reset Interrupt Request
Select

NMI request or interrupt
request is enabled
Reset is enabled

OFS0 register
settings|Independent WDT|Stop
Control

Counting continues
Stop counting when in
Sleep, Snooze mode, or
Software Standby

OFS0 register
settings|WDT|Start Mode Select

Automatically activate
WDT after a reset (auto-
start mode)
Stop WDT after a reset
(register-start mode)

OFS0 register
settings|WDT|Timeout Period

1024 cycles
4096 cycles
8192 cycles
16384 cycles

OFS0 register
settings|WDT|Clock Frequency
Division Ratio

4
64
128
512
2048
8192

OFS0 register
settings|WDT|Window End
Position

75%
50%
25%
0% (no window end
position)

OFS0 register
settings|WDT|Window Start
Position

25%
50%
75%
100% (no window start
position)

OFS0 register
settings|WDT|Reset Interrupt
Request

NMI
Reset

OFS0 register
settings|WDT|Stop Control

Counting continues
Stop counting when

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 112 / 601

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4M1

entering Sleep mode

OFS1 register settings|Voltage
Detection 0 Circuit Start

Voltage monitor 0 reset
is enabled after reset
Voltage monitor 0 reset
is disabled after reset

OFS1 register settings|Voltage
Detection 0 Level

3.84 V
2.82 V
2.51 V
1.90 V
1.70 V

OFS1 register settings|HOCO
Oscillation Enable

HOCO oscillation is enabled
after reset

HOCO must be enabled out of
reset because the MCU starts
up in low voltage mode and the
HOCO must be operating in low
voltage mode.

Use Low Voltage Mode Enable
Disable

Use the low voltage mode. This
limits the ICLK operating
frequency to 4 MHz and
requires all clock dividers to be
at least 4.

MPU|Enable or disable PC
Region 0

Enabled
Disabled

MPU|PC0 Start Value must be an integer
between 0 and 0x00FFFFFC
(ROM) or between 0x1FF00000
and 0x200FFFFC (RAM)

MPU|PC0 End Value must be an integer
between 0x00000003 and
0x00FFFFFF (ROM) or between
0x1FF00003 and 0x200FFFFF
(RAM)

MPU|Enable or disable PC
Region 1

Enabled
Disabled

MPU|PC1 Start Value must be an integer
between 0 and 0x00FFFFFC
(ROM) or between 0x1FF00000
and 0x200FFFFC (RAM)

MPU|PC1 End Value must be an integer
between 0x00000003 and
0x00FFFFFF (ROM) or between
0x1FF00003 and 0x200FFFFF
(RAM)

MPU|Enable or disable Memory
Region 0

Enabled
Disabled

MPU|Memory Region 0 Start Value must be an integer
between 0 and 0x00FFFFFC

MPU|Memory Region 0 End Value must be an integer

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 113 / 601

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4M1

between 0x00000003 and
0x00FFFFFF

MPU|Enable or disable Memory
Region 1

Enabled
Disabled

MPU|Memory Region 1 Start Value must be an integer
between 0x1FF00000 and
0x200FFFFC

MPU|Memory Region 1 End Value must be an integer
between 0x1FF00003 and
0x200FFFFF

MPU|Enable or disable Memory
Region 2

Enabled
Disabled

MPU|Memory Region 2 Start Value must be an integer
between 0x400C0000 and
0x400DFFFC or between
0x40100000 and 0x407FFFFC

MPU|Memory Region 2 End Value must be an integer
between 0x400C0003 and
0x400DFFFF or between
0x40100003 and 0x407FFFFF

MPU|Enable or disable Memory
Region 3

Enabled
Disabled

MPU|Memory Region 3 Start Value must be an integer
between 0x400C0000 and
0x400DFFFC or between
0x40100000 and 0x407FFFFC

MPU|Memory Region 3 End Value must be an integer
between 0x400C0003 and
0x400DFFFF or between
0x40100003 and 0x407FFFFF

4.1.2.3 RA6M1
BSP » MCU Board Support Package

Detailed Description

Build Time Configurations for ra6m1_fsp

The following build time configurations are defined in fsp_cfg/bsp/bsp_mcu_family_cfg.h:

Configuration Options Description

OFS0 register
settings|Independent WDT|Start
Mode

IWDT is Disabled
IWDT is automatically
activated after a reset

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 114 / 601

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M1

(Autostart mode)

OFS0 register
settings|Independent
WDT|Timeout Period

128 cycles
512 cycles
1024 cycles
2048 cycles

OFS0 register
settings|Independent
WDT|Dedicated Clock
Frequency Divisor

1
16
32
64
128
256

OFS0 register
settings|Independent
WDT|Window End Position

75%
50%
25%
0% (no window end
position)

OFS0 register
settings|Independent
WDT|Window Start Position

25%
50%
75%
100% (no window start
position)

OFS0 register
settings|Independent
WDT|Reset Interrupt Request
Select

NMI request or interrupt
request is enabled
Reset is enabled

OFS0 register
settings|Independent WDT|Stop
Control

Counting continues
(Note: Device will not
enter Deep Standby
Mode when selected.
Device will enter
Software Standby Mode)
Stop counting when in
Sleep, Snooze mode, or
Software Standby

OFS0 register
settings|WDT|Start Mode Select

Automatically activate
WDT after a reset (auto-
start mode)
Stop WDT after a reset
(register-start mode)

OFS0 register
settings|WDT|Timeout Period

1024 cycles
4096 cycles
8192 cycles
16384 cycles

OFS0 register
settings|WDT|Clock Frequency
Division Ratio

4
64
128
512
2048
8192

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 115 / 601

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M1

OFS0 register
settings|WDT|Window End
Position

75%
50%
25%
0% (no window end
position)

OFS0 register
settings|WDT|Window Start
Position

25%
50%
75%
100% (no window start
position)

OFS0 register
settings|WDT|Reset Interrupt
Request

NMI
Reset

OFS0 register
settings|WDT|Stop Control

Counting continues
Stop counting when
entering Sleep mode

OFS1 register settings|Voltage
Detection 0 Circuit Start

Voltage monitor 0 reset
is enabled after reset
Voltage monitor 0 reset
is disabled after reset

OFS1 register settings|Voltage
Detection 0 Level

2.94 V
2.87 V
2.80 V

OFS1 register settings|HOCO
OScillation Enable

HOCO oscillation is
enabled after reset
HOCO oscillation is
disabled after reset

MPU|Enable or disable PC
Region 0

Enabled
Disabled

MPU|PC0 Start Value must be an integer
between 0 and 0xFFFFFFFC

MPU|PC0 End Value must be an integer
between 0x00000003 and
0xFFFFFFFF

MPU|Enable or disable PC
Region 1

Enabled
Disabled

MPU|PC1 Start Value must be an integer
between 0 and 0xFFFFFFFC

MPU|PC1 End Value must be an integer
between 0x00000003 and
0xFFFFFFFF

MPU|Enable or disable Memory
Region 0

Enabled
Disabled

MPU|Memory Region 0 Start Value must be an integer
between 0 and 0x00FFFFFC

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 116 / 601

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M1

MPU|Memory Region 0 End Value must be an integer
between 0x00000003 and
0x00FFFFFF

MPU|Enable or disable Memory
Region 1

Enabled
Disabled

MPU|Memory Region 1 Start Value must be an integer
between 0x1FF00000 and
0x200FFFFC

MPU|Memory Region 1 End Value must be an integer
between 0x1FF00003 and
0x200FFFFF

MPU|Enable or disable Memory
Region 2

Enabled
Disabled

MPU|Memory Region 2 Start Value must be an integer
between 0x400C0000 and
0x400DFFFC or between
0x40100000 and 0x407FFFFC

MPU|Memory Region 2 End Value must be an integer
between 0x400C0003 and
0x400DFFFF or between
0x40100003 and 0x407FFFFF

MPU|Enable or disable Memory
Region 3

Enabled
Disabled

MPU|Memory Region 3 Start Value must be an integer
between 0x400C0000 and
0x400DFFFC or between
0x40100000 and 0x407FFFFC

MPU|Memory Region 3 End Value must be an integer
between 0x400C0003 and
0x400DFFFF or between
0x40100003 and 0x407FFFFF

4.1.2.4 RA6M2
BSP » MCU Board Support Package

Detailed Description

Build Time Configurations for ra6m2_fsp

The following build time configurations are defined in fsp_cfg/bsp/bsp_mcu_family_cfg.h:

Configuration Options Description

OFS0 register
settings|Independent WDT|Start

IWDT is Disabled
IWDT is automatically

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 117 / 601

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M2

Mode activated after a reset
(Autostart mode)

OFS0 register
settings|Independent
WDT|Timeout Period

128 cycles
512 cycles
1024 cycles
2048 cycles

OFS0 register
settings|Independent
WDT|Dedicated Clock
Frequency Divisor

1
16
32
64
128
256

OFS0 register
settings|Independent
WDT|Window End Position

75%
50%
25%
0% (no window end
position)

OFS0 register
settings|Independent
WDT|Window Start Position

25%
50%
75%
100% (no window start
position)

OFS0 register
settings|Independent
WDT|Reset Interrupt Request
Select

NMI request or interrupt
request is enabled
Reset is enabled

OFS0 register
settings|Independent WDT|Stop
Control

Counting continues
(Note: Device will not
enter Deep Standby
Mode when selected.
Device will enter
Software Standby Mode)
Stop counting when in
Sleep, Snooze mode, or
Software Standby

OFS0 register
settings|WDT|Start Mode Select

Automatically activate
WDT after a reset (auto-
start mode)
Stop WDT after a reset
(register-start mode)

OFS0 register
settings|WDT|Timeout Period

1024 cycles
4096 cycles
8192 cycles
16384 cycles

OFS0 register
settings|WDT|Clock Frequency
Division Ratio

4
64
128
512
2048

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 118 / 601

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M2

8192

OFS0 register
settings|WDT|Window End
Position

75%
50%
25%
0% (no window end
position)

OFS0 register
settings|WDT|Window Start
Position

25%
50%
75%
100% (no window start
position)

OFS0 register
settings|WDT|Reset Interrupt
Request

NMI
Reset

OFS0 register
settings|WDT|Stop Control

Counting continues
Stop counting when
entering Sleep mode

OFS1 register settings|Voltage
Detection 0 Circuit Start

Voltage monitor 0 reset
is enabled after reset
Voltage monitor 0 reset
is disabled after reset

OFS1 register settings|Voltage
Detection 0 Level

2.94 V
2.87 V
2.80 V

OFS1 register settings|HOCO
OScillation Enable

HOCO oscillation is
enabled after reset
HOCO oscillation is
disabled after reset

MPU|Enable or disable PC
Region 0

Enabled
Disabled

MPU|PC0 Start Value must be an integer
between 0 and 0xFFFFFFFC

MPU|PC0 End Value must be an integer
between 0x00000003 and
0xFFFFFFFF

MPU|Enable or disable PC
Region 1

Enabled
Disabled

MPU|PC1 Start Value must be an integer
between 0 and 0xFFFFFFFC

MPU|PC1 End Value must be an integer
between 0x00000003 and
0xFFFFFFFF

MPU|Enable or disable Memory
Region 0

Enabled
Disabled

MPU|Memory Region 0 Start Value must be an integer

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 119 / 601

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M2

between 0 and 0x00FFFFFC

MPU|Memory Region 0 End Value must be an integer
between 0x00000003 and
0x00FFFFFF

MPU|Enable or disable Memory
Region 1

Enabled
Disabled

MPU|Memory Region 1 Start Value must be an integer
between 0x1FF00000 and
0x200FFFFC

MPU|Memory Region 1 End Value must be an integer
between 0x1FF00003 and
0x200FFFFF

MPU|Enable or disable Memory
Region 2

Enabled
Disabled

MPU|Memory Region 2 Start Value must be an integer
between 0x400C0000 and
0x400DFFFC or between
0x40100000 and 0x407FFFFC

MPU|Memory Region 2 End Value must be an integer
between 0x400C0003 and
0x400DFFFF or between
0x40100003 and 0x407FFFFF

MPU|Enable or disable Memory
Region 3

Enabled
Disabled

MPU|Memory Region 3 Start Value must be an integer
between 0x400C0000 and
0x400DFFFC or between
0x40100000 and 0x407FFFFC

MPU|Memory Region 3 End Value must be an integer
between 0x400C0003 and
0x400DFFFF or between
0x40100003 and 0x407FFFFF

4.1.2.5 RA6M3
BSP » MCU Board Support Package

Detailed Description

Build Time Configurations for ra6m3_fsp

The following build time configurations are defined in fsp_cfg/bsp/bsp_mcu_family_cfg.h:

Configuration Options Description

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 120 / 601

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M3

OFS0 register
settings|Independent WDT|Start
Mode

IWDT is Disabled
IWDT is automatically
activated after a reset
(Autostart mode)

OFS0 register
settings|Independent
WDT|Timeout Period

128 cycles
512 cycles
1024 cycles
2048 cycles

OFS0 register
settings|Independent
WDT|Dedicated Clock
Frequency Divisor

1
16
32
64
128
256

OFS0 register
settings|Independent
WDT|Window End Position

75%
50%
25%
0% (no window end
position)

OFS0 register
settings|Independent
WDT|Window Start Position

25%
50%
75%
100% (no window start
position)

OFS0 register
settings|Independent
WDT|Reset Interrupt Request
Select

NMI request or interrupt
request is enabled
Reset is enabled

OFS0 register
settings|Independent WDT|Stop
Control

Counting continues
(Note: Device will not
enter Deep Standby
Mode when selected.
Device will enter
Software Standby Mode)
Stop counting when in
Sleep, Snooze mode, or
Software Standby

OFS0 register
settings|WDT|Start Mode Select

Automatically activate
WDT after a reset (auto-
start mode)
Stop WDT after a reset
(register-start mode)

OFS0 register
settings|WDT|Timeout Period

1024 cycles
4096 cycles
8192 cycles
16384 cycles

OFS0 register
settings|WDT|Clock Frequency
Division Ratio

4
64
128

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 121 / 601

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M3

512
2048
8192

OFS0 register
settings|WDT|Window End
Position

75%
50%
25%
0% (no window end
position)

OFS0 register
settings|WDT|Window Start
Position

25%
50%
75%
100% (no window start
position)

OFS0 register
settings|WDT|Reset Interrupt
Request

NMI
Reset

OFS0 register
settings|WDT|Stop Control

Counting continues
Stop counting when
entering Sleep mode

OFS1 register settings|Voltage
Detection 0 Circuit Start

Voltage monitor 0 reset
is enabled after reset
Voltage monitor 0 reset
is disabled after reset

OFS1 register settings|Voltage
Detection 0 Level

2.94 V
2.87 V
2.80 V

OFS1 register settings|HOCO
OScillation Enable

HOCO oscillation is
enabled after reset
HOCO oscillation is
disabled after reset

MPU|Enable or disable PC
Region 0

Enabled
Disabled

MPU|PC0 Start Value must be an integer
between 0 and 0xFFFFFFFC

MPU|PC0 End Value must be an integer
between 0x00000003 and
0xFFFFFFFF

MPU|Enable or disable PC
Region 1

Enabled
Disabled

MPU|PC1 Start Value must be an integer
between 0 and 0xFFFFFFFC

MPU|PC1 End Value must be an integer
between 0x00000003 and
0xFFFFFFFF

MPU|Enable or disable Memory
Region 0

Enabled
Disabled

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 122 / 601

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M3

MPU|Memory Region 0 Start Value must be an integer
between 0 and 0x00FFFFFC

MPU|Memory Region 0 End Value must be an integer
between 0x00000003 and
0x00FFFFFF

MPU|Enable or disable Memory
Region 1

Enabled
Disabled

MPU|Memory Region 1 Start Value must be an integer
between 0x1FF00000 and
0x200FFFFC

MPU|Memory Region 1 End Value must be an integer
between 0x1FF00003 and
0x200FFFFF

MPU|Enable or disable Memory
Region 2

Enabled
Disabled

MPU|Memory Region 2 Start Value must be an integer
between 0x400C0000 and
0x400DFFFC or between
0x40100000 and 0x407FFFFC

MPU|Memory Region 2 End Value must be an integer
between 0x400C0003 and
0x400DFFFF or between
0x40100003 and 0x407FFFFF

MPU|Enable or disable Memory
Region 3

Enabled
Disabled

MPU|Memory Region 3 Start Value must be an integer
between 0x400C0000 and
0x400DFFFC or between
0x40100000 and 0x407FFFFC

MPU|Memory Region 3 End Value must be an integer
between 0x400C0003 and
0x400DFFFF or between
0x40100003 and 0x407FFFFF

4.1.3 BSP I/O access
BSP

Functions

__STATIC_INLINE uint32_t R_BSP_PinRead (bsp_io_port_pin_t pin)

__STATIC_INLINE void R_BSP_PinWrite (bsp_io_port_pin_t pin, bsp_io_level_t level)

__STATIC_INLINE void R_BSP_PinAccessEnable (void)

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 123 / 601

Flexible Software Package

User’s Manual
API Reference > BSP > BSP I/O access

__STATIC_INLINE void R_BSP_PinAccessDisable (void)

Detailed Description

This module provides basic read/write access to port pins.

Enumerations

enum bsp_io_level_t

enum bsp_io_direction_t

enum bsp_io_port_t

enum bsp_io_port_pin_t

Enumeration Type Documentation

◆ bsp_io_level_t

enum bsp_io_level_t

Levels that can be set and read for individual pins

Enumerator

BSP_IO_LEVEL_LOW Low.

BSP_IO_LEVEL_HIGH High.

◆ bsp_io_direction_t

enum bsp_io_direction_t

Direction of individual pins

Enumerator

BSP_IO_DIRECTION_INPUT Input.

BSP_IO_DIRECTION_OUTPUT Output.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 124 / 601

Flexible Software Package

User’s Manual
API Reference > BSP > BSP I/O access

◆ bsp_io_port_t

enum bsp_io_port_t

Superset list of all possible IO ports.

Enumerator

BSP_IO_PORT_00 IO port 0.

BSP_IO_PORT_01 IO port 1.

BSP_IO_PORT_02 IO port 2.

BSP_IO_PORT_03 IO port 3.

BSP_IO_PORT_04 IO port 4.

BSP_IO_PORT_05 IO port 5.

BSP_IO_PORT_06 IO port 6.

BSP_IO_PORT_07 IO port 7.

BSP_IO_PORT_08 IO port 8.

BSP_IO_PORT_09 IO port 9.

BSP_IO_PORT_10 IO port 10.

BSP_IO_PORT_11 IO port 11.

◆ bsp_io_port_pin_t

enum bsp_io_port_pin_t

Superset list of all possible IO port pins.

Enumerator

BSP_IO_PORT_00_PIN_00 IO port 0 pin 0.

BSP_IO_PORT_00_PIN_01 IO port 0 pin 1.

BSP_IO_PORT_00_PIN_02 IO port 0 pin 2.

BSP_IO_PORT_00_PIN_03 IO port 0 pin 3.

BSP_IO_PORT_00_PIN_04 IO port 0 pin 4.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 125 / 601

Flexible Software Package

User’s Manual
API Reference > BSP > BSP I/O access

BSP_IO_PORT_00_PIN_05 IO port 0 pin 5.

BSP_IO_PORT_00_PIN_06 IO port 0 pin 6.

BSP_IO_PORT_00_PIN_07 IO port 0 pin 7.

BSP_IO_PORT_00_PIN_08 IO port 0 pin 8.

BSP_IO_PORT_00_PIN_09 IO port 0 pin 9.

BSP_IO_PORT_00_PIN_10 IO port 0 pin 10.

BSP_IO_PORT_00_PIN_11 IO port 0 pin 11.

BSP_IO_PORT_00_PIN_12 IO port 0 pin 12.

BSP_IO_PORT_00_PIN_13 IO port 0 pin 13.

BSP_IO_PORT_00_PIN_14 IO port 0 pin 14.

BSP_IO_PORT_00_PIN_15 IO port 0 pin 15.

BSP_IO_PORT_01_PIN_00 IO port 1 pin 0.

BSP_IO_PORT_01_PIN_01 IO port 1 pin 1.

BSP_IO_PORT_01_PIN_02 IO port 1 pin 2.

BSP_IO_PORT_01_PIN_03 IO port 1 pin 3.

BSP_IO_PORT_01_PIN_04 IO port 1 pin 4.

BSP_IO_PORT_01_PIN_05 IO port 1 pin 5.

BSP_IO_PORT_01_PIN_06 IO port 1 pin 6.

BSP_IO_PORT_01_PIN_07 IO port 1 pin 7.

BSP_IO_PORT_01_PIN_08 IO port 1 pin 8.

BSP_IO_PORT_01_PIN_09 IO port 1 pin 9.

BSP_IO_PORT_01_PIN_10 IO port 1 pin 10.

BSP_IO_PORT_01_PIN_11 IO port 1 pin 11.

BSP_IO_PORT_01_PIN_12 IO port 1 pin 12.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 126 / 601

Flexible Software Package

User’s Manual
API Reference > BSP > BSP I/O access

BSP_IO_PORT_01_PIN_13 IO port 1 pin 13.

BSP_IO_PORT_01_PIN_14 IO port 1 pin 14.

BSP_IO_PORT_01_PIN_15 IO port 1 pin 15.

BSP_IO_PORT_02_PIN_00 IO port 2 pin 0.

BSP_IO_PORT_02_PIN_01 IO port 2 pin 1.

BSP_IO_PORT_02_PIN_02 IO port 2 pin 2.

BSP_IO_PORT_02_PIN_03 IO port 2 pin 3.

BSP_IO_PORT_02_PIN_04 IO port 2 pin 4.

BSP_IO_PORT_02_PIN_05 IO port 2 pin 5.

BSP_IO_PORT_02_PIN_06 IO port 2 pin 6.

BSP_IO_PORT_02_PIN_07 IO port 2 pin 7.

BSP_IO_PORT_02_PIN_08 IO port 2 pin 8.

BSP_IO_PORT_02_PIN_09 IO port 2 pin 9.

BSP_IO_PORT_02_PIN_10 IO port 2 pin 10.

BSP_IO_PORT_02_PIN_11 IO port 2 pin 11.

BSP_IO_PORT_02_PIN_12 IO port 2 pin 12.

BSP_IO_PORT_02_PIN_13 IO port 2 pin 13.

BSP_IO_PORT_02_PIN_14 IO port 2 pin 14.

BSP_IO_PORT_02_PIN_15 IO port 2 pin 15.

BSP_IO_PORT_03_PIN_00 IO port 3 pin 0.

BSP_IO_PORT_03_PIN_01 IO port 3 pin 1.

BSP_IO_PORT_03_PIN_02 IO port 3 pin 2.

BSP_IO_PORT_03_PIN_03 IO port 3 pin 3.

BSP_IO_PORT_03_PIN_04 IO port 3 pin 4.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 127 / 601

Flexible Software Package

User’s Manual
API Reference > BSP > BSP I/O access

BSP_IO_PORT_03_PIN_05 IO port 3 pin 5.

BSP_IO_PORT_03_PIN_06 IO port 3 pin 6.

BSP_IO_PORT_03_PIN_07 IO port 3 pin 7.

BSP_IO_PORT_03_PIN_08 IO port 3 pin 8.

BSP_IO_PORT_03_PIN_09 IO port 3 pin 9.

BSP_IO_PORT_03_PIN_10 IO port 3 pin 10.

BSP_IO_PORT_03_PIN_11 IO port 3 pin 11.

BSP_IO_PORT_03_PIN_12 IO port 3 pin 12.

BSP_IO_PORT_03_PIN_13 IO port 3 pin 13.

BSP_IO_PORT_03_PIN_14 IO port 3 pin 14.

BSP_IO_PORT_03_PIN_15 IO port 3 pin 15.

BSP_IO_PORT_04_PIN_00 IO port 4 pin 0.

BSP_IO_PORT_04_PIN_01 IO port 4 pin 1.

BSP_IO_PORT_04_PIN_02 IO port 4 pin 2.

BSP_IO_PORT_04_PIN_03 IO port 4 pin 3.

BSP_IO_PORT_04_PIN_04 IO port 4 pin 4.

BSP_IO_PORT_04_PIN_05 IO port 4 pin 5.

BSP_IO_PORT_04_PIN_06 IO port 4 pin 6.

BSP_IO_PORT_04_PIN_07 IO port 4 pin 7.

BSP_IO_PORT_04_PIN_08 IO port 4 pin 8.

BSP_IO_PORT_04_PIN_09 IO port 4 pin 9.

BSP_IO_PORT_04_PIN_10 IO port 4 pin 10.

BSP_IO_PORT_04_PIN_11 IO port 4 pin 11.

BSP_IO_PORT_04_PIN_12 IO port 4 pin 12.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 128 / 601

Flexible Software Package

User’s Manual
API Reference > BSP > BSP I/O access

BSP_IO_PORT_04_PIN_13 IO port 4 pin 13.

BSP_IO_PORT_04_PIN_14 IO port 4 pin 14.

BSP_IO_PORT_04_PIN_15 IO port 4 pin 15.

BSP_IO_PORT_05_PIN_00 IO port 5 pin 0.

BSP_IO_PORT_05_PIN_01 IO port 5 pin 1.

BSP_IO_PORT_05_PIN_02 IO port 5 pin 2.

BSP_IO_PORT_05_PIN_03 IO port 5 pin 3.

BSP_IO_PORT_05_PIN_04 IO port 5 pin 4.

BSP_IO_PORT_05_PIN_05 IO port 5 pin 5.

BSP_IO_PORT_05_PIN_06 IO port 5 pin 6.

BSP_IO_PORT_05_PIN_07 IO port 5 pin 7.

BSP_IO_PORT_05_PIN_08 IO port 5 pin 8.

BSP_IO_PORT_05_PIN_09 IO port 5 pin 9.

BSP_IO_PORT_05_PIN_10 IO port 5 pin 10.

BSP_IO_PORT_05_PIN_11 IO port 5 pin 11.

BSP_IO_PORT_05_PIN_12 IO port 5 pin 12.

BSP_IO_PORT_05_PIN_13 IO port 5 pin 13.

BSP_IO_PORT_05_PIN_14 IO port 5 pin 14.

BSP_IO_PORT_05_PIN_15 IO port 5 pin 15.

BSP_IO_PORT_06_PIN_00 IO port 6 pin 0.

BSP_IO_PORT_06_PIN_01 IO port 6 pin 1.

BSP_IO_PORT_06_PIN_02 IO port 6 pin 2.

BSP_IO_PORT_06_PIN_03 IO port 6 pin 3.

BSP_IO_PORT_06_PIN_04 IO port 6 pin 4.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 129 / 601

Flexible Software Package

User’s Manual
API Reference > BSP > BSP I/O access

BSP_IO_PORT_06_PIN_05 IO port 6 pin 5.

BSP_IO_PORT_06_PIN_06 IO port 6 pin 6.

BSP_IO_PORT_06_PIN_07 IO port 6 pin 7.

BSP_IO_PORT_06_PIN_08 IO port 6 pin 8.

BSP_IO_PORT_06_PIN_09 IO port 6 pin 9.

BSP_IO_PORT_06_PIN_10 IO port 6 pin 10.

BSP_IO_PORT_06_PIN_11 IO port 6 pin 11.

BSP_IO_PORT_06_PIN_12 IO port 6 pin 12.

BSP_IO_PORT_06_PIN_13 IO port 6 pin 13.

BSP_IO_PORT_06_PIN_14 IO port 6 pin 14.

BSP_IO_PORT_06_PIN_15 IO port 6 pin 15.

BSP_IO_PORT_07_PIN_00 IO port 7 pin 0.

BSP_IO_PORT_07_PIN_01 IO port 7 pin 1.

BSP_IO_PORT_07_PIN_02 IO port 7 pin 2.

BSP_IO_PORT_07_PIN_03 IO port 7 pin 3.

BSP_IO_PORT_07_PIN_04 IO port 7 pin 4.

BSP_IO_PORT_07_PIN_05 IO port 7 pin 5.

BSP_IO_PORT_07_PIN_06 IO port 7 pin 6.

BSP_IO_PORT_07_PIN_07 IO port 7 pin 7.

BSP_IO_PORT_07_PIN_08 IO port 7 pin 8.

BSP_IO_PORT_07_PIN_09 IO port 7 pin 9.

BSP_IO_PORT_07_PIN_10 IO port 7 pin 10.

BSP_IO_PORT_07_PIN_11 IO port 7 pin 11.

BSP_IO_PORT_07_PIN_12 IO port 7 pin 12.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 130 / 601

Flexible Software Package

User’s Manual
API Reference > BSP > BSP I/O access

BSP_IO_PORT_07_PIN_13 IO port 7 pin 13.

BSP_IO_PORT_07_PIN_14 IO port 7 pin 14.

BSP_IO_PORT_07_PIN_15 IO port 7 pin 15.

BSP_IO_PORT_08_PIN_00 IO port 8 pin 0.

BSP_IO_PORT_08_PIN_01 IO port 8 pin 1.

BSP_IO_PORT_08_PIN_02 IO port 8 pin 2.

BSP_IO_PORT_08_PIN_03 IO port 8 pin 3.

BSP_IO_PORT_08_PIN_04 IO port 8 pin 4.

BSP_IO_PORT_08_PIN_05 IO port 8 pin 5.

BSP_IO_PORT_08_PIN_06 IO port 8 pin 6.

BSP_IO_PORT_08_PIN_07 IO port 8 pin 7.

BSP_IO_PORT_08_PIN_08 IO port 8 pin 8.

BSP_IO_PORT_08_PIN_09 IO port 8 pin 9.

BSP_IO_PORT_08_PIN_10 IO port 8 pin 10.

BSP_IO_PORT_08_PIN_11 IO port 8 pin 11.

BSP_IO_PORT_08_PIN_12 IO port 8 pin 12.

BSP_IO_PORT_08_PIN_13 IO port 8 pin 13.

BSP_IO_PORT_08_PIN_14 IO port 8 pin 14.

BSP_IO_PORT_08_PIN_15 IO port 8 pin 15.

BSP_IO_PORT_09_PIN_00 IO port 9 pin 0.

BSP_IO_PORT_09_PIN_01 IO port 9 pin 1.

BSP_IO_PORT_09_PIN_02 IO port 9 pin 2.

BSP_IO_PORT_09_PIN_03 IO port 9 pin 3.

BSP_IO_PORT_09_PIN_04 IO port 9 pin 4.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 131 / 601

Flexible Software Package

User’s Manual
API Reference > BSP > BSP I/O access

BSP_IO_PORT_09_PIN_05 IO port 9 pin 5.

BSP_IO_PORT_09_PIN_06 IO port 9 pin 6.

BSP_IO_PORT_09_PIN_07 IO port 9 pin 7.

BSP_IO_PORT_09_PIN_08 IO port 9 pin 8.

BSP_IO_PORT_09_PIN_09 IO port 9 pin 9.

BSP_IO_PORT_09_PIN_10 IO port 9 pin 10.

BSP_IO_PORT_09_PIN_11 IO port 9 pin 11.

BSP_IO_PORT_09_PIN_12 IO port 9 pin 12.

BSP_IO_PORT_09_PIN_13 IO port 9 pin 13.

BSP_IO_PORT_09_PIN_14 IO port 9 pin 14.

BSP_IO_PORT_09_PIN_15 IO port 9 pin 15.

BSP_IO_PORT_10_PIN_00 IO port 10 pin 0.

BSP_IO_PORT_10_PIN_01 IO port 10 pin 1.

BSP_IO_PORT_10_PIN_02 IO port 10 pin 2.

BSP_IO_PORT_10_PIN_03 IO port 10 pin 3.

BSP_IO_PORT_10_PIN_04 IO port 10 pin 4.

BSP_IO_PORT_10_PIN_05 IO port 10 pin 5.

BSP_IO_PORT_10_PIN_06 IO port 10 pin 6.

BSP_IO_PORT_10_PIN_07 IO port 10 pin 7.

BSP_IO_PORT_10_PIN_08 IO port 10 pin 8.

BSP_IO_PORT_10_PIN_09 IO port 10 pin 9.

BSP_IO_PORT_10_PIN_10 IO port 10 pin 10.

BSP_IO_PORT_10_PIN_11 IO port 10 pin 11.

BSP_IO_PORT_10_PIN_12 IO port 10 pin 12.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 132 / 601

Flexible Software Package

User’s Manual
API Reference > BSP > BSP I/O access

BSP_IO_PORT_10_PIN_13 IO port 10 pin 13.

BSP_IO_PORT_10_PIN_14 IO port 10 pin 14.

BSP_IO_PORT_10_PIN_15 IO port 10 pin 15.

BSP_IO_PORT_11_PIN_00 IO port 11 pin 0.

BSP_IO_PORT_11_PIN_01 IO port 11 pin 1.

BSP_IO_PORT_11_PIN_02 IO port 11 pin 2.

BSP_IO_PORT_11_PIN_03 IO port 11 pin 3.

BSP_IO_PORT_11_PIN_04 IO port 11 pin 4.

BSP_IO_PORT_11_PIN_05 IO port 11 pin 5.

BSP_IO_PORT_11_PIN_06 IO port 11 pin 6.

BSP_IO_PORT_11_PIN_07 IO port 11 pin 7.

BSP_IO_PORT_11_PIN_08 IO port 11 pin 8.

BSP_IO_PORT_11_PIN_09 IO port 11 pin 9.

BSP_IO_PORT_11_PIN_10 IO port 11 pin 10.

BSP_IO_PORT_11_PIN_11 IO port 11 pin 11.

BSP_IO_PORT_11_PIN_12 IO port 11 pin 12.

BSP_IO_PORT_11_PIN_13 IO port 11 pin 13.

BSP_IO_PORT_11_PIN_14 IO port 11 pin 14.

BSP_IO_PORT_11_PIN_15 IO port 11 pin 15.

Function Documentation

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 133 / 601

Flexible Software Package

User’s Manual
API Reference > BSP > BSP I/O access

◆ R_BSP_PinRead()

__STATIC_INLINE uint32_t R_BSP_PinRead (bsp_io_port_pin_t pin)

Read the current input level of the pin.

Parameters
[in] pin The pin

Return values
Current input level

◆ R_BSP_PinWrite()

__STATIC_INLINE void R_BSP_PinWrite (bsp_io_port_pin_t pin, bsp_io_level_t level)

Set a pin to output and set the output level to the level provided

Parameters
[in] pin The pin

[in] level The level

◆ R_BSP_PinAccessEnable()

__STATIC_INLINE void R_BSP_PinAccessEnable (void)

Enable access to the PFS registers. Uses a reference counter to protect against interrupts that
could occur via multiple threads or an ISR re-entering this code.

◆ R_BSP_PinAccessDisable()

__STATIC_INLINE void R_BSP_PinAccessDisable (void)

Disable access to the PFS registers. Uses a reference counter to protect against interrupts that
could occur via multiple threads or an ISR re-entering this code.

4.2 Modules

Detailed Description

Modules are the smallest unit of software available in the FSP. Each module implements one
interface.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 134 / 601

Flexible Software Package

User’s Manual
API Reference > Modules

Modules

High-Speed Analog Comparator (r_acmphs)

 This module implements the Comparator Interface using the high-
speed analog comparator.

Low-Power Analog Comparator (r_acmplp)

 Driver for the ACMPLP peripheral on RA MCUs. This module
implements the Comparator Interface.

Analog to Digital Converter (r_adc)

 Driver for the ADC12, ADC14, and ADC16 peripherals on RA MCUs.
This module implements the ADC Interface.

Asynchronous General Purpose Timer (r_agt)

 Driver for the AGT peripheral on RA MCUs. This module implements
the Timer Interface.

Clock Frequency Accuracy Measurement Circuit (r_cac)

 Driver for the CAC peripheral on RA MCUs. This module implements
the CAC Interface.

Clock Generation Circuit (r_cgc)

 Driver for the CGC peripheral on RA MCUs. This module implements
the CGC Interface.

Cyclic Redundancy Check (CRC) Calculator (r_crc)

 Driver for the CRC peripheral on RA MCUs. This module implements
the CRC Interface.

Capacitive Touch Sensing Unit (r_ctsu)

 This HAL driver supports the Capacitive Touch Sensing Unit (CTSU). It
implements the CTSU Interface.

Digital to Analog Converter (r_dac)

 Driver for the DAC12 peripheral on RA MCUs. This module
implements the DAC Interface.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 135 / 601

Flexible Software Package

User’s Manual
API Reference > Modules

Direct Memory Access Controller (r_dmac)

 Driver for the DMAC peripheral on RA MCUs. This module implements
the Transfer Interface.

Data Operation Circuit (r_doc)

 Driver for the DOC peripheral on RA MCUs. This module implements
the DOC Interface.

D/AVE 2D Port Interface (r_drw)

 Driver for the DRW peripheral on RA MCUs. This module is a port of
D/AVE 2D.

Data Transfer Controller (r_dtc)

 Driver for the DTC peripheral on RA MCUs. This module implements
the Transfer Interface.

Event Link Controller (r_elc)

 Driver for the ELC peripheral on RA MCUs. This module implements
the ELC Interface.

Ethernet (r_ether)

 Driver for the Ethernet peripheral on RA MCUs. This module
implements the Ethernet Interface.

Ethernet PHY (r_ether_phy)

 The Ethernet PHY module (r_ether_phy) provides an API for standard
Ethernet PHY communications applications and uses the ETHERC
peripherals. It implements the Ethernet PHY Interface.

High-Performance Flash Driver (r_flash_hp)

 Driver for the flash memory on RA high-performance MCUs. This
module implements the Flash Interface.

Low-Power Flash Driver (r_flash_lp)

 Driver for the flash memory on RA low-power MCUs. This module
implements the Flash Interface.

Graphics LCD Controller (r_glcdc)

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 136 / 601

Flexible Software Package

User’s Manual
API Reference > Modules

 Driver for the GLCDC peripheral on RA MCUs. This module
implements the Display Interface.

General PWM Timer (r_gpt)

 Driver for the GPT32 and GPT16 peripherals on RA MCUs. This
module implements the Timer Interface.

Interrupt Controller Unit (r_icu)

 Driver for the ICU peripheral on RA MCUs. This module implements
the External IRQ Interface.

I2C Master on IIC (r_iic_master)

 Driver for the IIC peripheral on RA MCUs. This module implements
the I2C Master Interface.

I2C Slave on IIC (r_iic_slave)

 Driver for the IIC peripheral on RA MCUs. This module implements
the I2C Slave Interface.

I/O Ports (r_ioport)

 Driver for the I/O Ports peripheral on RA MCUs. This module
implements the I/O Port Interface.

Independent Watchdog Timer (r_iwdt)

 Driver for the IWDT peripheral on RA MCUs. This module implements
the WDT Interface.

JPEG Codec (r_jpeg)

 Driver for the JPEG peripheral on RA MCUs. This module implements
the JPEG Codec Interface.

Key Interrupt (r_kint)

 Driver for the KINT peripheral on RA MCUs. This module implements
the Key Matrix Interface.

Low Power Modes (r_lpm)

 Driver for the LPM peripheral on RA MCUs. This module implements

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 137 / 601

Flexible Software Package

User’s Manual
API Reference > Modules

the Low Power Modes Interface.

Low Voltage Detection (r_lvd)

 Driver for the LVD peripheral on RA MCUs. This module implements
the Low Voltage Detection Interface.

Realtime Clock (r_rtc)

 Driver for the RTC peripheral on RA MCUs. This module implements
the RTC Interface.

Serial Communications Interface (SCI) I2C (r_sci_i2c)

 Driver for the SCI peripheral on RA MCUs. This module implements
the I2C Master Interface.

Serial Communications Interface (SCI) SPI (r_sci_spi)

 Driver for the SCI peripheral on RA MCUs. This module implements
the SPI Interface.

Serial Communications Interface (SCI) UART (r_sci_uart)

 Driver for the SCI peripheral on RA MCUs. This module implements
the UART Interface.

SD/MMC Host Interface (r_sdhi)

 Driver for the SD/MMC Host Interface (SDHI) peripheral on RA MCUs.
This module implements the SD/MMC Interface.

Serial Peripheral Interface (r_spi)

 Driver for the SPI peripheral on RA MCUs. This module implements
the SPI Interface.

Serial Sound Interface (r_ssi)

 Driver for the SSIE peripheral on RA MCUs. This module implements
the I2S Interface.

Universal Serial Bus (r_usb_basic)

 The USB module (r_usb_basic) provides an API to perform H / W
control of USB communication. It implements the USB Interface.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 138 / 601

Flexible Software Package

User’s Manual
API Reference > Modules

Host Mass Storage Class Driver (r_usb_hmsc)

 The USB module (r_usb_hmsc) provides an API to perform hardware
control of USB communications. It implements the USB Interface.

Universal Serial Bus Peripheral Communication Device Class
(r_usb_pcdc)

 This module is USB Peripheral Communication Device Class Driver
(PCDC).
This module works in combination with (r_usb_basic module).

Watchdog Timer (r_wdt)

 Driver for the WDT peripheral on RA MCUs. This module implements
the WDT Interface.

SEGGER emWin Port (rm_emwin_port)

 SEGGER emWin port for RA MCUs.

FreeRTOS Plus FAT (rm_freertos_plus_fat)

 Middleware for the Fat File System control on RA MCUs.

Amazon FreeRTOS Port (rm_freertos_port)

 Amazon FreeRTOS port for RA MCUs.

Crypto Middleware (rm_psa_crypto)

 Hardware acceleration for the mbedCrypto implementation of the
ARM PSA Crypto API.

Capacitive Touch Middleware (rm_touch)

 This module supports the Capacitive Touch Sensing Unit (CTSU). It
implements the Touch Middleware Interface.

4.2.1 High-Speed Analog Comparator (r_acmphs)
Modules

Functions

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 139 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > High-Speed Analog Comparator (r_acmphs)

fsp_err_t R_ACMPHS_Open (comparator_ctrl_t *p_ctrl, comparator_cfg_t const
*const p_cfg)

fsp_err_t R_ACMPHS_OutputEnable (comparator_ctrl_t *const p_ctrl)

fsp_err_t R_ACMPHS_InfoGet (comparator_ctrl_t *const p_ctrl,
comparator_info_t *const p_info)

fsp_err_t R_ACMPHS_StatusGet (comparator_ctrl_t *const p_ctrl,
comparator_status_t *const p_status)

fsp_err_t R_ACMPHS_Close (comparator_ctrl_t *const p_ctrl)

fsp_err_t R_ACMPHS_VersionGet (fsp_version_t *const p_version)

Detailed Description

This module implements the Comparator Interface using the high-speed analog comparator.

Overview
Features

The ACMPHS HAL module supports the following features:

Callback on rising edge, falling edge or both
Configurable debounce filter
Option to include comparator output on VCOUT pin or ELC events

Configuration

Build Time Configurations for r_acmphs

The following build time configurations are defined in fsp_cfg/r_acmphs_cfg.h:

Configuration Options Description

Parameter Checking Default (BSP)
Enabled
Disabled

If selected code for parameter
checking is included in the
build.

Configurations for Comparator Driver on r_acmphs

This module can be added to the Threads tab from New -> Driver -> Analog -> Comparator Driver on
r_acmphs:

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 140 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Low-Power Analog Comparator (r_acmplp)

4.2.2 Low-Power Analog Comparator (r_acmplp)
Modules

Functions

fsp_err_t R_ACMPLP_Open (comparator_ctrl_t *const p_ctrl, comparator_cfg_t
const *const p_cfg)

fsp_err_t R_ACMPLP_OutputEnable (comparator_ctrl_t *const p_ctrl)

fsp_err_t R_ACMPLP_InfoGet (comparator_ctrl_t *const p_ctrl,
comparator_info_t *const p_info)

fsp_err_t R_ACMPLP_StatusGet (comparator_ctrl_t *const p_ctrl,
comparator_status_t *const p_status)

fsp_err_t R_ACMPLP_Close (comparator_ctrl_t *const p_ctrl)

fsp_err_t R_ACMPLP_VersionGet (fsp_version_t *const p_version)

Detailed Description

Driver for the ACMPLP peripheral on RA MCUs. This module implements the Comparator Interface.

Overview
Features

The ACMPLP HAL module supports the following features:

Normal mode or window mode
Callback on rising edge, falling edge or both
Configurable debounce filter
Option to include comparator output on VCOUT pin or ELC events

Configuration

Build Time Configurations for r_acmplp

The following build time configurations are defined in fsp_cfg/r_acmplp_cfg.h:

Configuration Options Description

Parameter Checking Default (BSP)
Enabled
Disabled

If selected code for parameter
checking is included in the
build.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 141 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Low-Power Analog Comparator (r_acmplp)

Reference Voltage Selection
(ACMPLP1)

IVREF0
IVREF1

Reference Voltage Selection for
ACMPLP1.

Configurations for Comparator Driver on r_acmplp

This module can be added to the Threads tab from New -> Driver -> Analog -> Comparator Driver on
r_acmplp:

4.2.3 Analog to Digital Converter (r_adc)
Modules

Functions

fsp_err_t R_ADC_Open (adc_ctrl_t *p_ctrl, adc_cfg_t const *const p_cfg)

fsp_err_t R_ADC_ScanCfg (adc_ctrl_t *p_ctrl, adc_channel_cfg_t const *const
p_channel_cfg)

fsp_err_t R_ADC_InfoGet (adc_ctrl_t *p_ctrl, adc_info_t *p_adc_info)

fsp_err_t R_ADC_ScanStart (adc_ctrl_t *p_ctrl)

fsp_err_t R_ADC_ScanStop (adc_ctrl_t *p_ctrl)

fsp_err_t R_ADC_StatusGet (adc_ctrl_t *p_ctrl, adc_status_t *p_status)

fsp_err_t R_ADC_Read (adc_ctrl_t *p_ctrl, adc_channel_t const reg_id, uint16_t
*const p_data)

fsp_err_t R_ADC_Read32 (adc_ctrl_t *p_ctrl, adc_channel_t const reg_id,
uint32_t *const p_data)

fsp_err_t R_ADC_SampleStateCountSet (adc_ctrl_t *p_ctrl, adc_sample_state_t
*p_sample)

fsp_err_t R_ADC_Close (adc_ctrl_t *p_ctrl)

fsp_err_t R_ADC_OffsetSet (adc_ctrl_t *const p_ctrl, adc_channel_t const
reg_id, int32_t offset)

fsp_err_t R_ADC_Calibrate (adc_ctrl_t *const p_ctrl, void *const p_extend)

fsp_err_t R_ADC_VersionGet (fsp_version_t *const p_version)

Detailed Description

Driver for the ADC12, ADC14, and ADC16 peripherals on RA MCUs. This module implements the ADC
Interface.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 142 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Analog to Digital Converter (r_adc)

Overview
Features

The ADC module supports the following features:

12, 14, or 16 bit maximum resolution depending on the MCU
Configure scans to include:

Multiple analog channels
Temperature sensor channel
Voltage sensor channel

Configurable scan start trigger:
Software scan triggers
Hardware scan triggers (timer expiration, for example)
External scan triggers from the ADTRGn port pins

Configurable scan mode:
Single scan mode, where each trigger starts a single scan
Continuous scan mode, where all channels are scanned continuously
Group scan mode, where channels are grouped into group A and group B. The
groups can be assigned different start triggers, and group A can be given priority
over group B. When group A has priority over group B, a group A trigger suspends
an ongoing group B scan.

Supports adding and averaging converted samples
Optional callback when scan completes
Supports reading converted data
Sample and hold support

Configuration

Build Time Configurations for r_adc

The following build time configurations are defined in fsp_cfg/r_adc_cfg.h:

Configuration Options Description

Parameter Checking BSP
Enabled
Disabled

If selected code for parameter
checking is included in the
build.

Configurations for ADC Driver on r_adc

This module can be added to the Threads tab from New -> Driver -> Analog -> ADC Driver on r_adc:

4.2.4 Asynchronous General Purpose Timer (r_agt)
Modules

Detailed Description

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 143 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Asynchronous General Purpose Timer (r_agt)

Driver for the AGT peripheral on RA MCUs. This module implements the Timer Interface.

Overview
Features

The AGT module has the following features:

Supports periodic mode, one-shot mode, and PWM mode.
Signal can be output to a pin.
Configurable period (counts per timer cycle).
Configurable duty cycle in PWM mode.
Configurable clock source, including PCLKB, LOCO, SUBCLK, and external sources input to
AGTIO.
Supports runtime reconfiguration of period.
Supports runtime reconfiguration of duty cycle in PWM mode.
Supports counting based on an external clock input to AGTIO.
Supports debounce filter on AGTIO pins.
Supports measuring pulse width or pulse period.
APIs are provided to start, stop, and reset the counter.
APIs are provided to get the current period, source clock frequency, and count direction.
APIs are provided to get the current timer status and counter value.

Selecting a Timer

RA MCUs have two timer peripherals: the General PWM Timer (GPT) and the Asynchronous General
Purpose Timer (AGT). When selecting between them, consider these factors:

GPT AGT

Low Power Modes The GPT can operate in sleep
mode.

The AGT can operate in all low
power modes (when count
source is LOCO or subclock).

Available Channels The number of GPT channels is
device specific. All currently
supported MCUs have at least 7
GPT channels.

All MCUs have 2 AGT channels.

Timer Resolution All MCUs have at least one
32-bit GPT timer.

The AGT timers are 16-bit
timers.

Clock Source The GPT runs off PCLKD with a
configurable divider up to 1024.
It can also be configured to
count ELC events or external
pulses.

The AGT runs off PCLKB, LOCO,
or subclock with a configurable
divider up to 8 for PCLKB or up
to 128 for LOCO or subclock.

Configuration

Build Time Configurations for r_agt

The following build time configurations are defined in fsp_cfg/r_agt_cfg.h:

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 144 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Asynchronous General Purpose Timer (r_agt)

Configuration Options Description

Parameter Checking Default (BSP)
Enabled
Disabled

If selected code for parameter
checking is included in the
build.

Pin Output Support Disabled
Enabled

If selected code for outputting a
waveform to a pin is included in
the build.

Pin Input Support Disabled
Enabled

Enable input support to use
pulse width measurement
mode, pulse period
measurement mode, or input
from P402, P402, or AGTIO.

Configurations for Timer Driver on r_agt

This module can be added to the Threads tab from New -> Driver -> Timers -> Timer Driver on
r_agt:

4.2.5 Clock Frequency Accuracy Measurement Circuit (r_cac)
Modules

Functions

fsp_err_t R_CAC_Open (cac_ctrl_t *const p_ctrl, cac_cfg_t const *const p_cfg)

fsp_err_t R_CAC_StartMeasurement (cac_ctrl_t *const p_ctrl)

fsp_err_t R_CAC_StopMeasurement (cac_ctrl_t *const p_ctrl)

fsp_err_t R_CAC_Read (cac_ctrl_t *const p_ctrl, uint16_t *const p_counter)

fsp_err_t R_CAC_Close (cac_ctrl_t *const p_ctrl)

fsp_err_t R_CAC_VersionGet (fsp_version_t *const p_version)

Detailed Description

Driver for the CAC peripheral on RA MCUs. This module implements the CAC Interface.

Overview
The interface for the clock frequency accuracy measurement circuit (CAC) peripheral is used to
check a system clock frequency with a reference clock signal by counting the number of
measurement clock edges that occur between two edges of the reference clock.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 145 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Clock Frequency Accuracy Measurement Circuit (r_cac)

Features

Supports clock frequency-measurement and monitoring based on a reference signal input
Reference can be either an externally supplied clock source or an internal clock source
An interrupt request may optionally be generated by a completed measurement, a detected
frequency error, or a counter overflow.
A digital filter is available for an externally supplied reference clock, and dividers are
available for both internally supplied measurement and reference clocks.
Edge-detection options for the reference clock are configurable as rising, falling, or both.

Configuration

Build Time Configurations for r_cac

The following build time configurations are defined in fsp_cfg/r_cac_cfg.h:

Configuration Options Description

Parameter Checking Default (BSP)
Enabled
Disabled

If selected code for parameter
checking is included in the
build.

Configurations for Clock Accuracy Circuit Driver on r_cac

This module can be added to the Threads tab from New -> Driver -> Monitoring -> Clock Accuracy
Circuit Driver on r_cac:

4.2.6 Clock Generation Circuit (r_cgc)
Modules

Functions

fsp_err_t R_CGC_Open (cgc_ctrl_t *const p_ctrl, cgc_cfg_t const *const p_cfg)

fsp_err_t R_CGC_ClocksCfg (cgc_ctrl_t *const p_ctrl, cgc_clocks_cfg_t const
*const p_clock_cfg)

fsp_err_t R_CGC_ClockStart (cgc_ctrl_t *const p_ctrl, cgc_clock_t clock_source,
cgc_pll_cfg_t const *const p_pll_cfg)

fsp_err_t R_CGC_ClockStop (cgc_ctrl_t *const p_ctrl, cgc_clock_t clock_source)

fsp_err_t R_CGC_ClockCheck (cgc_ctrl_t *const p_ctrl, cgc_clock_t
clock_source)

fsp_err_t R_CGC_SystemClockSet (cgc_ctrl_t *const p_ctrl, cgc_clock_t
clock_source, cgc_divider_cfg_t const *const p_divider_cfg)

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 146 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Clock Generation Circuit (r_cgc)

fsp_err_t R_CGC_SystemClockGet (cgc_ctrl_t *const p_ctrl, cgc_clock_t *const
p_clock_source, cgc_divider_cfg_t *const p_divider_cfg)

fsp_err_t R_CGC_OscStopDetectEnable (cgc_ctrl_t *const p_ctrl)

fsp_err_t R_CGC_OscStopDetectDisable (cgc_ctrl_t *const p_ctrl)

fsp_err_t R_CGC_OscStopStatusClear (cgc_ctrl_t *const p_ctrl)

fsp_err_t R_CGC_Close (cgc_ctrl_t *const p_ctrl)

fsp_err_t R_CGC_VersionGet (fsp_version_t *version)

Detailed Description

Driver for the CGC peripheral on RA MCUs. This module implements the CGC Interface.

Overview
Features

The CGC module supports runtime modifications of clock settings. Key features include the following:

Supports changing the system clock source to any of the following options (provided they
are supported on the MCU):

High-speed on-chip oscillator (HOCO)
Middle-speed on-chip oscillator (MOCO)
Low-speed on-chip oscillator (LOCO)
Main oscillator (external resonator or external clock input frequency)
Sub-clock oscillator (external resonator)
PLL (not available on all MCUs)

When the system core clock frequency changes, the following things are updated:
The CMSIS standard global variable SystemCoreClock is updated to reflect the new
clock frequency.
Wait states for ROM and RAM are adjusted to the minimum supported value for the
new clock frequency.
The operating power control mode is updated to the minimum supported value for
the new clock settings.

Supports starting or stopping any of the system clock sources

Supports changing dividers for the internal clocks

Supports the oscillation stop detection feature

Note
This module is not required for the initial clock configuration. Initial clock settings are configurable on the Clocks
tab of the configuration tool. The initial clock settings are applied by the BSP during the startup process before
main.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 147 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Clock Generation Circuit (r_cgc)

Internal Clocks

The RA microcontrollers have up to seven internal clocks. Not all internal clocks exist on all MCUs.
Each clock domain has its own divider that can be updated in R_CGC_SystemClockSet(). The dividers
are subject to constraints described in the footnote of the table "Specifications of the Clock
Generation Circuit for the internal clocks" in the hardware manual.

The internal clocks include:

System clock (ICLK): core clock used for CPU, flash, internal SRAM, DTC, and DMAC
PCLKA/PCLKB/PCLKC/PCLKD: Peripheral clocks, refer to the table "Specifications of the Clock
Generation Circuit for the internal clocks" in the hardware manual to see which peripherals
are controlled by which clocks.
FCLK: Clock source for reading data flash and for programming/erasure of both code and
data flash.
BCLK: External bus clock

Configuration
Note

The initial clock settings are configurable on the Clocks tab of the configuration tool.
There is a configuration to enable the HOCO on reset in the OFS1 settings on the BSP tab.
The following clock related settings are configurable in the RA Common section on the BSP tab:

Main Oscillator Wait Time
Main Oscillator Clock Source (external oscillator or crystal/resonator)
Subclock Populated
Subclock Drive
Subclock Stabilization Time (ms)

Build Time Configurations for r_cgc

The following build time configurations are defined in fsp_cfg/r_cgc_cfg.h:

Configuration Options Description

Parameter Checking Default (BSP)
Enabled
Disabled

If selected code for parameter
checking is included in the
build.

Configurations for CGC Driver on r_cgc

This module can be added to the Threads tab from New -> Driver -> System -> CGC Driver on r_cgc:

4.2.7 Cyclic Redundancy Check (CRC) Calculator (r_crc)
Modules

Functions

fsp_err_t R_CRC_Open (crc_ctrl_t *const p_ctrl, crc_cfg_t const *const p_cfg)

fsp_err_t R_CRC_Close (crc_ctrl_t *const p_ctrl)

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 148 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Cyclic Redundancy Check (CRC) Calculator (r_crc)

fsp_err_t R_CRC_Calculate (crc_ctrl_t *const p_ctrl, crc_input_t *const
p_crc_input, uint32_t *calculatedValue)

fsp_err_t R_CRC_CalculatedValueGet (crc_ctrl_t *const p_ctrl, uint32_t
*calculatedValue)

fsp_err_t R_CRC_SnoopEnable (crc_ctrl_t *const p_ctrl, uint32_t crc_seed)

fsp_err_t R_CRC_SnoopDisable (crc_ctrl_t *const p_ctrl)

fsp_err_t R_CRC_VersionGet (fsp_version_t *const p_version)

Detailed Description

Driver for the CRC peripheral on RA MCUs. This module implements the CRC Interface.

Overview
The CRC module provides a API to calculate 8, 16 and 32-bit CRC values on a block of data in
memory or a stream of data over a Serial Communication Interface (SCI) channel using industry-
standard polynomials.

Features

CRC module supports the following 8 and 16 bit CRC polynomials which operates on 8-bit
data in parallel

X^8+X^2+X+1 (CRC-8)
X^16+X^15+X^2+1 (CRC-16)
X^16+X^12+X^5+1 (CRC-CCITT)

CRC module supports the following 32 bit CRC polynomials which operates on 32-bit data in
parallel

X^32+X^26+X^23+X^22+X^16+X^12+X^11+X^10+X^8+X^7+X^5+X^4+X
^2+X+ 1 (CRC-32)
X^32+ X^28+ X^27+ X^26+ X^25+ X^23+ X^22+ X^20+ X^19+
X^18+X^14+X^13+X^11+X^10+X^9+X^8+X^6+1 (CRC-32C)

CRC module can calculate CRC with LSB first or MSB first bit order.

Configuration
Build Time Configurations for r_crc

The following build time configurations are defined in fsp_cfg/r_crc_cfg.h:

Configuration Options Description

Parameter Checking Default (BSP)
Enabled
Disabled

If selected code for parameter
checking is included in the
build.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 149 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Cyclic Redundancy Check (CRC) Calculator (r_crc)

Configurations for CRC Driver on r_crc

This module can be added to the Threads tab from New -> Driver -> Monitoring -> CRC Driver on
r_crc:

4.2.8 Capacitive Touch Sensing Unit (r_ctsu)
Modules

Functions

fsp_err_t R_CTSU_Open (ctsu_ctrl_t *const p_ctrl, ctsu_cfg_t const *const
p_cfg)

 Opens and configures the CTSU driver module. Implements
ctsu_api_t::open. More...

fsp_err_t R_CTSU_ScanStart (ctsu_ctrl_t *const p_ctrl)

 This function should be called each time a periodic timer expires. If
initial offset tuning is enabled, The first several calls are used to
tuning for the sensors. Once that is complete, normal processing of
the data from the last scan occurs. If a different control block should
be run on the next scan, that is set up as well, then the next scan is
started. Implements ctsu_api_t::scanStart. More...

fsp_err_t R_CTSU_DataGet (ctsu_ctrl_t *const p_ctrl, uint16_t *p_data)

 This function gets the sensor values as scanned by the CTSU.
Implements ctsu_api_t::dataGet. More...

fsp_err_t R_CTSU_Close (ctsu_ctrl_t *const p_ctrl)

 Disables specified CTSU control block. Implements
transfer_api_t::close. More...

fsp_err_t R_CTSU_VersionGet (fsp_version_t *const p_version)

 Return CTSU HAL driver version. Implements ctsu_api_t::versionGet.
More...

Detailed Description

This HAL driver supports the Capacitive Touch Sensing Unit (CTSU). It implements the CTSU Interface
.

Overview

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 150 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Capacitive Touch Sensing Unit (r_ctsu)

The capacitive touch sensing unit HAL driver (r_ctsu) provides an API to control the CTSU peripheral.
Capacitance measurement with various settings is possible by editing the configuration.

Features

Supports both Self-capacitance multi scan mode and Mutual-capacitance full scan mode.
The settings related to scanning can change in detail.
Grouping of scans is possible.

Starts scanning at any time.
The scan may be started by a software trigger or an external trigger.
The scan completion is signalled by the callback function.

Gets all results after scans are complete.
Additional build-time features

Optional (build time) DTC support for CTSUWR and CTSURD respectively.
Optional (build time) Support for real-time monitoring function by QE. (Not yet
available)

Configuration
Build Time Configurations for r_ctsu

The following build time configurations are defined in fsp_cfg/r_ctsu_cfg.h:

Configuration Options Description

Parameter Checking Default (BSP)
Enabled
Disabled

If selected code for parameter
checking is included in the
build.

Enable Support for using DTC Enabled
Disabled

If enabled, DTC instances will
be included in the build for both
transmission and reception.

Interrupt priority level Interrupt vector number must
be an integer greater than 0

Priority level of all CTSU
interrupt
(CSTU_WR,CTSU_RD,CTSU_FN)

NUM_SELF_ELEMENTS Interrupt vector number must
be an integer greater than 0

Number of self elements

NUM_MUTUAL_ELEMENTS Interrupt vector number must
be an integer greater than 0

Number of mutual elements

Configurations for CTSU Driver on r_ctsu

This module can be added to the Threads tab from New -> Driver -> CapTouch -> CTSU Driver on
r_ctsu:

4.2.9 Digital to Analog Converter (r_dac)
Modules

Functions

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 151 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Digital to Analog Converter (r_dac)

fsp_err_t R_DAC_Open (dac_ctrl_t *p_api_ctrl, dac_cfg_t const *const p_cfg)

fsp_err_t R_DAC_Write (dac_ctrl_t *p_api_ctrl, uint16_t value)

fsp_err_t R_DAC_Start (dac_ctrl_t *p_api_ctrl)

fsp_err_t R_DAC_Stop (dac_ctrl_t *p_api_ctrl)

fsp_err_t R_DAC_Close (dac_ctrl_t *p_api_ctrl)

fsp_err_t R_DAC_VersionGet (fsp_version_t *p_version)

Detailed Description

Driver for the DAC12 peripheral on RA MCUs. This module implements the DAC Interface.

Overview
Features

The DAC module outputs one of 4096 voltage levels between the positive and negative reference
voltages.

Supports setting left-justified or right-justified 12-bit value format for the 16-bit input data
registers
Supports output amplifiers on selected MCUs
Supports charge pump on selected MCUs
Operate in synchronous anti-interference mode with the Analog-to-Digital Converter (ADC)
module.

Configuration
Build Time Configurations for r_dac

The following build time configurations are defined in fsp_cfg/r_dac_cfg.h:

Configuration Options Description

Parameter Checking Default (BSP)
Enabled
Disabled

If selected code for parameter
checking is included in the
build.

Configurations for DAC Driver on r_dac

This module can be added to the Threads tab from New -> Driver -> Analog -> DAC Driver on r_dac:

4.2.10 Direct Memory Access Controller (r_dmac)
Modules

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 152 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Direct Memory Access Controller (r_dmac)

Functions

fsp_err_t R_DMAC_Open (transfer_ctrl_t *const p_api_ctrl, transfer_cfg_t const
*const p_cfg)

fsp_err_t R_DMAC_Reconfigure (transfer_ctrl_t *const p_api_ctrl, transfer_info_t
*p_info)

fsp_err_t R_DMAC_Reset (transfer_ctrl_t *const p_api_ctrl, void const *volatile
p_src, void *volatile p_dest, uint16_t const num_transfers)

fsp_err_t R_DMAC_SoftwareStart (transfer_ctrl_t *const p_api_ctrl,
transfer_start_mode_t mode)

fsp_err_t R_DMAC_SoftwareStop (transfer_ctrl_t *const p_api_ctrl)

fsp_err_t R_DMAC_Enable (transfer_ctrl_t *const p_api_ctrl)

fsp_err_t R_DMAC_Disable (transfer_ctrl_t *const p_api_ctrl)

fsp_err_t R_DMAC_InfoGet (transfer_ctrl_t *const p_api_ctrl,
transfer_properties_t *const p_info)

fsp_err_t R_DMAC_Close (transfer_ctrl_t *const p_api_ctrl)

fsp_err_t R_DMAC_VersionGet (fsp_version_t *const p_version)

Detailed Description

Driver for the DMAC peripheral on RA MCUs. This module implements the Transfer Interface.

Overview
The Direct Memory Access Controller (DMAC) transfers data from one memory location to another
without using the CPU.

Features

Supports multiple transfer modes
Normal transfer
Repeat transfer
Block transfer

Address increment, decrement, fixed, or offset modes
Triggered by ELC events

Some exceptions apply, see the Event table in the Event Numbers section of the
Interrupt Controller Unit chapter of the hardware manual

Supports 1, 2, and 4 byte data units

Transfer Modes

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 153 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Direct Memory Access Controller (r_dmac)

The DMAC Module supports three modes of operation.

Normal Mode - In normal mode, a single data unit is transfered every time the configured
ELC event is received by the DMAC channel. A data unit can be 1-byte, 2-bytes, or 4-bytes.
The source and destination addresses can be fixed, increment, decrement, or add an offset
to the next data unit after each transfer. A 16-bit counter decrements after each transfer.
When the counter reaches 0, transfers will no longer be triggered by the ELC event and the
CPU can be interrupted to signal that all transfers have finished.
Repeat Mode - Repeat mode works the same way as normal mode, however the length is
limited to an integer in the range[1,1024]. When the transfer counter reaches 0, the
counter is reset to its configured value, the repeat area(source or destination address)
resets to its starting address and the block count remaining will decrement by 1. When the
block count reaches 0, transfers will no longer be triggered by the ELC event and the CPU
may be interrupted to signal that all transfers have finished.
Block Mode - In block mode, the amount of data units transfered by each interrupt can be
set to an integer in the range [1,1024]. The number of blocks to transfer can also be
configured to a 16-bit number. After each block transfer the repeat area(source or
destination address) will reset to the original address and the other address will be
incremented or decremented to the next block.

Selecting the DTC or DMAC

The Transfer API is implemented by both DTC and the DMAC so that applications can switch between
the DTC and the DMAC. When selecting between them, consider these factors:

DTC DMAC

Repeat Mode Repeats forever
Max repeat size is 256 x
4 bytes

Configurable number of
repeats
Max repeat size is 1024
x 4 bytes

Block Mode Max block size is 256 x
4 bytes

Max block size is 1024 x
4 bytes

Channels One instance per
interrupt

MCU specific (8
channels or less)

Chained Transfers Supported Not Supported

Software Trigger Must use the software
ELC event

Has support for software
trigger without using
software ELC event
Supports TRANSFER_ST
ART_MODE_SINGLE and
TRANSFER_START_MOD
E_REPEAT

Offset Address Mode Not supported Supported

Interrupts

The DTC and DMAC interrupts behave differently. The DTC uses the configured IELSR event IRQ as
the interrupt source whereas each DMAC channel has its own IRQ.

The transfer_info_t::irq setting also behaves a little differently depending on which mode is selected.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 154 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Direct Memory Access Controller (r_dmac)

Normal Mode

DTC DMAC

TRANSFER_IRQ_EACH Interrupt after each transfer N/A

TRANSFER_IRQ_END Interrupt after last transfer Interrupt after last transfer

Repeat Mode

DTC DMAC

TRANSFER_IRQ_EACH Interrupt after each transfer Interrupt after each repeat

TRANSFER_IRQ_END Interrupt after each repeat Interrupt after last transfer

Block Mode

DTC DMAC

TRANSFER_IRQ_EACH Interrupt after each block Interrupt after each block

TRANSFER_IRQ_END Interrupt after last block Interrupt after last block

Additional Considerations

The DTC requires a moderate amount of RAM (one transfer_info_t struct per open instance
+ DTC_VECTOR_TABLE_SIZE).
The DTC stores transfer information in RAM and writes back to RAM after each transfer
whereas the DMAC stores all transfer information in registers.
When transfers are configured for more than one activation source, the DTC must fetch the
transfer info from RAM on each interrupt. This can cause a higher latency between
transfers.

Configuration

Build Time Configurations for r_dmac

The following build time configurations are defined in fsp_cfg/r_dmac_cfg.h:

Configuration Options Description

Parameter Checking Default (BSP)
Enabled
Disabled

If selected code for parameter
checking is included in the
build.

Configurations for Transfer Driver on r_dmac

This module can be added to the Threads tab from New -> Driver -> Transfer -> Transfer Driver on
r_dmac :

4.2.11 Data Operation Circuit (r_doc)

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 155 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Data Operation Circuit (r_doc)

Modules

Functions

fsp_err_t R_DOC_Open (doc_ctrl_t *const p_api_ctrl, doc_cfg_t const *const
p_cfg)

fsp_err_t R_DOC_Close (doc_ctrl_t *const p_api_ctrl)

fsp_err_t R_DOC_StatusGet (doc_ctrl_t *const p_api_ctrl, doc_status_t *const
p_status)

fsp_err_t R_DOC_Write (doc_ctrl_t *const p_api_ctrl, uint16_t data)

fsp_err_t R_DOC_VersionGet (fsp_version_t *const p_version)

Detailed Description

Driver for the DOC peripheral on RA MCUs. This module implements the DOC Interface.

Overview
Features

The DOC HAL module peripheral is used to compare, add or subtract 16-bit data and can detect the
following events:

A mismatch or match between data values
Overflow of an addition operation
Underflow of a subtraction operation

A user-defined callback can be created to inform the CPU when any of above events occur.

Configuration

Build Time Configurations for r_doc

The following build time configurations are defined in fsp_cfg/r_doc_cfg.h:

Configuration Options Description

Parameter Checking Default (BSP)
Enabled
Disabled

If selected code for parameter
checking is included in the
build.

Configurations for Data Operation Circuit Driver on r_doc

This module can be added to the Threads tab from New -> Driver -> Monitoring -> Data Operation
Circuit Driver on r_doc:

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 156 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > D/AVE 2D Port Interface (r_drw)

4.2.12 D/AVE 2D Port Interface (r_drw)
Modules

Driver for the DRW peripheral on RA MCUs. This module is a port of D/AVE 2D.

Overview
Note

The D/AVE 2D Port Interface (D1 layer) does not provide any interfaces to the user. Consult the D/AVE 2D
driver documentation for further information.
For cross-platform compatibility purposes the D1 and D2 APIs are not bound by the Flex Software Package coding
guidelines for function names and general module functionality.

Configuration
Build Time Configurations for r_drw

The following build time configurations are defined in fsp_cfg/r_drw_cfg.h:

Configuration Options Description

Allow Indirect Mode Enabled
Disabled

Enable indirect mode to allow
no-copy mode for d2_adddlist
(see the D/AVE 2D driver
documentation for details).

Memory Allocation Default
Custom

Set Memory Allocation to
Default to use built-in dynamic
memory allocation for the D2
heap. This will use an RTOS
heap if configured; otherwise,
standard C malloc and free will
be used.
Set to Custom to define your
own allocation scheme for the
D2 heap. In this case, the
developer will need to define
the following functions:

void * d1_malloc(size_t size)
void d1_free(void * ptr)

4.2.13 Data Transfer Controller (r_dtc)
Modules

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 157 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Data Transfer Controller (r_dtc)

Functions

fsp_err_t R_DTC_Open (transfer_ctrl_t *const p_api_ctrl, transfer_cfg_t const
*const p_cfg)

fsp_err_t R_DTC_Reconfigure (transfer_ctrl_t *const p_api_ctrl, transfer_info_t
*p_info)

fsp_err_t R_DTC_Reset (transfer_ctrl_t *const p_api_ctrl, void const *volatile
p_src, void *volatile p_dest, uint16_t const num_transfers)

fsp_err_t R_DTC_SoftwareStart (transfer_ctrl_t *const p_api_ctrl,
transfer_start_mode_t mode)

fsp_err_t R_DTC_SoftwareStop (transfer_ctrl_t *const p_api_ctrl)

fsp_err_t R_DTC_Enable (transfer_ctrl_t *const p_api_ctrl)

fsp_err_t R_DTC_Disable (transfer_ctrl_t *const p_api_ctrl)

fsp_err_t R_DTC_InfoGet (transfer_ctrl_t *const p_api_ctrl, transfer_properties_t
*const p_properties)

fsp_err_t R_DTC_Close (transfer_ctrl_t *const p_api_ctrl)

fsp_err_t R_DTC_VersionGet (fsp_version_t *const p_version)

Detailed Description

Driver for the DTC peripheral on RA MCUs. This module implements the Transfer Interface.

Overview
The Data Transfer Controller (DTC) transfers data from one memory location to another without
using the CPU.

The DTC uses a RAM based vector table. Each entry in the vector table corresponds to an entry in
the ISR vector table. When the DTC is triggered by an interrupt, it reads the DTC vector table,
fetches the transfer information, and then executes the transfer. After the transfer is executed, the
DTC writes the updated transfer info back to the location pointed to by the DTC vector table.

Features

Supports multiple transfer modes
Normal transfer
Repeat transfer
Block transfer

Chain transfers
Address increment, decrement or fixed modes
Can be triggered by any event that has reserved a slot in the interrupt vector table.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 158 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Data Transfer Controller (r_dtc)

Some exceptions apply, see the Event table in the Event Numbers section of the
Interrupt Controller Unit chapter of the hardware manual

Supports 1, 2, and 4 byte data units

Transfer Modes

The DTC Module supports three modes of operation.

Normal Mode - In normal mode, a single data unit is transfered every time an interrupt is
received by the DTC. A data unit can be 1-byte, 2-bytes, or 4-bytes. The source and
destination addresses can be fixed, increment or decrement to the next data unit after each
transfer. A 16-bit counter(length) decrements after each transfer. When the counter
reaches 0, transfers will no longer be triggered by the interrupt source and the CPU can be
interrupted to signal that all transfers have finished.
Repeat Mode - Repeat mode works the same way as normal mode, however the length is
limited to an integer in the range[1,256]. When the tranfer counter reaches 0, the counter
is reset to its configured value and the repeat area(source or destination address) resets to
its starting address and transfers will still be triggered by the interrupt.
Block Mode - In block mode, the amount of data units transfered by each interrupt can be
set to an integer in the range [1,256]. The number of blocks to transfer can also be
configured to a 16-bit number. After each block transfer the repeat area(source or
destination address) will reset to the original address and the other address will be
incremented or decremented to the next block.

Note
1. The source and destination address of the transfer must be aligned to the configured data unit.
2. In normal mode the length can be set to [0,65535]. When the length is set to 0, than the transaction will execute
65536 transfers not 0.
3. In block mode, num_blocks can be set to [0,65535]. When the length is set to 0, than the transaction will execute
65536 transfers not 0.

Chaining Transfers

Multiple transfers can be configured for the same interrupt source by specifying an array of
transfer_info_t structs instead of just passing a pointer to one. In this configuration, every
transfer_info_t struct must be configured for a chain mode except for the last one. There are two
types of chain mode; CHAIN_MODE_EACH and CHAIN_MODE_END. If a transfer is configured in
CHAIN_MODE_EACH then it triggers the next transfer in the chain after it completes each transfer. If
a transfer is configured in CHAIN_MODE_END then it triggers the next transfer in the chain after it
completes its last transfer.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 159 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Data Transfer Controller (r_dtc)

Figure 93: DTC Transfer Flowchart

Selecting the DTC or DMAC

The Transfer API is implemented by both DTC and the DMAC so that applications can switch between
the DTC and the DMAC. When selecting between them, consider these factors:

DTC DMAC

Repeat Mode Repeats forever
Max repeat size is 256 x
4 bytes

Configurable number of
repeats
Max repeat size is 1024
x 4 bytes

Block Mode Max block size is 256 x
4 bytes

Max block size is 1024 x
4 bytes

Channels One instance per
interrupt

MCU specific (8
channels or less)

Chained Transfers Supported Not Supported

Software Trigger Must use the software
ELC event

Has support for software
trigger without using
software ELC event
Supports TRANSFER_ST
ART_MODE_SINGLE and
TRANSFER_START_MOD
E_REPEAT

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 160 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Data Transfer Controller (r_dtc)

Offset Address Mode Not supported Supported

Additional Considerations

The DTC requires a moderate amount of RAM (one transfer_info_t struct per open instance
+ DTC_VECTOR_TABLE_SIZE).
The DTC stores transfer information in RAM and writes back to RAM after each transfer
whereas the DMAC stores all transfer information in registers.
When transfers are configured for more than one activation source, the DTC must fetch the
transfer info from RAM on each interrupt. This can cause a higher latency between
transfers.
The DTC interrupts the CPU using the activation source's IRQ. Each DMAC channel has its
own IRQ.

Interrupts

The DTC and DMAC interrupts behave differently. The DTC uses the configured IELSR event IRQ as
the interrupt source whereas each DMAC channel has its own IRQ.

The transfer_info_t::irq setting also behaves a little differently depending on which mode is selected.

Normal Mode

DTC DMAC

TRANSFER_IRQ_EACH Interrupt after each transfer N/A

TRANSFER_IRQ_END Interrupt after last transfer Interrupt after last transfer

Repeat Mode

DTC DMAC

TRANSFER_IRQ_EACH Interrupt after each transfer Interrupt after each repeat

TRANSFER_IRQ_END Interrupt after each repeat Interrupt after last transfer

Block Mode

DTC DMAC

TRANSFER_IRQ_EACH Interrupt after each block Interrupt after each block

TRANSFER_IRQ_END Interrupt after last block Interrupt after last block

Note
DTC_VECTOR_TABLE_SIZE = (ICU_NVIC_IRQ_SOURCES x 4) Bytes

Configuration

Build Time Configurations for r_dtc

The following build time configurations are defined in fsp_cfg/r_dtc_cfg.h:

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 161 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Data Transfer Controller (r_dtc)

Configuration Options Description

Parameter Checking Default (BSP)
Enabled
Disabled

If selected code for parameter
checking is included in the
build.

Linker section to keep DTC
vector table

Configurable String Section to place the DTC vector
table.

Configurations for Transfer Driver on r_dtc

This module can be added to the Threads tab from New -> Driver -> Transfer -> Transfer Driver on
r_dtc :

4.2.14 Event Link Controller (r_elc)
Modules

Functions

fsp_err_t R_ELC_Open (elc_ctrl_t *const p_ctrl, elc_cfg_t const *const p_cfg)

fsp_err_t R_ELC_Close (elc_ctrl_t *const p_ctrl)

fsp_err_t R_ELC_SoftwareEventGenerate (elc_ctrl_t *const p_ctrl,
elc_software_event_t event_number)

fsp_err_t R_ELC_LinkSet (elc_ctrl_t *const p_ctrl, elc_peripheral_t peripheral,
elc_event_t signal)

fsp_err_t R_ELC_LinkBreak (elc_ctrl_t *const p_ctrl, elc_peripheral_t peripheral)

fsp_err_t R_ELC_Enable (elc_ctrl_t *const p_ctrl)

fsp_err_t R_ELC_Disable (elc_ctrl_t *const p_ctrl)

fsp_err_t R_ELC_VersionGet (fsp_version_t *const p_version)

Detailed Description

Driver for the ELC peripheral on RA MCUs. This module implements the ELC Interface.

Overview
The event link controller (ELC) uses the event requests generated by various peripheral modules as
source signals to connect (link) them to different modules, allowing direct cooperation between the
modules without central processing unit (CPU) intervention. The conceptual diagram below illustrates
a potential setup where a pin interrupt triggers a timer which later triggers an ADC conversion and
CTSU scan, while at the same time a serial communication interrupt automatically starts a data
transfer. These tasks would be automatically handled without the need for polling or interrupt

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 162 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Event Link Controller (r_elc)

management.

Figure 94: Event Link Controller Conceptual Diagram

In essence, the ELC is an array of multiplexers to route a wide variety of interrupt signals to a subset
of peripheral functions. Events are linked by setting the multiplexer for the desired function to the
desired signal (through R_ELC_LinkSet). The diagram below illustrates one peripheral output of the
ELC. In this example, a conversion start is triggered for ADC0 Group A when the GPT0 counter
overflows:

Figure 95: ELC Example

Features

The ELC HAL module can perform the following functions:

Initialize the ELC to a pre-defined set of links
Create an event link between two blocks
Break an event link between two blocks
Generate one of two software events that interrupt the CPU
Globally enable or disable event links

A variety of functions can be activated via events, including:

General-purpose timer (GPT) control
ADC and DAC conversion start
Synchronized I/O port output (ports 1-4 only)

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 163 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Event Link Controller (r_elc)

Capacitive touch unit (CTSU) measurement activation

Note
The available sources and peripherals may differ between devices. A full list of selectable peripherals and events is
available in the User's Manual for your device.
The source and destination peripherals must be configured to generate and receive events, respectively. Details on
how to enable event functionality are located in the User's Manual for your device.

Configuration
To link an event to a peripheral perform the following steps:

1. Configure the operation of the destination peripheral (including any configuration necessary
to receive events)

2. Use R_ELC_LinkSet to set the desired event link to the peripheral
3. (Optional) If autostart is not enabled, use R_ELC_Enable to enable transmission of event

signals
4. Configure the signaling module to output the desired event (typically an interrupt)

To disable the event, either use R_ELC_LinkBreak to clear the link for a specific event or
R_ELC_Disable to globally disable event linking.

Note
The ELC module needs no pin, clocking or interrupt configuration; it is merely a mechanism to connect signals
between peripherals. However, when linking I/O Ports via the ELC the relevant I/O pins need to be configured as
inputs or outputs.

Build Time Configurations for r_elc

The following build time configurations are defined in fsp_cfg/r_elc_cfg.h:

Configuration Options Description

Parameter Checking Default (BSP)
Enabled
Disabled

If selected code for parameter
checking is included in the
build.

Configurations for ELC Driver on r_elc

This module can be added to the Threads tab from New -> Driver -> System -> ELC Driver on r_elc:

4.2.15 Ethernet (r_ether)
Modules

Functions

fsp_err_t R_ETHER_Open (ether_ctrl_t *const p_ctrl, ether_cfg_t const *const
p_cfg)

 After ETHERC, EDMAC and PHY-LSI are reset in software, an auto
negotiation of PHY-LSI is begun. Afterwards, the link signal change
interrupt is permitted. Implements ether_api_t::open. More...

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 164 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Ethernet (r_ether)

fsp_err_t R_ETHER_Close (ether_ctrl_t *const p_ctrl)

 Disables interrupts. Removes power and releases hardware lock.
Implements ether_api_t::close. More...

fsp_err_t R_ETHER_Read (ether_ctrl_t *const p_ctrl, void **const pp_buffer,
uint32_t *const length_bytes)

 Receive Ethernet frame. Receives data to the location specified by
the pointer to the receive buffer, using non-zero-copy
communication. Implements ether_api_t::read. More...

fsp_err_t R_ETHER_BufferRelease (ether_ctrl_t *const p_ctrl)

 Release the receive buffer. Implements ether_api_t::BufferRelease.
More...

fsp_err_t R_ETHER_Write (ether_ctrl_t *const p_ctrl, void *const p_buffer,
uint32_t const frame_length)

 Transmit Ethernet frame. Transmits data from the location specified
by the pointer to the transmit buffer, with the data size equal to the
specified frame length, using non-zero-copy communication.
Implements ether_api_t::write. More...

fsp_err_t R_ETHER_LinkProcess (ether_ctrl_t *const p_ctrl)

 The Link up processing, the Link down processing, and the magic
packet detection processing are executed. Implements
ether_api_t::linkProcess. More...

fsp_err_t R_ETHER_WakeOnLANEnable (ether_ctrl_t *const p_ctrl)

 The setting of ETHERC is changed from a usual sending and
receiving mode to the magic packet detection mode. Implements
ether_api_t::wakeOnLANEnable. More...

fsp_err_t R_ETHER_VersionGet (fsp_version_t *const p_version)

 Provides API and code version in the user provided pointer.
Implements ether_api_t::versionGet. More...

Detailed Description

Driver for the Ethernet peripheral on RA MCUs. This module implements the Ethernet Interface.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 165 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Ethernet (r_ether)

Overview
This module performs Ethernet frame transmission and reception using an Ethernet controller and an
Ethernet DMA controller.

Features

The Ethernet module supports the following features:

Transmit/receive processing(Zerocopy and Non-Zerocopy)
Callback function with returned event code
Magic packet detection mode support
Auto negotiation support
Flow control support
Multicast filtering support
Broadcast filtering support
Promiscuous mode support

Target Devices

The Ethernet module supports the following devices.

RA6M3
RA6M2

Ethernet Frame Format

The Ethernet module supports the Ethernet II/IEEE 802.3 frame format.

Frame Format for Data Transmission and Reception

Figure 96: Frame Format Image

 The preamble and SFD signal the start of an Ethernet frame. The FCS contains the CRC of the
Ethernet frame and is calculated on the transmitting side. When data is received the CRC value of
the frame is calculated in hardware, and the Ethernet frame is discarded if the values do not match.
When the hardware determines that the data is normal, the valid range of receive data is:
(transmission destination address) + (transmission source address) + (length/type) + (data).

PAUSE Frame Format

Figure 97: Pause Frame Format Image

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 166 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Ethernet (r_ether)

 The transmission destination address is specified as 01:80:C2:00:00:01 (a multicast address
reserved for PAUSE frames). At the start of the payload the length/type is specified as 0x8808 and
the operation code as 0x0001. The pause duration in the payload is specified by the value of the
automatic PAUSE (AP) bits in the automatic PAUSE frame setting register (APR), or the manual PAUSE
time setting (MP) bits in the manual PAUSE frame setting register (MPR).

Magic Packet Frame Format

Figure 98: Magic Packet Frame Format Image

 In a Magic Packet, the value FF:FF:FF:FF:FF:FF followed by the transmission destination address
repeated 16 times is inserted somewhere in the Ethernet frame data.

Configuration
Build Time Configurations for r_ether

The following build time configurations are defined in fsp_cfg/driver/r_ether_cfg.h:

Configuration Options Description

Parameter Checking Default (BSP)
Enabled
Disabled

If selected code for parameter
checking is included in the
build.

The polarity of the link signal
output by the PHY-LSI

Fall -> Rise
Rise -> Fall

Specify the polarity of the link
signal output by the PHY-LSI.
When 0 is specified, link-up and
link-down correspond
respectively to the fall and rise
of the LINKSTA signal. When 1
is specified, link-up and link-
down correspond respectively
to the rise and fall of the
LINKSTA signal.

The link status is detected by
LINKSTA signal

Unused
Used

Use LINKSTA signal for detect
link status changes 0 = unused
(use PHY-LSI status register) 1
= use (use LINKSTA signal)

Configurations for Ethernet Driver on r_ether

This module can be added to the Threads tab from New -> Driver -> Network -> Ethernet Driver on
r_ether:

4.2.16 Ethernet PHY (r_ether_phy)

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 167 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Ethernet PHY (r_ether_phy)

Modules

Functions

fsp_err_t R_ETHER_PHY_Open (ether_phy_ctrl_t *const p_ctrl, ether_phy_cfg_t
const *const p_cfg)

 Resets Ethernet PHY device. Implements ether_phy_api_t::open. *.
More...

fsp_err_t R_ETHER_PHY_Close (ether_phy_ctrl_t *const p_ctrl)

 Close Ethernet PHY device. Implements ether_phy_api_t::close.
More...

fsp_err_t R_ETHER_PHY_StartAutoNegotiate (ether_phy_ctrl_t *const p_ctrl)

 Starts auto-negotiate. Implements
ether_phy_api_t::startAutoNegotiate. More...

fsp_err_t R_ETHER_PHY_LinkPartnerAbilityGet (ether_phy_ctrl_t *const p_ctrl,
uint32_t *const p_line_speed_duplex, uint32_t *const p_local_pause,
uint32_t *const p_partner_pause)

 Reports the other side's physical capability. Implements
ether_phy_api_t::linkPartnerAbilityGet. More...

fsp_err_t R_ETHER_PHY_LinkStatusGet (ether_phy_ctrl_t *const p_ctrl)

 Returns the status of the physical link. Implements
ether_phy_api_t::linkStatusGet. More...

fsp_err_t R_ETHER_PHY_VersionGet (fsp_version_t *const p_version)

 Provides API and code version in the user provided pointer.
Implements ether_phy_api_t::versionGet. More...

Detailed Description

The Ethernet PHY module (r_ether_phy) provides an API for standard Ethernet PHY communications
applications and uses the ETHERC peripherals. It implements the Ethernet PHY Interface.

Overview
The Ethernet PHY module provides Ethernet phy functionality.

Features

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 168 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Ethernet PHY (r_ether_phy)

The Ethernet PHY module supports the following features:

Auto negotiation support
Flow control support
Link status check support

Target Devices

The Ethernet module supports the following devices.

RA6M3
RA6M2

Accessing the MII and RMII Registers

Use the PIR register to access the MII and RMII registers in the PHY-LSI. Serial data in the MII and
RMII management frame format is transmitted and received through the ET0_MDC and ET0_MDIO
pins controlled by software.

MII and RMII management frame format

Table lists the MII and RMII management frame formats.

Access type MII and RMII management frame

Item PRE ST OP PHYAD REGAD TA DATA IDLE

Number
of bits

32 2 2 5 5 2 16 1

Read 1...1 01 10 00001 RRRRR Z0 DDDDD
DDDDD
DDDDD
D

Z

Write 1...1 01 01 00001 RRRRR 10 DDDDD
DDDDD
DDDDD
D

Z

Note
- PRE (preamble): Send 32 consecutive 1s.
- ST (start of frame): Send 01b.
- OP (operation code): Send 10b for read or 01b for write.
- PHYAD (PHY address): Up to 32 PHY-LSIs can be connected to one MAC. PHY-LSIs are selected with these 5
bits. When the
- PHY-LSI address is 1, send 00001b.
- REGAD (register address): One register is selected from up to 32 registers in the PHY-LSI. When the register
address is 1, send 00001b.
- TA (turnaround): Use 2-bit turnaround time to avoid contention between the register address and data during a
read operation.
Send 10b during a write operation. Release the bus for 1 bit during a read operation (Z is output).
(This is indicated as Z0 because 0 is output from the PHY-LSI on the next clock cycle.)
- DATA (data): 16-bit data. Sequentially send or receive starting from the MSB.
- IDLE (IDLE condition): Wait time before inputting the next MII or RMII management format. Release the bus
during a write

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 169 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Ethernet PHY (r_ether_phy)

operation (Z is output). No control is required, because a bus was already released during a read operation.

Configuration
Build Time Configurations for r_ether_phy

The following build time configurations are defined in fsp_cfg/driver/r_ether_phy_cfg.h:

Configuration Options Description

Parameter Checking Default (BSP)
Enabled
Disabled

If selected code for parameter
checking is included in the
build.

Select PHY Default
KSZ8091RNB
KSZ8041
DP83620

Select PHY chip to use.

Configurations for Ethernet Driver on r_ether_phy

This module can be added to the Threads tab from New -> Driver -> Network -> Ethernet Driver on
r_ether_phy:

4.2.17 High-Performance Flash Driver (r_flash_hp)
Modules

Functions

fsp_err_t R_FLASH_HP_Open (flash_ctrl_t *const p_api_ctrl, flash_cfg_t const
*const p_cfg)

fsp_err_t R_FLASH_HP_Write (flash_ctrl_t *const p_api_ctrl, uint32_t const
src_address, uint32_t flash_address, uint32_t const num_bytes)

fsp_err_t R_FLASH_HP_Erase (flash_ctrl_t *const p_api_ctrl, uint32_t const
address, uint32_t const num_blocks)

fsp_err_t R_FLASH_HP_BlankCheck (flash_ctrl_t *const p_api_ctrl, uint32_t
const address, uint32_t num_bytes, flash_result_t
*blank_check_result)

fsp_err_t R_FLASH_HP_Close (flash_ctrl_t *const p_api_ctrl)

fsp_err_t R_FLASH_HP_StatusGet (flash_ctrl_t *const p_api_ctrl, flash_status_t
*const p_status)

fsp_err_t R_FLASH_HP_AccessWindowSet (flash_ctrl_t *const p_api_ctrl,
uint32_t const start_addr, uint32_t const end_addr)

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 170 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > High-Performance Flash Driver (r_flash_hp)

fsp_err_t R_FLASH_HP_AccessWindowClear (flash_ctrl_t *const p_api_ctrl)

fsp_err_t R_FLASH_HP_IdCodeSet (flash_ctrl_t *const p_api_ctrl, uint8_t const
*const p_id_code, flash_id_code_mode_t mode)

fsp_err_t R_FLASH_HP_Reset (flash_ctrl_t *const p_api_ctrl)

fsp_err_t R_FLASH_HP_UpdateFlashClockFreq (flash_ctrl_t *const p_api_ctrl)

fsp_err_t R_FLASH_HP_StartUpAreaSelect (flash_ctrl_t *const p_api_ctrl,
flash_startup_area_swap_t swap_type, bool is_temporary)

fsp_err_t R_FLASH_HP_VersionGet (fsp_version_t *const p_version)

fsp_err_t R_FLASH_HP_InfoGet (flash_ctrl_t *const p_api_ctrl, flash_info_t
*const p_info)

Detailed Description

Driver for the flash memory on RA high-performance MCUs. This module implements the Flash
Interface.

Overview
The Flash HAL module APIs allow an application to write, erase and blank check both the data and
ROM flash areas that reside within the MCU. The amount of flash memory available varies across
MCU parts.

Features

The R_FLASH_HP module has the following key features:

Blocking and non-blocking erasing, writing and blank-checking of data flash.
Blocking erasing, writing and blank-checking of code flash.
Callback functions for completion of non-blocking data-flash operations.
Access window (write protection) for ROM Flash, allowing only specified areas of code flash
to be erased or written.
Boot block-swapping.
ID code programming support.

Configuration
Build Time Configurations for r_flash_hp

The following build time configurations are defined in fsp_cfg/r_flash_hp_cfg.h:

Configuration Options Description

Parameter Checking Default (BSP)
Enabled

If selected code for parameter
checking is included in the

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 171 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > High-Performance Flash Driver (r_flash_hp)

Disabled build.

Code Flash Programming
Enable

Enabled
Disabled

Controls whether or not code-
flash programming is enabled.
Disabling reduces the amount
of ROM and RAM used by the
API.

Data Flash Programming Enable Enabled
Disabled

Controls whether or not data-
flash programming is enabled.
Disabling reduces the amount
of ROM used by the API.

Configurations for Flash Driver on r_flash_hp

This module can be added to the Threads tab from New -> Driver -> Storage -> Flash Driver on
r_flash_hp:

4.2.18 Low-Power Flash Driver (r_flash_lp)
Modules

Functions

fsp_err_t R_FLASH_LP_Open (flash_ctrl_t *const p_api_ctrl, flash_cfg_t const
*const p_cfg)

fsp_err_t R_FLASH_LP_Write (flash_ctrl_t *const p_api_ctrl, uint32_t const
src_address, uint32_t flash_address, uint32_t const num_bytes)

fsp_err_t R_FLASH_LP_Erase (flash_ctrl_t *const p_api_ctrl, uint32_t const
address, uint32_t const num_blocks)

fsp_err_t R_FLASH_LP_BlankCheck (flash_ctrl_t *const p_api_ctrl, uint32_t
const address, uint32_t num_bytes, flash_result_t
*blank_check_result)

fsp_err_t R_FLASH_LP_Close (flash_ctrl_t *const p_api_ctrl)

fsp_err_t R_FLASH_LP_StatusGet (flash_ctrl_t *const p_api_ctrl, flash_status_t
*const p_status)

fsp_err_t R_FLASH_LP_AccessWindowSet (flash_ctrl_t *const p_api_ctrl,
uint32_t const start_addr, uint32_t const end_addr)

fsp_err_t R_FLASH_LP_AccessWindowClear (flash_ctrl_t *const p_api_ctrl)

fsp_err_t R_FLASH_LP_IdCodeSet (flash_ctrl_t *const p_api_ctrl, uint8_t const
*const p_id_code, flash_id_code_mode_t mode)

fsp_err_t R_FLASH_LP_Reset (flash_ctrl_t *const p_api_ctrl)

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 172 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Low-Power Flash Driver (r_flash_lp)

fsp_err_t R_FLASH_LP_StartUpAreaSelect (flash_ctrl_t *const p_api_ctrl,
flash_startup_area_swap_t swap_type, bool is_temporary)

fsp_err_t R_FLASH_LP_UpdateFlashClockFreq (flash_ctrl_t *const p_api_ctrl)

fsp_err_t R_FLASH_LP_VersionGet (fsp_version_t *const p_version)

fsp_err_t R_FLASH_LP_InfoGet (flash_ctrl_t *const p_api_ctrl, flash_info_t *const
p_info)

Detailed Description

Driver for the flash memory on RA low-power MCUs. This module implements the Flash Interface.

Overview
The Flash HAL module APIs allow an application to write, erase and blank check both the data and
code flash areas that reside within the MCU. The amount of flash memory available varies across
MCU parts.

Features

The Low-Power Flash HAL module has the following key features:

Blocking and non-blocking erasing, writing and blank-checking of data flash.
Blocking erasing, writing and blank checking of code flash.
Callback functions for completion of non-blocking data flash operations.
Access window (write protection) for code flash, allowing only specified areas of code flash
to be erased or written.
Boot block-swapping.
ID code programming support.

Configuration
Build Time Configurations for r_flash_lp

The following build time configurations are defined in fsp_cfg/r_flash_lp_cfg.h:

Configuration Options Description

Parameter Checking Default (BSP)
Enabled
Disabled

If selected code for parameter
checking is included in the
build.

Code Flash Programming
Enable

Enabled
Disabled

Controls whether or not code-
flash programming is enabled.
Disabling reduces the amount
of ROM and RAM used by the
API.

Data Flash Programming Enable Enabled Controls whether or not data-

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 173 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Low-Power Flash Driver (r_flash_lp)

Disabled flash programming is enabled.
Disabling reduces the amount
of ROM used by the API.

Configurations for Flash Driver on r_flash_lp

This module can be added to the Threads tab from New -> Driver -> Storage -> Flash Driver on
r_flash_lp:

4.2.19 Graphics LCD Controller (r_glcdc)
Modules

Functions

fsp_err_t R_GLCDC_Open (display_ctrl_t *const p_api_ctrl, display_cfg_t const
*const p_cfg)

 Open GLCDC module. More...

fsp_err_t R_GLCDC_Close (display_ctrl_t *const p_api_ctrl)

 Close GLCDC module. More...

fsp_err_t R_GLCDC_Start (display_ctrl_t *const p_api_ctrl)

 Start GLCDC module. More...

fsp_err_t R_GLCDC_Stop (display_ctrl_t *const p_api_ctrl)

 Stop GLCDC module. More...

fsp_err_t R_GLCDC_LayerChange (display_ctrl_t const *const p_api_ctrl,
display_runtime_cfg_t const *const p_cfg, display_frame_layer_t
layer)

 Change layer parameters of GLCDC module at runtime. More...

fsp_err_t R_GLCDC_BufferChange (display_ctrl_t const *const p_api_ctrl,
uint8_t *const framebuffer, display_frame_layer_t layer)

 Change the framebuffer pointer for a layer. More...

fsp_err_t R_GLCDC_ColorCorrection (display_ctrl_t const *const p_api_ctrl,
display_correction_t const *const p_correction)

 Perform color correction through the GLCDC module. More...

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 174 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics LCD Controller (r_glcdc)

fsp_err_t R_GLCDC_ClutUpdate (display_ctrl_t const *const p_api_ctrl,
display_clut_cfg_t const *const p_clut_cfg, display_frame_layer_t
layer)

 Update a color look-up table (CLUT) in the GLCDC module. More...

fsp_err_t R_GLCDC_StatusGet (display_ctrl_t const *const p_api_ctrl,
display_status_t *const p_status)

 Get status of GLCDC module. More...

fsp_err_t R_GLCDC_VersionGet (fsp_version_t *p_version)

 Get version of R_GLCDC module. More...

Detailed Description

Driver for the GLCDC peripheral on RA MCUs. This module implements the Display Interface.

Overview
The GLCDC is a multi-stage graphics output peripheral designed to automatically generate timing
and data signals for LCD panels. As part of its internal pipeline the two internal graphics layers can
be repositioned, alpha blended, color corrected, dithered and converted to and from a wide variety
of pixel formats.

Features

The following features are available:

Feature Options

Input color formats ARGB8888, ARGB4444, ARGB1555, RGB888
(32-bit), RGB565, CLUT 8bpp, CLUT 4bpp, CLUT
1bpp

Output color formats RGB888, RGB666, RGB565, Serial RGB888 (8-bit
parallel)

Correction processes Alpha blending, positioning, brightness and
contrast, gamma correction, dithering

Timing signals Dot clock, Vsync, Hsync, Vertical and horizontal
data enable (DE)

Maximum resolution Up to 1020 x 1008 pixels (dependent on sync
signal width)

Maximum dot clock 60MHz for serial RGB mode, 54MHz otherwise

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 175 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics LCD Controller (r_glcdc)

Internal clock divisors 1-9, 12, 16, 24, 32

Interrupts Vsync (line detect), Underflow

Other functions Byte-order and endianness control, line repeat
function

Configuration
Build Time Configurations for r_glcdc

The following build time configurations are defined in fsp_cfg/r_glcdc_cfg.h:

Configuration Options Description

Parameter Checking Default (BSP)
Enabled
Disabled

If selected code for parameter
checking is included in the
build.

Color Correction On
Off

If selected code to adjust
brightness, contrast and
gamma settings is included in
the build. When disabled all
color correction configuration
options are ignored.

4.2.20 General PWM Timer (r_gpt)
Modules

Functions

fsp_err_t R_GPT_Stop (timer_ctrl_t *const p_ctrl)

fsp_err_t R_GPT_Start (timer_ctrl_t *const p_ctrl)

fsp_err_t R_GPT_Reset (timer_ctrl_t *const p_ctrl)

fsp_err_t R_GPT_Enable (timer_ctrl_t *const p_ctrl)

fsp_err_t R_GPT_Disable (timer_ctrl_t *const p_ctrl)

fsp_err_t R_GPT_PeriodSet (timer_ctrl_t *const p_ctrl, uint32_t const
period_counts)

fsp_err_t R_GPT_DutyCycleSet (timer_ctrl_t *const p_ctrl, uint32_t const
duty_cycle_counts, uint32_t const pin)

fsp_err_t R_GPT_InfoGet (timer_ctrl_t *const p_ctrl, timer_info_t *const p_info)

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 176 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > General PWM Timer (r_gpt)

fsp_err_t R_GPT_StatusGet (timer_ctrl_t *const p_ctrl, timer_status_t *const
p_status)

fsp_err_t R_GPT_Close (timer_ctrl_t *const p_ctrl)

fsp_err_t R_GPT_VersionGet (fsp_version_t *const p_version)

Detailed Description

Driver for the GPT32 and GPT16 peripherals on RA MCUs. This module implements the Timer
Interface.

Overview
The GPT module can be used to count events, measure external input signals, generate a periodic
interrupt, or output a periodic or PWM signal to a GTIOC pin.

This module supports the GPT peripherals GPT32EH, GPT32E, GPT32, and GPT16. GPT16 is a 16-bit
timer. The other peripherals (GPT32EH, GPT32E, and GPT32) are 32-bit timers. The 32-bit timers are
all treated the same in this module from the API perspective.

Features

The GPT module has the following features:

Supports periodic mode, one-shot mode, and PWM mode.
Supports count source of PCLK, GTETRG pins, GTIOC pins, or ELC events.
Supports debounce filter on GTIOC pins.
Signal can be output to a pin.
Configurable period (counts per timer cycle).
Configurable duty cycle in PWM mode.
Supports runtime reconfiguration of period.
Supports runtime reconfiguration of duty cycle in PWM mode.
APIs are provided to start, stop, and reset the counter.
APIs are provided to get the current period, source clock frequency, and count direction.
APIs are provided to get the current timer status and counter value.
Supports start, stop, clear, count up, count down, and capture by external sources from
GTETRG pins, GTIOC pins, or ELC events.

Selecting a Timer

RA MCUs have two timer peripherals: the General PWM Timer (GPT) and the Asynchronous General
Purpose Timer (AGT). When selecting between them, consider these factors:

GPT AGT

Low Power Modes The GPT can operate in sleep
mode.

The AGT can operate in all low
power modes.

Available Channels The number of GPT channels is
device specific. All currently
supported MCUs have at least 7
GPT channels.

All MCUs have 2 AGT channels.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 177 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > General PWM Timer (r_gpt)

Timer Resolution All MCUs have at least one
32-bit GPT timer.

The AGT timers are 16-bit
timers.

Clock Source The GPT runs off PCLKD with a
configurable divider up to 1024.
It can also be configured to
count ELC events or external
pulses.

The AGT runs off PCLKB, LOCO,
or subclock.

Configuration

Build Time Configurations for r_gpt

The following build time configurations are defined in fsp_cfg/r_gpt_cfg.h:

Configuration Options Description

Parameter Checking Default (BSP)
Enabled
Disabled

If selected code for parameter
checking is included in the
build.

Pin Output Support Disabled
Enabled

If selected code for outputting a
waveform to a pin is included in
the build.

Configurations for Timer Driver on r_gpt

This module can be added to the Threads tab from New -> Driver -> Timers -> Timer Driver on
r_gpt:

4.2.21 Interrupt Controller Unit (r_icu)
Modules

Functions

fsp_err_t R_ICU_ExternalIrqOpen (external_irq_ctrl_t *const p_api_ctrl,
external_irq_cfg_t const *const p_cfg)

fsp_err_t R_ICU_ExternalIrqEnable (external_irq_ctrl_t *const p_api_ctrl)

fsp_err_t R_ICU_ExternalIrqDisable (external_irq_ctrl_t *const p_api_ctrl)

fsp_err_t R_ICU_ExternalIrqVersionGet (fsp_version_t *const p_version)

fsp_err_t R_ICU_ExternalIrqClose (external_irq_ctrl_t *const p_api_ctrl)

Detailed Description

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 178 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Interrupt Controller Unit (r_icu)

Driver for the ICU peripheral on RA MCUs. This module implements the External IRQ Interface.

Overview
The Interrupt Controller Unit (ICU) controls which event signals are linked to the NVIC, DTC, and
DMAC modules. R_ICU software module only implements the External IRQ Interface. The external_irq
interface is for configuring interrupts to fire when a trigger condition is detected on an external IRQ
pin.

Features

Supports configuring interrupts for IRQ pins on the target MCUs
Enabling and disabling interrupt generation.
Configuring interrupt trigger on rising edge, falling edge, both edges, or low level
signal.
Enabling and disabling the IRQ noise filter.

Supports configuring a user callback function, which will be invoked by the HAL module
when an external pin interrupt is generated.

Configuration

Build Time Configurations for r_icu

The following build time configurations are defined in fsp_cfg/r_icu_cfg.h:

Configuration Options Description

Parameter Checking Default (BSP)
Enabled
Disabled

If selected code for parameter
checking is included in the
build.

Configurations for External IRQ Driver on r_icu

This module can be added to the Threads tab from New -> Driver -> Input -> External IRQ Driver on
r_icu:

4.2.22 I2C Master on IIC (r_iic_master)
Modules

Functions

fsp_err_t R_IIC_MASTER_Open (i2c_master_ctrl_t *const p_api_ctrl,
i2c_master_cfg_t const *const p_cfg)

fsp_err_t R_IIC_MASTER_Read (i2c_master_ctrl_t *const p_api_ctrl, uint8_t
*const p_dest, uint32_t const bytes, bool const restart)

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 179 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > I2C Master on IIC (r_iic_master)

fsp_err_t R_IIC_MASTER_Write (i2c_master_ctrl_t *const p_api_ctrl, uint8_t
*const p_src, uint32_t const bytes, bool const restart)

fsp_err_t R_IIC_MASTER_Abort (i2c_master_ctrl_t *const p_api_ctrl)

fsp_err_t R_IIC_MASTER_SlaveAddressSet (i2c_master_ctrl_t *const p_api_ctrl,
uint32_t const slave, i2c_master_addr_mode_t const addr_mode)

fsp_err_t R_IIC_MASTER_Close (i2c_master_ctrl_t *const p_api_ctrl)

fsp_err_t R_IIC_MASTER_VersionGet (fsp_version_t *const p_version)

Detailed Description

Driver for the IIC peripheral on RA MCUs. This module implements the I2C Master Interface.

Overview
The I2C master on IIC HAL module supports transactions with an I2C Slave device. Callbacks must be
provided which would be invoked when a transmission or receive has been completed. The callback
arguments will contain information about the transaction status, bytes transferred and a pointer to
the user defined context.

Features

Supports multiple transmission rates
Standard Mode Support with up to 100-kHz transaction rate.
Fast Mode Support with up to 400-kHz transaction rate.
Fast Mode Plus Support with up to 1-MHz transaction rate.

I2C Master Read from a slave device.
I2C Master Write to a slave device.
Abort any in-progress transactions.
Set the address of the slave device.
Non-blocking behavior is achieved by the use of callbacks.
Additional build-time features

Optional (build time) DTC support for read and write respectively.
Optional (build time) support for 10-bit slave addressing.

Configuration
Build Time Configurations for r_iic_master

The following build time configurations are defined in fsp_cfg/r_iic_master_cfg.h:

Configuration Options Description

Parameter Checking Default (BSP)
Enabled
Disabled

If selected code for parameter
checking is included in the
build.

DTC on Transmission and Enabled If enabled, DTC instances will

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 180 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > I2C Master on IIC (r_iic_master)

Reception Disabled be included in the build for both
transmission and reception.

10-bit slave addressing Enabled
Disabled

If enabled, the driver will
support 10-bit slave addressing
mode along with the default
7-bit slave addressing mode.

Configurations for I2C Master Driver on r_iic_master

This module can be added to the Threads tab from New -> Driver -> Connectivity -> I2C Master
Driver on r_iic_master:

4.2.23 I2C Slave on IIC (r_iic_slave)
Modules

Functions

fsp_err_t R_IIC_SLAVE_Open (i2c_slave_ctrl_t *const p_api_ctrl, i2c_slave_cfg_t
const *const p_cfg)

fsp_err_t R_IIC_SLAVE_Read (i2c_slave_ctrl_t *const p_api_ctrl, uint8_t *const
p_dest, uint32_t const bytes)

fsp_err_t R_IIC_SLAVE_Write (i2c_slave_ctrl_t *const p_api_ctrl, uint8_t *const
p_src, uint32_t const bytes)

fsp_err_t R_IIC_SLAVE_Close (i2c_slave_ctrl_t *const p_api_ctrl)

fsp_err_t R_IIC_SLAVE_VersionGet (fsp_version_t *const p_version)

Detailed Description

Driver for the IIC peripheral on RA MCUs. This module implements the I2C Slave Interface.

Overview
Features

Supports multiple transmission rates
Standard Mode Support with up to 100-kHz transaction rate.
Fast Mode Support with up to 400-kHz transaction rate.
Fast Mode Plus Support with up to 1-MHz transaction rate.

Reads data written by master device.
Write data which is read by master device.
Can be assigned a 10-bit address.
Clock stretching is supported and can be implemented via callbacks.
Provides Transmission/Reception transaction size in the callback.
I2C Slave can notify the following events via callbacks: Transmission/Reception Request,
Transmission/Reception Request for more data, Transmission/Reception Completion, Error

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 181 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > I2C Slave on IIC (r_iic_slave)

Condition.

Configuration
Build Time Configurations for r_iic_slave

The following build time configurations are defined in fsp_cfg/r_iic_slave_cfg.h:

Configuration Options Description

Parameter Checking Default (BSP)
Enabled
Disabled

If selected code for parameter
checking is included in the
build.

Configurations for I2C Slave Driver on r_iic_slave

This module can be added to the Threads tab from New -> Driver -> Connectivity -> I2C Slave Driver
on r_iic_slave:

4.2.24 I/O Ports (r_ioport)
Modules

Functions

fsp_err_t R_IOPORT_Open (ioport_ctrl_t *const p_ctrl, const ioport_cfg_t *p_cfg)

fsp_err_t R_IOPORT_Close (ioport_ctrl_t *const p_ctrl)

fsp_err_t R_IOPORT_PinsCfg (ioport_ctrl_t *const p_ctrl, const ioport_cfg_t
*p_cfg)

fsp_err_t R_IOPORT_PinCfg (ioport_ctrl_t *const p_ctrl, bsp_io_port_pin_t pin,
uint32_t cfg)

fsp_err_t R_IOPORT_PinEventInputRead (ioport_ctrl_t *const p_ctrl,
bsp_io_port_pin_t pin, bsp_io_level_t *p_pin_event)

fsp_err_t R_IOPORT_PinEventOutputWrite (ioport_ctrl_t *const p_ctrl,
bsp_io_port_pin_t pin, bsp_io_level_t pin_value)

fsp_err_t R_IOPORT_PinRead (ioport_ctrl_t *const p_ctrl, bsp_io_port_pin_t pin,
bsp_io_level_t *p_pin_value)

fsp_err_t R_IOPORT_PinWrite (ioport_ctrl_t *const p_ctrl, bsp_io_port_pin_t pin,
bsp_io_level_t level)

fsp_err_t R_IOPORT_PortDirectionSet (ioport_ctrl_t *const p_ctrl, bsp_io_port_t
port, ioport_size_t direction_values, ioport_size_t mask)

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 182 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > I/O Ports (r_ioport)

fsp_err_t R_IOPORT_PortEventInputRead (ioport_ctrl_t *const p_ctrl,
bsp_io_port_t port, ioport_size_t *event_data)

fsp_err_t R_IOPORT_PortEventOutputWrite (ioport_ctrl_t *const p_ctrl,
bsp_io_port_t port, ioport_size_t event_data, ioport_size_t
mask_value)

fsp_err_t R_IOPORT_PortRead (ioport_ctrl_t *const p_ctrl, bsp_io_port_t port,
ioport_size_t *p_port_value)

fsp_err_t R_IOPORT_PortWrite (ioport_ctrl_t *const p_ctrl, bsp_io_port_t port,
ioport_size_t value, ioport_size_t mask)

fsp_err_t R_IOPORT_EthernetModeCfg (ioport_ctrl_t *const p_ctrl,
ioport_ethernet_channel_t channel, ioport_ethernet_mode_t mode)

fsp_err_t R_IOPORT_VersionGet (fsp_version_t *p_data)

Detailed Description

Driver for the I/O Ports peripheral on RA MCUs. This module implements the I/O Port Interface.

Overview
The I/O port pins operate as general I/O port pins, I/O pins for peripheral modules, interrupt input
pins, analog I/O, port group function for the ELC, or bus control pins.

Features

The I/O PORT HAL module can not only configure the direction of the pin/pins but also other options
provided as follows:

Pull-up
NMOS/PMOS
Drive strength
Event edge trigger (falling, rising or both)
Whether the pin is to be used as an IRQ pin
Whether the pin is to be used as an analog pin
Whether the pin is to be used as a peripheral pin and which peripheral

The module also provides the following functionality:

Sets event output data
Reads event input data

Configuration
The I/O PORT HAL module must be configured by the user for the desired operation. The operating
state of an I/O pin can be set via the RA configurator. When the RA project is built, a pin
configuration file is created. When the application runs, the BSP will configure the MCU IO port
accordingly, using the same API functions mentioned in this document.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 183 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > I/O Ports (r_ioport)

Build Time Configurations for r_ioport

The following build time configurations are defined in fsp_cfg/r_ioport_cfg.h:

Configuration Options Description

Parameter Checking Default (BSP)
Enabled
Disabled

If selected code for parameter
checking is included in the
build.

Configurations for I/O Port Driver on r_ioport

This module can be added to the Threads tab from New -> Driver -> System -> I/O Port Driver on
r_ioport:

4.2.25 Independent Watchdog Timer (r_iwdt)
Modules

Functions

fsp_err_t R_IWDT_Refresh (wdt_ctrl_t *const p_api_ctrl)

fsp_err_t R_IWDT_Open (wdt_ctrl_t *const p_api_ctrl, wdt_cfg_t const *const
p_cfg)

fsp_err_t R_IWDT_StatusClear (wdt_ctrl_t *const p_api_ctrl, const wdt_status_t
status)

fsp_err_t R_IWDT_StatusGet (wdt_ctrl_t *const p_api_ctrl, wdt_status_t *const
p_status)

fsp_err_t R_IWDT_CounterGet (wdt_ctrl_t *const p_api_ctrl, uint32_t *const
p_count)

fsp_err_t R_IWDT_TimeoutGet (wdt_ctrl_t *const p_api_ctrl,
wdt_timeout_values_t *const p_timeout)

fsp_err_t R_IWDT_VersionGet (fsp_version_t *const p_data)

Detailed Description

Driver for the IWDT peripheral on RA MCUs. This module implements the WDT Interface.

Overview
The independent watchdog timer is used to recover from unexpected errors in an application. The
timer must be refreshed periodically in the permitted count window by the application. If the count is
allowed to underflow or refresh occurs outside of the valid refresh period, the IWDT resets the device

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 184 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Independent Watchdog Timer (r_iwdt)

or generates an NMI.

Features

The IWDT HAL module has the following key features:

When the IWDT underflows or is refreshed outside of the permitted refresh window, one of
the following events can occur:

Resetting of the device
Generation of an NMI

The IWDT begins counting at reset.

Selecting a Watchdog

RA MCUs have two watchdog peripherals: the watchdog timer (WDT) and the independent watchdog
timer (IWDT). When selecting between them, consider these factors:

WDT IWDT

Start Mode The WDT can be started from
the application (register start
mode) or configured by
hardware to start automatically
(auto start mode).

The IWDT can only be
configured by hardware to start
automatically.

Clock Source The WDT runs off a peripheral
clock.

The IWDT has its own clock
source which improves safety.

Configuration
The IWDT can be configured using the OFS0 register settings on the BSP tab.

Build Time Configurations for r_iwdt

The following build time configurations are defined in fsp_cfg/r_iwdt_cfg.h:

Configuration Options Description

Parameter Checking Default (BSP)
Enabled
Disabled

If selected code for parameter
checking is included in the
build.

Configurations for Watchdog Driver on r_iwdt

This module can be added to the Threads tab from New -> Driver -> Monitoring -> Watchdog Driver
on r_iwdt:

4.2.26 JPEG Codec (r_jpeg)
Modules

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 185 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > JPEG Codec (r_jpeg)

Functions

fsp_err_t R_JPEG_Decode_Open (jpeg_decode_ctrl_t *const p_api_ctrl,
jpeg_decode_cfg_t const *const p_cfg)

 Initialize the JPEG Codec module. More...

fsp_err_t R_JPEG_Decode_OutputBufferSet (jpeg_decode_ctrl_t *p_api_ctrl, void
*p_output_buffer, uint32_t output_buffer_size)

 Assign output buffer to the JPEG Codec for storing output data.
More...

fsp_err_t R_JPEG_Decode_LinesDecodedGet (jpeg_decode_ctrl_t *p_api_ctrl,
uint32_t *p_lines)

 Returns the number of lines decoded into the output buffer. More...

fsp_err_t R_JPEG_Decode_HorizontalStrideSet (jpeg_decode_ctrl_t *p_api_ctrl,
uint32_t horizontal_stride)

 Configure horizontal stride setting. More...

fsp_err_t R_JPEG_Decode_InputBufferSet (jpeg_decode_ctrl_t *const p_api_ctrl,
void *p_data_buffer, uint32_t data_buffer_size)

 Assign input data buffer to JPEG codec for processing. More...

fsp_err_t R_JPEG_Decode_Close (jpeg_decode_ctrl_t *p_api_ctrl)

 Cancel an outstanding JPEG codec operation and close the device.
More...

fsp_err_t R_JPEG_Decode_ImageSizeGet (jpeg_decode_ctrl_t *p_api_ctrl,
uint16_t *p_horizontal_size, uint16_t *p_vertical_size)

 Obtain the size of the image. This operation is valid during JPEG
decoding operation. More...

fsp_err_t R_JPEG_Decode_StatusGet (jpeg_decode_ctrl_t *p_api_ctrl,
jpeg_decode_status_t *p_status)

 Get the status of the JPEG codec. This function can also be used to
poll the device. More...

fsp_err_t R_JPEG_Decode_ImageSubsampleSet (jpeg_decode_ctrl_t *const
p_api_ctrl, jpeg_decode_subsample_t horizontal_subsample,
jpeg_decode_subsample_t vertical_subsample)

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 186 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > JPEG Codec (r_jpeg)

 Configure horizontal and vertical subsample. More...

fsp_err_t R_JPEG_Decode_PixelFormatGet (jpeg_decode_ctrl_t *p_api_ctrl,
jpeg_decode_color_space_t *p_color_space)

 Get the input pixel format. More...

fsp_err_t R_JPEG_Decode_VersionGet (fsp_version_t *p_version)

 Get the version of the JPEG Codec driver. More...

Detailed Description

Driver for the JPEG peripheral on RA MCUs. This module implements the JPEG Codec Interface.

Overview
The JPEG Codec is a hardware block providing JPEG image encode and decode functionality in
parallel with other functions. Images can optionally be partially processed facilitating streaming
applications.

Features

The JPEG Codec provides a number of options useful in a variety of applications:

Basic encoding and decoding
Streaming input and/or output
Decoding JPEGs of unknown size
Shrink (sub-sample) an image during the decoding process
Rearrange input and output byte order (byte, word and/or longword swap)
JPEG error detection

The specifications for the codec are as follows:

Feature Options

Decompression input formats Baseline YCbCr 4:4:4, 4:2:2, 4:2:0 and 4:1:1

Decompression output formats ARGB8888, RGB565

Byte reordering Byte, halfword and/or word swapping on input
and output

Interrupt sources Image size acquired, input/output data pause,
decode complete, error

Configuration

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 187 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > JPEG Codec (r_jpeg)

Build Time Configurations for r_jpeg

The following build time configurations are defined in fsp_cfg/r_jpeg_cfg.h:

Configuration Options Description

Parameter Checking Default (BSP)
Enabled
Disabled

If selected code for parameter
checking is included in the
build.

Decode Support Enabled
Disabled

If selected code for decoding
JPEG images is included in the
build.

Encode Support Disabled If selected code for encoding
JPEG images is included in the
build.

4.2.27 Key Interrupt (r_kint)
Modules

Functions

fsp_err_t R_KINT_Open (keymatrix_ctrl_t *const p_api_ctrl, keymatrix_cfg_t
const *const p_cfg)

fsp_err_t R_KINT_Enable (keymatrix_ctrl_t *const p_api_ctrl)

fsp_err_t R_KINT_Disable (keymatrix_ctrl_t *const p_api_ctrl)

fsp_err_t R_KINT_Close (keymatrix_ctrl_t *const p_api_ctrl)

fsp_err_t R_KINT_VersionGet (fsp_version_t *const p_version)

Detailed Description

Driver for the KINT peripheral on RA MCUs. This module implements the Key Matrix Interface.

Overview
The KINT module configures the Key Interrupt (KINT) peripheral to detect rising or falling edges on
any of the KINT channels. When such an event is detected on any of the configured pins, the module
generates an interrupt.

Features

Rising and falling edges on KINT channels
A callback for notifying the application when edges are detected on the configured channels
Supports a matrix keypad with edges on any two channels

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 188 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Key Interrupt (r_kint)

Configuration

Build Time Configurations for r_kint

The following build time configurations are defined in fsp_cfg/r_kint_cfg.h:

Configuration Options Description

Parameter Checking Enable Default (BSP)
Enabled
Disabled

If selected code for parameter
checking is included in the
build.

Configurations for Key Matrix Driver on r_kint

This module can be added to the Threads tab from New -> Driver -> Input -> Key Matrix Driver on
r_kint:

4.2.28 Low Power Modes (r_lpm)
Modules

Functions

fsp_err_t R_LPM_Open (lpm_ctrl_t *const p_api_ctrl, lpm_cfg_t const *const
p_cfg)

fsp_err_t R_LPM_Close (lpm_ctrl_t *const p_api_ctrl)

fsp_err_t R_LPM_LowPowerReconfigure (lpm_ctrl_t *const p_api_ctrl, lpm_cfg_t
const *const p_cfg)

fsp_err_t R_LPM_LowPowerModeEnter (lpm_ctrl_t *const p_api_ctrl)

fsp_err_t R_LPM_VersionGet (fsp_version_t *const p_version)

fsp_err_t R_LPM_IoKeepClear (lpm_ctrl_t *const p_api_ctrl)

Detailed Description

Driver for the LPM peripheral on RA MCUs. This module implements the Low Power Modes Interface.

Overview
The low power modes driver is used to configure and place the device into the desired low power
mode. Various sources can be configured to wake from standby, request snooze mode, end snooze
mode or end deep standby mode.

Features

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 189 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Low Power Modes (r_lpm)

The LPM HAL module has the following key features:

Supports the follwowing low power modes:
Deep Software Standby mode (On supported MCUs)
Software Standby mode
Sleep mode
Snooze mode

Supports reducing power consumption when in deep software standby mode through
internal power supply control and by resetting the states of I/O ports.
Supports disabling and enabling the MCU's other hardware peripherals

Configuration
Build Time Configurations for r_lpm

The following build time configurations are defined in fsp_cfg/r_lpm_cfg.h:

Configuration Options Description

Parameter Checking Default (BSP)
Enabled
Disabled

If selected code for parameter
checking is included in the
build.

Configurations for Low Power Modes Driver on r_lpm

This module can be added to the Threads tab from New -> Driver -> Power -> Low Power Modes
Driver on r_lpm:

4.2.29 Low Voltage Detection (r_lvd)
Modules

Functions

fsp_err_t R_LVD_Open (lvd_ctrl_t *const p_api_ctrl, lvd_cfg_t const *const
p_cfg)

fsp_err_t R_LVD_Close (lvd_ctrl_t *const p_api_ctrl)

fsp_err_t R_LVD_StatusGet (lvd_ctrl_t *const p_api_ctrl, lvd_status_t
*p_lvd_status)

fsp_err_t R_LVD_StatusClear (lvd_ctrl_t *const p_api_ctrl)

fsp_err_t R_LVD_VersionGet (fsp_version_t *const p_version)

Detailed Description

Driver for the LVD peripheral on RA MCUs. This module implements the Low Voltage Detection
Interface.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 190 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Low Voltage Detection (r_lvd)

Overview
The Low Voltage Detection module configures the voltage monitors to detect when VCC crosses a
specified threshold.

Features

The LVD HAL module supports the following functions:

Two run-time configurable voltage monitors (Voltage Monitor 1, Voltage Monitor 2)
Configurable voltage threshold
Digital filter (Available on specific MCUs)
Support for both interrupt or polling

NMI or maskable interrupt can be configured
Rising, falling, or both edge event detection
Support for resetting the MCU when VCC falls below configured threshold.

Configuration

Build Time Configurations for r_lvd

The following build time configurations are defined in fsp_cfg/r_lvd_cfg.h:

Configuration Options Description

Parameter Checking Default (BSP)
Enabled
Disabled

If selected code for parameter
checking is included in the
build.

Configurations for Low Voltage Detection Driver on r_lvd

This module can be added to the Threads tab from New -> Driver -> Power -> Low Voltage Detection
Driver on r_lvd:

4.2.30 Realtime Clock (r_rtc)
Modules

Functions

fsp_err_t R_RTC_Open (rtc_ctrl_t *const p_ctrl, rtc_cfg_t const *const p_cfg)

fsp_err_t R_RTC_Close (rtc_ctrl_t *const p_ctrl)

fsp_err_t R_RTC_CalendarTimeSet (rtc_ctrl_t *const p_ctrl, rtc_time_t *const
p_time)

fsp_err_t R_RTC_CalendarTimeGet (rtc_ctrl_t *const p_ctrl, rtc_time_t *const
p_time)

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 191 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Realtime Clock (r_rtc)

fsp_err_t R_RTC_CalendarAlarmSet (rtc_ctrl_t *const p_ctrl, rtc_alarm_time_t
*const p_alarm)

fsp_err_t R_RTC_CalendarAlarmGet (rtc_ctrl_t *const p_ctrl, rtc_alarm_time_t
*const p_alarm)

fsp_err_t R_RTC_PeriodicIrqRateSet (rtc_ctrl_t *const p_ctrl,
rtc_periodic_irq_select_t const rate)

fsp_err_t R_RTC_ErrorAdjustmentSet (rtc_ctrl_t *const p_ctrl,
rtc_error_adjustment_cfg_t const *const err_adj_cfg)

fsp_err_t R_RTC_InfoGet (rtc_ctrl_t *const p_ctrl, rtc_info_t *const p_rtc_info)

fsp_err_t R_RTC_VersionGet (fsp_version_t *version)

Detailed Description

Driver for the RTC peripheral on RA MCUs. This module implements the RTC Interface.

Overview
The RTC HAL module configures the RTC module and controls clock, calendar and alarm functions. A
callback can be used to respond to the alarm and periodic interrupt.

Features

RTC time and date get and set.
RTC time and date alarm get and set.
RTC time counter start and stop.
RTC alarm and periodic event notification.

The RTC HAL module supports three different interrupt types:

An alarm interrupt generated on a match of any combination of year, month, day, day of
the week, hour, minute or second
A periodic interrupt generated every 2, 1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, or 1/256
second(s)
A carry interrupt is used internally when reading time from the RTC calender to get
accurant time readings.

Note
See section "23.3.5 Reading 64-Hz Counter and Time" of the RA6M3 manual R01UH0886EJ0100 for more details.

A user-defined callback function can be registered (in the rtc_api_t::open API call) and will be called
from the interrupt service routine (ISR) for alarm and periodic interrupt. When called, it is passed a
pointer to a structure (rtc_callback_args_t) that holds a user-defined context pointer and an
indication of which type of interrupt was fired.

Date and Time validation

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 192 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Realtime Clock (r_rtc)

"Parameter Checking" needs to be enabled if date and time validation is required for
calendarTimeSet and calendarAlarmSet APIs. If "Parameter Checking" is enabled, the 'day of the
week' field is automatically calculated and updated by the driver for the provided date. When using
the calendarAlarmSet API, only the fields which have their corresponding match flag set are written
to the registers. Other register fields are reset to default value.

Sub-Clock error adjustment (Time Error Adjustment Function)

The time error adjustment function is used to correct errors, running fast or slow, in the time caused
by variation in the precision of oscillation by the sub-clock oscillator. Because 32,768 cycles of the
sub-clock oscillator constitute 1 second of operation when the sub-clock oscillator is selected, the
clock runs fast if the sub-clock frequency is high and slow if the sub-clock frequency is low. The time
error adjustment functions include:

Automatic adjustment
Adjustment by software

The error adjustment is reset every time RTC is reconfigured or time is set.

Note
RTC driver configurations do not do error adjustment internally while initiliazing the driver. Application must
make calls to the error adjustment api's for desired adjustment. See section 26.3.8 "Time Error Adjustment
Function" of the RA6M3 manual R01UH0886EJ0100) for more details on this feature

Configuration
Build Time Configurations for r_rtc

The following build time configurations are defined in fsp_cfg/r_rtc_cfg.h:

Configuration Options Description

Parameter Checking Enable Default (BSP)
Enabled
Disabled

If selected code for parameter
checking is included in the
build.

Configurations for RTC Driver on r_rtc

This module can be added to the Threads tab from New -> Driver -> Timers -> RTC Driver on r_rtc:

4.2.31 Serial Communications Interface (SCI) I2C (r_sci_i2c)
Modules

Functions

fsp_err_t R_SCI_I2C_VersionGet (fsp_version_t *const p_version)

fsp_err_t R_SCI_I2C_Open (i2c_master_ctrl_t *const p_api_ctrl,
i2c_master_cfg_t const *const p_cfg)

fsp_err_t R_SCI_I2C_Close (i2c_master_ctrl_t *const p_api_ctrl)

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 193 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Communications Interface (SCI) I2C (r_sci_i2c)

fsp_err_t R_SCI_I2C_Read (i2c_master_ctrl_t *const p_api_ctrl, uint8_t *const
p_dest, uint32_t const bytes, bool const restart)

fsp_err_t R_SCI_I2C_Write (i2c_master_ctrl_t *const p_api_ctrl, uint8_t *const
p_src, uint32_t const bytes, bool const restart)

fsp_err_t R_SCI_I2C_Abort (i2c_master_ctrl_t *const p_api_ctrl)

fsp_err_t R_SCI_I2C_SlaveAddressSet (i2c_master_ctrl_t *const p_api_ctrl,
uint32_t const slave, i2c_master_addr_mode_t const addr_mode)

Detailed Description

Driver for the SCI peripheral on RA MCUs. This module implements the I2C Master Interface.

Overview
The Simple I2C master on SCI HAL module supports transactions with an I2C Slave device. Callbacks
must be provided which would be invoked when a transmission or receive has been completed. The
callback arguments will contain information about the transaction status, bytes transferred and a
pointer to the user defined context.

Features

Supports multiple transmission rates
Standard Mode Support with up to 100 kHz transaction rate.
Fast Mode Support with up to 400 kHz transaction rate.

SDA Delay in nanoseconds can be specified as a part of the configuration.
I2C Master Read from a slave device.
I2C Master Write to a slave device.
Abort any in-progress transactions.
Set the address of the slave device.
Non-blocking behavior is achieved by the use of callbacks.
Additional build-time features

Optional (build time) DTC support for read and write respectively.
Optional (build time) support for 10-bit slave addressing.

Configuration
Build Time Configurations for r_sci_i2c

The following build time configurations are defined in fsp_cfg/r_sci_i2c_cfg.h:

Configuration Options Description

Parameter Checking Default (BSP)
Enabled
Disabled

If selected code for parameter
checking is included in the
build.

DTC on Transmission and Enabled If enabled, DTC instances will

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 194 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Communications Interface (SCI) I2C (r_sci_i2c)

Reception Disabled be included in the build for both
transmission and reception.

10-bit slave addressing Enabled
Disabled

If enabled, the driver will
support 10-bit slave addressing
mode along with the default
7-bit slave addressing mode.

Configurations for I2C Master Driver on r_sci_i2c

This module can be added to the Threads tab from New -> Driver -> Connectivity -> I2C Master
Driver on r_sci_i2c:

4.2.32 Serial Communications Interface (SCI) SPI (r_sci_spi)
Modules

Functions

fsp_err_t R_SCI_SPI_Open (spi_ctrl_t *p_api_ctrl, spi_cfg_t const *const p_cfg)

fsp_err_t R_SCI_SPI_Read (spi_ctrl_t *const p_api_ctrl, void *p_dest, uint32_t
const length, spi_bit_width_t const bit_width)

fsp_err_t R_SCI_SPI_Write (spi_ctrl_t *const p_api_ctrl, void const *p_src,
uint32_t const length, spi_bit_width_t const bit_width)

fsp_err_t R_SCI_SPI_WriteRead (spi_ctrl_t *const p_api_ctrl, void const *p_src,
void *p_dest, uint32_t const length, spi_bit_width_t const bit_width)

fsp_err_t R_SCI_SPI_Close (spi_ctrl_t *const p_api_ctrl)

fsp_err_t R_SCI_SPI_VersionGet (fsp_version_t *p_version)

fsp_err_t R_SCI_SPI_CalculateBitrate (uint32_t bitrate, sci_spi_div_setting_t
*sclk_div, bool use_mddr)

Detailed Description

Driver for the SCI peripheral on RA MCUs. This module implements the SPI Interface.

Overview
Features

Standard SPI Modes
Master or Slave Mode
Clock Polarity (CPOL)

CPOL=0 SCLK is low when idle
CPOL=1 SCLK is high when idle

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 195 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Communications Interface (SCI) SPI (r_sci_spi)

Clock Phase (CPHA)
CPHA=0 Data Sampled on the even edge of SCLK
CPHA=1 Data Sampled on the odd edge of SCLK

MSB/LSB first
Configurable bit rate
DTC Support
Callback Events

Transfer Complete
RX Overflow Error (The SCI shift register is copied to the data register before
previous data was read)

Configuration

Build Time Configurations for r_sci_spi

The following build time configurations are defined in fsp_cfg/r_sci_spi_cfg.h:

Configuration Options Description

Parameter Checking Default (BSP)
Enabled
Disabled

If selected code for parameter
checking is included in the
build.

DTC Support Enabled
Disabled

If support for transfering data
using the DTC will be compiled
in.

Configurations for SPI Driver on r_sci_spi

This module can be added to the Threads tab from New -> Driver -> Connectivity -> SPI Driver on
r_sci_spi:

4.2.33 Serial Communications Interface (SCI) UART (r_sci_uart)
Modules

Functions

fsp_err_t R_SCI_UART_Open (uart_ctrl_t *const p_api_ctrl, uart_cfg_t const
*const p_cfg)

fsp_err_t R_SCI_UART_Read (uart_ctrl_t *const p_api_ctrl, uint8_t *const
p_dest, uint32_t const bytes)

fsp_err_t R_SCI_UART_Write (uart_ctrl_t *const p_api_ctrl, uint8_t const *const
p_src, uint32_t const bytes)

fsp_err_t R_SCI_UART_BaudSet (uart_ctrl_t *const p_api_ctrl, void const *const
p_baud_setting)

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 196 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Communications Interface (SCI) UART (r_sci_uart)

fsp_err_t R_SCI_UART_InfoGet (uart_ctrl_t *const p_api_ctrl, uart_info_t *const
p_info)

fsp_err_t R_SCI_UART_Close (uart_ctrl_t *const p_api_ctrl)

fsp_err_t R_SCI_UART_VersionGet (fsp_version_t *p_version)

fsp_err_t R_SCI_UART_Abort (uart_ctrl_t *const p_api_ctrl, uart_dir_t
communication_to_abort)

fsp_err_t R_SCI_UART_BaudCalculate (uint32_t baudrate, bool
bitrate_modulation, uint32_t baud_rate_error_x_1000, baud_setting_t
*const p_baud_setting)

Detailed Description

Driver for the SCI peripheral on RA MCUs. This module implements the UART Interface.

Overview
Features

The SCI UART module supports the following features:

Full-duplex UART communication
Interrupt-driven data transmission and reception
Invoking the user-callback function with an event code (RX/TX complete, TX data empty, RX
char, error, etc)
Baud-rate change at run-time
Bit rate modulation and noise cancellation
RS232 CTS/RTS hardware flow control (with an associated pin)
RS485 Half/Full Duplex flow control
Integration with the DTC transfer module
Abort in-progress read/write operations
FIFO support on supported channels

Configuration
Build Time Configurations for r_sci_uart

The following build time configurations are defined in fsp_cfg/r_sci_uart_cfg.h:

Configuration Options Description

Parameter Checking Default (BSP)
Enabled
Disabled

If selected code for parameter
checking is included in the
build.

FIFO Support Enable
Disable

Enable FIFO support for the
SCI_UART module.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 197 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Communications Interface (SCI) UART (r_sci_uart)

DTC Support Enable
Disable

Enable DTC support for the
SCI_UART module.

RS232/RS485 Flow Control
Support

Enable
Disable

Enable RS232 and RS485 flow
control support using a user
provided pin.

Configurations for UART Driver on r_sci_uart

This module can be added to the Threads tab from New -> Driver -> Connectivity -> UART Driver on
r_sci_uart:

4.2.34 SD/MMC Host Interface (r_sdhi)
Modules

Functions

fsp_err_t R_SDHI_Open (sdmmc_ctrl_t *const p_api_ctrl, sdmmc_cfg_t const
*const p_cfg)

fsp_err_t R_SDHI_MediaInit (sdmmc_ctrl_t *const p_api_ctrl, sdmmc_device_t
*const p_device)

fsp_err_t R_SDHI_Read (sdmmc_ctrl_t *const p_api_ctrl, uint8_t *const p_dest,
uint32_t const start_sector, uint32_t const sector_count)

fsp_err_t R_SDHI_Write (sdmmc_ctrl_t *const p_api_ctrl, uint8_t const *const
p_source, uint32_t const start_sector, uint32_t const sector_count)

fsp_err_t R_SDHI_ReadIo (sdmmc_ctrl_t *const p_api_ctrl, uint8_t *const
p_data, uint32_t const function, uint32_t const address)

fsp_err_t R_SDHI_WriteIo (sdmmc_ctrl_t *const p_api_ctrl, uint8_t *const
p_data, uint32_t const function, uint32_t const address,
sdmmc_io_write_mode_t const read_after_write)

fsp_err_t R_SDHI_ReadIoExt (sdmmc_ctrl_t *const p_api_ctrl, uint8_t *const
p_dest, uint32_t const function, uint32_t const address, uint32_t
*const count, sdmmc_io_transfer_mode_t transfer_mode,
sdmmc_io_address_mode_t address_mode)

fsp_err_t R_SDHI_WriteIoExt (sdmmc_ctrl_t *const p_api_ctrl, uint8_t const
*const p_source, uint32_t const function, uint32_t const address,
uint32_t const count, sdmmc_io_transfer_mode_t transfer_mode,
sdmmc_io_address_mode_t address_mode)

fsp_err_t R_SDHI_IoIntEnable (sdmmc_ctrl_t *const p_api_ctrl, bool enable)

fsp_err_t R_SDHI_StatusGet (sdmmc_ctrl_t *const p_api_ctrl, sdmmc_status_t
*const p_status)

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 198 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > SD/MMC Host Interface (r_sdhi)

fsp_err_t R_SDHI_Erase (sdmmc_ctrl_t *const p_api_ctrl, uint32_t const
start_sector, uint32_t const sector_count)

fsp_err_t R_SDHI_Close (sdmmc_ctrl_t *const p_api_ctrl)

fsp_err_t R_SDHI_VersionGet (fsp_version_t *const p_version)

Detailed Description

Driver for the SD/MMC Host Interface (SDHI) peripheral on RA MCUs. This module implements the
SD/MMC Interface.

Overview
Features

Supports the following memory devices: SDSC (SD Standard Capacity), SDHC (SD High
Capacity), and SDXC (SD Extended Capacity)

Supports reading, writing and erasing SD memory devices
Supports 1-bit or 4-bit bus
Supports detection of device write protection (SD cards only)

Automatically configures the clock to the maximum clock rate supported by both host
(MCU) and device
Supports hardware acceleration using DMAC or DTC
Supports callback notification when an operation completes or an error occurs

Configuration
Build Time Configurations for r_sdhi

The following build time configurations are defined in fsp_cfg/r_sdhi_cfg.h:

Configuration Options Description

Parameter Checking Enable Default (BSP)
Enabled
Disabled

If selected code for parameter
checking is included in the
build.

Unaligned Access Support Disabled
Enabled

If enabled, code for supporting
buffers that are not aligned on
a 4-byte boundary is included in
the build. Only disable this if all
buffers passed to the driver are
4-byte aligned.

Configurations for SD/MMC Driver on r_sdhi

This module can be added to the Threads tab from New -> Driver -> Storage -> SD/MMC Driver on
r_sdhi:

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 199 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Peripheral Interface (r_spi)

4.2.35 Serial Peripheral Interface (r_spi)
Modules

Functions

fsp_err_t R_SPI_Open (spi_ctrl_t *p_api_ctrl, spi_cfg_t const *const p_cfg)

fsp_err_t R_SPI_Read (spi_ctrl_t *const p_api_ctrl, void *p_dest, uint32_t const
length, spi_bit_width_t const bit_width)

fsp_err_t R_SPI_Write (spi_ctrl_t *const p_api_ctrl, void const *p_src, uint32_t
const length, spi_bit_width_t const bit_width)

fsp_err_t R_SPI_WriteRead (spi_ctrl_t *const p_api_ctrl, void const *p_src, void
*p_dest, uint32_t const length, spi_bit_width_t const bit_width)

fsp_err_t R_SPI_Close (spi_ctrl_t *const p_api_ctrl)

fsp_err_t R_SPI_VersionGet (fsp_version_t *p_version)

fsp_err_t R_SPI_CalculateBitrate (uint32_t bitrate, rspck_div_setting_t
*spck_div)

Detailed Description

Driver for the SPI peripheral on RA MCUs. This module implements the SPI Interface.

Overview
Features

Standard SPI Modes
Master or Slave Mode
Clock Polarity (CPOL)

CPOL=0 SCLK is low when idle
CPOL=1 SCLK is high when idle

Clock Phase (CPHA)
CPHA=0 Data Sampled on the even edge of SCLK (Master Mode Only)
CPHA=1 Data Sampled on the odd edge of SCLK

MSB/LSB first
8-Bit, 16-Bit, 32-Bit data frames

Hardware endian swap in 16-Bit and 32-Bit mode
3-Wire or 4-Wire Mode

Configurable bitrate
Supports Full Duplex or Transmit Only Mode
DTC Support
Callback Events

Transfer Complete
RX Overflow Error (The SPI shift register is copied to the data register before
previous data was read)

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 200 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Peripheral Interface (r_spi)

TX Underrun Error (No data to load into shift register for transmitting)
Parity Error (When parity is enabled and a parity error is detected)

Configuration

Build Time Configurations for r_spi

The following build time configurations are defined in fsp_cfg/r_spi_cfg.h:

Configuration Options Description

Parameter Checking Default (BSP)
Enabled
Disabled

If selected code for parameter
checking is included in the
build.

Enable Support for using DTC Enabled
Disabled

If enabled, DTC instances will
be included in the build for both
transmission and reception.

Enable Transmitting from RXI
Interrupt

Enabled
Disabled

If enabled, DTC instances will
be included in the build for both
transmission and reception.

Configurations for SPI Driver on r_spi

This module can be added to the Threads tab from New -> Driver -> Connectivity -> SPI Driver on
r_spi:

4.2.36 Serial Sound Interface (r_ssi)
Modules

Functions

fsp_err_t R_SSI_Open (i2s_ctrl_t *const p_ctrl, i2s_cfg_t const *const p_cfg)

fsp_err_t R_SSI_Stop (i2s_ctrl_t *const p_ctrl)

fsp_err_t R_SSI_StatusGet (i2s_ctrl_t *const p_ctrl, i2s_status_t *const
p_status)

fsp_err_t R_SSI_Write (i2s_ctrl_t *const p_ctrl, void const *const p_src, uint32_t
const bytes)

fsp_err_t R_SSI_Read (i2s_ctrl_t *const p_ctrl, void *const p_dest, uint32_t
const bytes)

fsp_err_t R_SSI_WriteRead (i2s_ctrl_t *const p_ctrl, void const *const p_src,
void *const p_dest, uint32_t const bytes)

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 201 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Sound Interface (r_ssi)

fsp_err_t R_SSI_Mute (i2s_ctrl_t *const p_ctrl, i2s_mute_t const mute_enable)

fsp_err_t R_SSI_Close (i2s_ctrl_t *const p_ctrl)

fsp_err_t R_SSI_VersionGet (fsp_version_t *const p_version)

Detailed Description

Driver for the SSIE peripheral on RA MCUs. This module implements the I2S Interface.

Overview
Features

The SSI module supports the following features:

Transmission and reception of uncompressed audio data using the standard I2S protocol
Full-duplex I2S communication (channel 0 only)
Integration with the DTC transfer module
Internal connection to GPT GTIOC1A timer output to generate the audio clock
Callback function notification when all data is loaded into the SSI FIFO

Configuration

Build Time Configurations for r_ssi

The following build time configurations are defined in fsp_cfg/r_ssi_cfg.h:

Configuration Options Description

Parameter Checking Default (BSP)
Enabled
Disabled

If selected code for parameter
checking is included in the
build.

DTC Support Enabled
Disabled

If code for DTC transfer support
is included in the build.

Configurations for I2S Driver on r_ssi

This module can be added to the Threads tab from New -> Driver -> Connectivity -> I2S Driver on
r_ssi:

4.2.37 Universal Serial Bus (r_usb_basic)
Modules

Functions

fsp_err_t R_USB_Open (usb_ctrl_t *const p_api_ctrl, usb_cfg_t const *const

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 202 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Universal Serial Bus (r_usb_basic)

p_cfg, usb_instance_transfer_t *p_api_trans)

 Applies power to the USB module specified in the argument (p_ctrl).
More...

fsp_err_t R_USB_Close (usb_ctrl_t *const p_api_ctrl, usb_instance_transfer_t
*p_api_trans)

 Terminates power to the USB module specified in argument (p_ctrl).
USB0 module stops when USB_IP0 is specified to the member
(module), USB1 module stops when USB_IP1 is specified to the
member (module). More...

fsp_err_t R_USB_Read (usb_ctrl_t *const p_api_ctrl, uint8_t *p_buf, uint32_t
size, usb_instance_transfer_t *p_api_trans)

 Bulk/interrupt data transfer and control data transfer. More...

fsp_err_t R_USB_Write (usb_ctrl_t *const p_api_ctrl, uint8_t *p_buf, uint32_t
size, usb_instance_transfer_t *p_api_trans)

 Bulk/Interrupt data transfer and control data transfer. More...

fsp_err_t R_USB_Stop (usb_ctrl_t *const p_api_ctrl, usb_transfer_t type,
usb_instance_transfer_t *p_api_trans)

 Requests a data read/write transfer be terminated when a data
read/write transfer is being performed. More...

fsp_err_t R_USB_Suspend (usb_ctrl_t *const p_api_ctrl, usb_instance_transfer_t
*p_api_trans)

 Sends a SUSPEND signal from the USB module assigned to the
member (module) of the usb_crtl_t structure. More...

fsp_err_t R_USB_Resume (usb_ctrl_t *const p_api_ctrl, usb_instance_transfer_t
*p_api_trans)

 Sends a RESUME signal from the USB module assigned to the
member (module) of the usb_ctrl_tstructure. More...

fsp_err_t R_USB_VbusSet (usb_ctrl_t *const p_api_ctrl, uint16_t state,
usb_instance_transfer_t *p_api_trans)

 Specifies starting or stopping the VBUS supply. More...

fsp_err_t R_USB_InfoGet (usb_ctrl_t *const p_api_ctrl, usb_info_t *p_info)

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 203 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Universal Serial Bus (r_usb_basic)

 Obtains completed USB-related events. More...

fsp_err_t R_USB_PipeRead (usb_ctrl_t *const p_api_ctrl, uint8_t *p_buf,
uint32_t size, usb_instance_transfer_t *p_api_trans)

 Requests a data read (bulk/interrupt transfer) via the pipe specified
in the argument. More...

fsp_err_t R_USB_PipeWrite (usb_ctrl_t *const p_api_ctrl, uint8_t *p_buf,
uint32_t size, usb_instance_transfer_t *p_api_trans)

 Requests a data write (bulk/interrupt transfer). More...

fsp_err_t R_USB_PipeStop (usb_ctrl_t *const p_api_ctrl, usb_instance_transfer_t
*p_api_trans)

 Terminates a data read/write operation. More...

fsp_err_t R_USB_UsedPipesGet (usb_ctrl_t *const p_api_ctrl, uint16_t *p_pipe)

 Gets the selected pipe number (number of the pipe that has
completed initalization) via bit map information. More...

fsp_err_t R_USB_PipeInfoGet (usb_ctrl_t *const p_api_ctrl, usb_pipe_t *p_info)

 Gets the following pipe information regarding the pipe specified in
the argument (p_ctrl) member (pipe): endpoint number, transfer
type, transfer direction and maximum packet size. More...

fsp_err_t R_USB_PullUp (uint8_t state)

 This API enables or disables pull-up of D+/D- line. More...

fsp_err_t R_USB_EventGet (usb_ctrl_t *const p_api_ctrl, usb_status_t *event)

 Obtains completed USB related events. More...

fsp_err_t R_USB_VersionGet (fsp_version_t *const p_version)

 Returns the version of this module. More...

fsp_err_t R_USB_ModuleNumberGet (usb_ctrl_t *const p_api_ctrl, uint8_t
*module_number)

 This API gets the module number. More...

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 204 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Universal Serial Bus (r_usb_basic)

fsp_err_t R_USB_ClassTypeGet (usb_ctrl_t *const p_api_ctrl, usb_class_t
*class_type)

 This API gets the class type. More...

fsp_err_t R_USB_DeviceAddressGet (usb_ctrl_t *const p_api_ctrl, uint8_t
*device_address)

 This API gets the device address. More...

fsp_err_t R_USB_PipeNumberGet (usb_ctrl_t *const p_api_ctrl, uint8_t
*pipe_number)

 This API gets the pipe number. More...

fsp_err_t R_USB_DeviceStateGet (usb_ctrl_t *const p_api_ctrl, uint16_t *state)

 This API gets the state of the device. More...

fsp_err_t R_USB_DataSizeGet (usb_ctrl_t *const p_api_ctrl, uint32_t *data_size)

 This API gets the data size. More...

fsp_err_t R_USB_SetupGet (usb_ctrl_t *const p_api_ctrl, usb_setup_t *setup)

 This API gets the setup type. More...

Detailed Description

The USB module (r_usb_basic) provides an API to perform H / W control of USB communication. It
implements the USB Interface.

Overview
The USB module performs USB hardware control. The USB module operates in combination with one
type of sample device class drivers provided by Renesas.

Features

The USB module has the following key features:

Overall
Supporting USB Host or USB Peripheral.
Device connect/disconnect, suspend/resume, and USB bus reset processing.
Control transfer on pipe 0.
Data transfer on pipes 1 to 9. (Bulk or Interrupt transfer)
This driver supports RTOS version (hereinafter called "RTOS") and Non-OS version

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 205 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Universal Serial Bus (r_usb_basic)

(hereinafter called "Non-OS"). RTOS uses the realtime OS (FreeRTOS). Non-OS
does not use the real time OS.

Host mode
In host mode, enumeration as Low-speed/Full-speed/Hi-speed device (However,
operating speed is different by devices ability.)
Transfer error determination and transfer retry.

Peripheral mode
In peripheral mode, enumeration as USB Host of USB1.1/2.0/3.0.

Configuration
Build Time Configurations for r_usb_basic

The following build time configurations are defined in fsp_cfg/r_usb_basic_cfg.h:

Configuration Options Description

Parameter Checking Default (BSP)
Enabled
Disabled

If selected code for parameter
checking is included in the
build.

USB Operating mode Setting Host mode
Peri mode

If Peri mode is selected, USB
operates as Peripheral.

Device Class Setting Host Communication
Device Class
Host Human Interface
Device Class
Host Mass Storage Class
Host Vendor Class
Peripheral
Communication Device
Class
Peripheral Human
Interface Device Class
Peripheral Mass Storage
Class
Peripheral Vendor Class

Set USB to work in the selected
class.

DTC use setting Uses DTC
Does not use DTC

When it is enabled, it will
operate using DTC.

DMA use setting Uses DMA
Does not use DMA

When it is enabled, it will
operate using DMA.

DMA channel setting for
transmission using USB0
module

Uses DMAC0
Uses DMAC1
Uses DMAC2
Uses DMAC3
Uses DMAC4
Uses DMAC5
Uses DMAC6
Uses DMAC7

Use the set channel for
transmission.

DMA channel setting for
reception using USB0 module

Uses DMAC0
Uses DMAC1

Use the set channel for
reception.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 206 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Universal Serial Bus (r_usb_basic)

Uses DMAC2
Uses DMAC3
Uses DMAC4
Uses DMAC5
Uses DMAC6
Uses DMAC7

DMA channel setting for
transmission using USB1
module

Uses DMAC0
Uses DMAC1
Uses DMAC2
Uses DMAC3
Uses DMAC4
Uses DMAC5
Uses DMAC6
Uses DMAC7

Use the set channel for
transmission.

DMA channel setting for
reception using USB1 module

Uses DMAC0
Uses DMAC1
Uses DMAC2
Uses DMAC3
Uses DMAC4
Uses DMAC5
Uses DMAC6
Uses DMAC7

Use the set channel for
reception.

PLL clock frequency setting 24MHz
20MHz
Other than 24/20MHz

In the case of a USB module
other than USB1 module, this
definition is ignored.

CPU bus access wait setting See e2 studio for available
options.

CPU Bus Access Wait
Select(CPU Bus Wait Register
(BUSWAIT)BWAIT[3:0]) 2-17
access cycle wait

Setting the battery charging
function

Using the battery
charging function
Not using the battery
charging function

Not using the battery charging
function Using the battery
charging function

Setting the power source IC High assert
Low assert

Select High assert or Low
assert.

Setting USB port operation
when using the battery
charging function

DCP enabled
DCP disabled

Please select whether to
deactivate or activate the DCP.

Setting USB module to be used Using USB0 module
Using USB1 module

During peripheral operation,
select whether to use USB 0 or
1.

Setting whether to notify the
application when receiving the r
equest(SET_INTERFACE/SET_FE
ATURE/CLEAR_FEATURE)

Not notifying.
Notifying

Please choose whether it
corresponds to the class
request.

Select whether to use the
double buffer function.

Not Using double buffer
Using double buffer

Please choose whether it
corresponds to the double
buffer.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 207 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Universal Serial Bus (r_usb_basic)

Select whether to use the
continuous transfer mode.

Not Using continuous
transfer mode
Using continuous
transfer mode

Please choose whether it
corresponds to the continuous
transfer mode.

FreeRTOS Integration Do not use FreeRTOS.
Use FreeRTOS.

Select whether to use FreeRTOS
with USB.

Configurations for USB Driver on r_usb_basic

This module can be added to the Threads tab from New -> Middleware -> USB -> USB Driver on
r_usb_basic:

4.2.38 Host Mass Storage Class Driver (r_usb_hmsc)
Modules

The USB module (r_usb_hmsc) provides an API to perform hardware control of USB communications.
It implements the USB Interface.

This module is USB Basic Host and Peripheral. It works in combination with Driver (r_usb_basic
module).

Overview
The r_usb_hmsc module, when used in combination with the r_usb_basic module, operates as a USB
host mass storage class driver (HMSC). HMSC is built on the USB mass storage class Bulk-Only
Transport (BOT) protocol. It is possible to communicate with BOT-compatible USB storage devices by
combining it with the file system and storage device driver. This module should be used in
combination with the FreeRTOS+FAT File System.

Features

The r_usb_hmsc module has the following key features:

Checking of connected USB storage devices (to determine whether or not operation is
supported)
Storage command communication using the BOT protocol
Support for SFF-8070i (ATAPI) USB mass storage subclass
Sharing of a single pipe for IN/OUT directions or multiple devices
Maximum 4 USB storage devices can be connected

Class Driver Overview

1. Class Requests

The class requests supported by this driver are shown below.

Request Description

GetMaxLun Gets the maximum number of units that are
supported.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 208 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Host Mass Storage Class Driver (r_usb_hmsc)

MassStrageReset Cancels a protocol error.

2. Storage Commands

This driver supports the following storage command.

TEST_UNIT_READY
REQUEST_SENSE
MODE_SELECT10
MODE_SENSE10
PREVENT_ALLOW
READ_FORMAT_CAPACITY
READ10
WRITE10

Configuration
Clock Configuration

Refer to Universal Serial Bus (r_usb_basic) basic module.

Pin Configuration

Refer to Universal Serial Bus (r_usb_basic) basic module.

Usage Notes
This driver is not guaranteed to provide USB communication operation. The customer
should verify operation when utilizing it in a system and confirm the ability to connect to a
variety of different types of devices.
This module must be incorporated into a project using r_usb_basic. Once incorporated into
a project, use the API to perform USB hardware control.
This driver is confirmed for operation in combination with the FreeRTOS+FAT File System.

Limitations

1. Some MSC devices may be unable to connect (because they are not recognized as storage
devices).

2. MSC devices that return values of 1 or higher in response to the GetMaxLun command
(mass storage class command) are not supported.

3. Maximum 4 USB storage devices can be connected.
4. USB storage devices with a sector size of 512 bytes can be connected.
5. A device that does not respond to the READ_CAPACITY command operates as a device with

a sector size of 512 bytes.

Examples
USB HMSC Example

Example Operating Environment

The following shows an example operating environment for the HMSC.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 209 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Host Mass Storage Class Driver (r_usb_hmsc)

Refer to the associated instruction manuals for details on setting up the evaluation board and using
the emulator, etc.

Figure 99: Example Operating Environment

Application Specifications

The main functions of the application are as follows:

1. Performs enumeration and drive recognition processing on MSC devices.
2. After the above processsing finisihes, the application writes the file hmscdemo.txt to the

MSC device once.
3. After writing the above file, the APL repeatedly reads the file hmscdemo.txt. It continues to

read the file repeatedly until the switch is pressed again.

Application Processing (for RTOS)

This application has two tasks. An overview of the processing in these two tasks is provided below.

usb_apl_task

1. After start up, MCU pin setting, USB controller initialization, and application program
initialization are performed.

2. The MSC device is attached to the kit. When enumeration and drive recognition processing
have completed, the USB driver calls the callback function (usb_apl_callback). In the
callback function (usb_apl_callback), the application task is notified of the USB completion
event using the FreeRTOS functionality.

3. In the application task, information regarding the USB completion event about which

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 210 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Host Mass Storage Class Driver (r_usb_hmsc)

notification was received from the callback function is retrieved using the real-time OS
functionality.

4. If the USB completion event (the event member of the usb_ctrl_t structure) retrieved in step
2 above is USB_STS_CONFIGURED then, based on the USB completion event, the MSC
device is mounted and the file is written to the MSC device.

5. If the USB completion event (the event member of the usb_ctrl_t structure) retrieved in step
2 above is USB_STS_DETACH, the application initializes the variables for state management.

Figure 100: usb_apl_task

 file_read_task

Of the application tasks usb_apl_task and file_read_task, file_read_task is processed while
usb_apl_task is in the wait state. This task performs file read processing on the file that was written
to the MSC device (hmscdemo.txt).

This is an hmsc example of minimal use of the USB in an application.

void usb_hmsc_example (void)

{

 usb_instance_ctrl_t ctrl;

 usb_instance_transfer_t trans;

 usb_instance_transfer_t *p_mess;

 uint8_t g_buf[USB_VALUE_64];

 capacity_list_t *pcl;

 FF_Disk_t *USB_ret = NULL;

 size_t size_return;

 int close_err;

 apl_init();

 usb_pin_setting(); /* USB pin function and port mode setting. */

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 211 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Host Mass Storage Class Driver (r_usb_hmsc)

 trans.module_number = USB_IP0;

 trans.type = USB_CLASS_HMSC;

 g_usb_on_usb.open(&ctrl, &g_usb0_cfg, &trans);

 g_usb0_cfg.p_usb_apl_callback = &usb_apl_callback;

 R_USB_Callback(g_usb0_cfg.p_usb_apl_callback);

 usb_configured = 0;

 while (1)

 {

 USB_APL_RCV_MSG(USB_APL_MBX, (usb_msg_t **)&p_mess);

 trans = *p_mess;

 switch (trans.event)

 {

 case USB_STATUS_CONFIGURED :

 g_buf[0] = USB_VALUE_3FH; /* Page Code */

 g_hmsc_on_usb.strgcmd(&ctrl, g_buf, USB_ATAPI_READ_FORMAT_CAPACITY,

&trans);

 pcl = (capacity_list_t *)g_buf;

 if(pcl->current_capacity_header.descriptor_code == 0x02)

 {

 usb_device_capacity_blocks = \

 ((uint32_t)pcl->current_capacity_header.number_of_blocks[0]

<< 24) | \

 ((uint32_t)pcl->current_capacity_header.number_of_blocks[1]

<< 16) | \

 ((uint32_t)pcl->current_capacity_header.number_of_blocks[2]

<< 8) | \

 ((uint32_t)pcl->current_capacity_header.number_of_blocks[3]);

 usb_configured = 1;

 }

 USB_ret = FF_DiskInit((char*)main_USB_DISK_NAME, &disk_info);

 if(NULL == USB_ret)

 {

 printf("File Init Fail");

 }

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 212 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Host Mass Storage Class Driver (r_usb_hmsc)

 R_USB_HmscSemGet();

 /* Open the source file in read only mode. */

 pxSourceFile = ff_fopen((const char *)"TEST_USB.txt", (const char *)"w");

 if(0 != pxSourceFile)

 {

 /* Write however many bytes were read from the source file into the destination

file. */

 size_return = ff_fwrite(g_file_data, sizeof(g_file_data), 1,

pxSourceFile);

 if(1 == size_return)

 {

 g_isFileWrite = USB_APL_YES;

 }

 else

 {

 printf("File Write Fail");

 }

 close_err = ff_fclose(pxSourceFile);

 if(0 != close_err)

 {

 printf("File Close Fail");

 }

 }

 R_USB_HmscSemRel();

 break;

 case USB_STATUS_DETACH :

 g_isFileWrite = USB_APL_NO;

 break;

 default :

 break;

 } /* switch(event) */

 } /* while(1) */

} /* End of function usb_hmsc_example() */

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 213 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Universal Serial Bus Peripheral Communication Device Class (r_usb_pcdc)

4.2.39 Universal Serial Bus Peripheral Communication Device Class
(r_usb_pcdc)
Modules

This module is USB Peripheral Communication Device Class Driver (PCDC).
This module works in combination with (r_usb_basic module).

Overview
The r_usb_pcdc module combines with the r_usb_basic module to provide USB Peripheral It operates
as a communication device class driver (hereinafter referred to as PCDC).
PCDC conforms to Abstract Control Model of USB communication device class specification
(hereinafter referred to as CDC) and can communicate with USB host.

Features

The r_usb_pcdc module has the following key features:

Data transfer to and from a USB host.
Response to CDC class requests.
Provision of communication device class notification transmit service.

Basic Functions

CDC conforms to the communication device class specification Abstract Control Model subclass.

Abstract Control Model Overview

The Abstract Control Model subclass of CDC is a technology that bridges the gap between USB
devices and earlier modems (employing RS-232C connections), enabling use of application programs
designed for older modems. The class requests and class notifications supported are listed below.

Class Requests (Host to Peripheral)

This driver notifies to the application program when receiving the following class request.

Request Code Description

SetLineCoding 0x20 Makes communication line
settings
(communication speed, data
length,parity bit, and stop bit
length).

GetLineCoding 0x21 Acquires the communication
line setting state.

SetControlLineState 0x22 Makes communication line
control signal (RTS,DTR)
settings.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 214 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Universal Serial Bus Peripheral Communication Device Class (r_usb_pcdc)

For details concerning the Abstract Control Model requests, refer to Table 11, [Requests - Abstract
Control Model] in [USB Communications Class Subclass Specification for PSTN Devices], Revision 1.2.

Data Format of Class Requests

The data format of the class requests supported by the class driver software is described below.

1.SetLineCoding

This is the class request the host transmits to perform the UART line setting.
The SetLineCoding data format is shown below.

SetLineCoding Format

bmRequestTyp
e t

bRequest wValue wIndex wLength Data

0x21 SET_LINE_CODI
NG(0x20)

0x00 0x0 0x07 Line Coding
Structure

Line Coding Structure

Offset Field Size Value Description

0 DwDTERate 4 Number Data terminal
speed (bps)

4 BcharFormat 1 Number Stop bits:
0 - 1 stop bit
1 - 1.5 stop bits
1 - 1.5 stop bits
2 - 2 stop bits

5 BparityType 1 Number Parity:
0 - None
1 - Odd
2 - Even

6 BdataBits 1 Data bits (5, 6, 7,
8)

2.GetLineCoding

This is the class request the host transmits to request the UART line state.
The GetLineCoding data format is shown below.

GetLineCoding Format

bmRequestTyp
e t

bRequest wValue wIndex wLength Data

0xA1 GET_LINE_COD
ING(0x21)

0x00 0x0 0x07 Line Coding
Structure

3.SetControlLineState

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 215 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Universal Serial Bus Peripheral Communication Device Class (r_usb_pcdc)

This is a class request that the host sends to set up the signal for flow controls of UART.
This software does not support RTS/DTR control.
The SET_CONTROL_LINE_STATE data format is shown below.

SET_CONTROL_LINE_STATE Format

bmRequestTyp
e t

bRequest wValue wIndex wLength Data

0x21 SET_CONTROL
_LINE_STATE(0
x22)

Control Signal
Bitmap

0x0 0x00 None

Control Signal Bitmap

Bit Position Description

D15 to D2 Reserved (reset to 0)

D1 DCE transmit function control:
0 - RTS Off
1 - RTS On

D0 Notification of DTE ready state:
0 - DTR Off
1 - DTR On

Class Notifications (Peripheral to Host)

The table below shows the class notification support / non-support of this S / W.

Notification Code Description Supported

NETWORK_CONNECTIO
N

0x00 Notification of network
connection state

No

RESPONSE_AVAILABLE 0x01 Response to GET_ENCA
PSLATED_RESPONSE

No

SERIAL_STATE 0x20 Notification of serial
line state

Yes

1.Serial State

The host is notified of the serial state when a change in the UART port state is detected.
This software supports the detection of overrun, parity and framing errors. A state notification is
performed when a change from normal state to error is detected. However, notification is not
continually transmitted when an error is continually detected.

SerialState Format

bmRequestTyp
e t

bRequest wValue wIndex wLength Data

0xA1 SERIAL_STATE(
0x20)

0x00 0x0 0x02 UART State
bitmap

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 216 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Universal Serial Bus Peripheral Communication Device Class (r_usb_pcdc)

UART state bitmap format

Bits Fieeld Description Supported

D15 to D7 Reserved -

D6 b_over_run Overrun error detected Yes

D5 b_parity Parity error detected Yes

D4 b_framing Framing error detected Yes

D3 b_ring_signal INCOMING signal (ring
signal) detected

No

D2 b_break Break signal detected No

D1 btx_arrier Data Set Ready: Line
connected and ready
for communication

No

D0 brx_carrier Data Carrier Detect:
Carrier detected on line

No

PC Virtual COM-port Usage

The CDC device can be used as a virtual COM port when operating in Windows OS.
Use a PC running Windows OS, and connect an board. After USB enumeration, the CDC class
requests GetLineCoding and SetControlLineState are executed by the target, and the CDC device is
registered in Windows Device Manager as a virtual COM device.
Registering the CDC device as a virtual COM-port in Windows Device Manager enables data
communication with the CDC device via a terminal app such as [HyperTerminal] which comes
standard with Windows OS. When changing settings of the serial port in the Windows terminal
application, the UART setting is propagated to the firmware via the class request SetLineCoding.
Data input (or file transmission) from the terminal app window is transmitted to the board using
endpoint 2 (EP2); data from the board side is transmitted to the PC using EP1.
When the last packet of data received is the maximum packet size, and the terminal determines that
there is continuous data, the received data may not be displayed in the terminal. If the received data
is smaller than the maximum packet size, the data received up to that point is displayed in the
terminal.
The received data is outputted on the terminal when the data less than Maximum packet size is
received.

Configuration
Build Time Configurations for r_usb_pcdc

The following build time configurations are defined in fsp_cfg/r_usb_pcdc_cfg.h:

Configuration Options Description

Select which pipe to use for
bulk IN transfer during PCDC
operation.

Using USB PIPE1
Using USB PIPE2
Using USB PIPE3
Using USB PIPE4
Using USB PIPE5

Please choose between 1 and 5.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 217 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Universal Serial Bus Peripheral Communication Device Class (r_usb_pcdc)

Select which pipe to use for
bulk OUT transfer during PCDC
operation.

Using USB PIPE1
Using USB PIPE2
Using USB PIPE3
Using USB PIPE4
Using USB PIPE5

Please choose between 1 and 5.

Select which pipe to use for
Interrupt IN transfer during
PCDC operation.

Using USB PIPE6
Using USB PIPE7
Using USB PIPE8
Using USB PIPE9

Please choose between 6 and 9.

Configurations for USB PCDC driver on r_usb_pcdc

This module can be added to the Threads tab from New -> Middleware -> USB -> USB PCDC driver
on r_usb_pcdc:

4.2.40 Watchdog Timer (r_wdt)
Modules

Functions

fsp_err_t R_WDT_Refresh (wdt_ctrl_t *const p_ctrl)

fsp_err_t R_WDT_Open (wdt_ctrl_t *const p_ctrl, wdt_cfg_t const *const p_cfg)

fsp_err_t R_WDT_StatusClear (wdt_ctrl_t *const p_ctrl, const wdt_status_t
status)

fsp_err_t R_WDT_StatusGet (wdt_ctrl_t *const p_ctrl, wdt_status_t *const
p_status)

fsp_err_t R_WDT_CounterGet (wdt_ctrl_t *const p_ctrl, uint32_t *const
p_count)

fsp_err_t R_WDT_TimeoutGet (wdt_ctrl_t *const p_ctrl, wdt_timeout_values_t
*const p_timeout)

fsp_err_t R_WDT_VersionGet (fsp_version_t *const p_version)

Detailed Description

Driver for the WDT peripheral on RA MCUs. This module implements the WDT Interface.

Overview
The watchdog timer is used to recover from unexpected errors in an application. The watchdog timer
must be refreshed periodically in the permitted count window by the application. If the count is
allowed to underflow or refresh occurs outside of the valid refresh period, the WDT resets the device
or generates an NMI.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 218 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Watchdog Timer (r_wdt)

Figure 101: Watchdog Timer Operation Example

Features

The WDT HAL module has the following key features:

When the WDT underflows or is refreshed outside of the permitted refresh window, one of
the following events can occur:

Resetting of the device
Generation of an NMI

The WDT has two supported modes:
In auto start mode, the WDT begins counting at reset.
In register start mode, the WDT can be started from the application.

Selecting a Watchdog

RA MCUs have two watchdog peripherals: the watchdog timer (WDT) and the independent watchdog
timer (IWDT). When selecting between them, consider these factors:

WDT IWDT

Start Mode The WDT can be started from
the application (register start
mode) or configured by
hardware to start automatically
(auto start mode).

The IWDT can only be
configured by hardware to start
automatically.

Clock Source The WDT runs off a peripheral
clock.

The IWDT has its own clock
source which improves safety.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 219 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Watchdog Timer (r_wdt)

Configuration
When using register start mode, configure the watchdog timer on the Threads tab.

Note
When using auto start mode, configurations on the Threads tab are ignored. Configure the watchdog using the OFS
settings on the BSP tab.

Build Time Configurations for r_wdt

The following build time configurations are defined in fsp_cfg/r_wdt_cfg.h:

Configuration Options Description

Parameter Checking Default (BSP)
Enabled
Disabled

If selected code for parameter
checking is included in the
build.

Register Start NMI Support Enabled
Disabled

If enabled, code for NMI support
in register start mode is
included in the build.

Configurations for Watchdog Driver on r_wdt

This module can be added to the Threads tab from New -> Driver -> Monitoring -> Watchdog Driver
on r_wdt:

4.2.41 SEGGER emWin Port (rm_emwin_port)
Modules

SEGGER emWin port for RA MCUs.

Overview
The SEGGER emWin RA Port module provides the configuration and hardware acceleration support
necessary for use of emWin on RA products. The port provides full integration with the graphics
peripherals (GLCDC, DRW and JPEG) as well as Amazon FreeRTOS.

Note
This port layer primarily enables hardware acceleration and background handling of many display operations and
does not contain code intended to be directly called by the user. Please consult the SEGGER emWin User Guide
(UM03001) for details on how to use emWin in your project.

Hardware Acceleration

The following functions are currently performed with hardware acceleration:

Drawing bitmaps (ARGB8888 and RGB565)

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 220 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > SEGGER emWin Port (rm_emwin_port)

Rectangle fill
Line and shape drawing
Anti-aliased operations

Circle stroke and fill
Polygon stroke and fill
Lines and arcs

JPEG decoding
LCD panel data conversion and output

Configuration
Build Time Configurations for rm_emwin_port

The following build time configurations are defined in fsp_cfg/rm_emwin_port_cfg.h:

Configuration Options Description

Memory Allocation|GUI Heap
Size

Value must be a non-negative
integer

Set the size of the heap to be
allocated for use exclusively by
emWin.

Memory Allocation|Section for
GUI Heap

Configurable String Specify the section in which to
allocate the GUI heap.

Memory Allocation|Maximum
Layers

Value must be a non-negative
integer

Set the maximum number of
available display layers.

Configuration|RTOS Support Enabled
Disabled

Enable or disable RTOS
awareness (multithreading
support).

Configuration|Touch Panel
Support

Enabled
Disabled

Enable or disable touch panel
support.

Configuration|Mouse Support Enabled
Disabled

Enable or disable support for
mouse input.

Configuration|Memory Devices Enabled
Disabled

Enable or disable support for
memory devices, which allow
the user to allocate their own
memory in the GUI heap.

Configuration|Text Rotation Enabled
Disabled

Enable or disable support for
displaying rotated text.

Configuration|Window Manager Enabled
Disabled

Enable or disable the emWin
Window Manager (WM).

Configuration|Bidirectional Text Enabled
Disabled

Enable or disable support for
bidirectional text (such as
Arabic or Hebrew).

Configuration|Debug Logging
Level

None (0)
Parameter checking
only (1)
All checks enabled (2)
Log errors (3)

Set the debug logging level.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 221 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > SEGGER emWin Port (rm_emwin_port)

Log warnings (4)
Log all messages (5)

JPEG Decoding|Error Timeout Value must be a non-negative
integer

Set the timeout for JPEG
decoding operations (in RTOS
ticks) in the event of a decode
error.

JPEG Decoding|Input Buffer Size Value must be a non-negative
integer

Set the size of the JPEG decode
input buffer (in bytes). This
buffer is used to ensure 8-byte
alignment of input data.
Specifying a size smaller than
the size of the JPEG to decode
will use additional interrupts to
stream data in during the
decoding process.

JPEG Decoding|Output Buffer
Size

Value must be a non-negative
integer

Set the size of the JPEG decode
output buffer (in bytes). An
output buffer smaller than the
size of a decoded image will
use additional interrupts to
stream the data into a
framebuffer.

JPEG Decoding|Section for
Buffers

Configurable String Specify the section in which to
allocate the JPEG work buffers.

4.2.42 FreeRTOS Plus FAT (rm_freertos_plus_fat)
Modules

Functions

fsp_err_t RM_FREERTOS_PLUS_FAT_Open (freertos_plus_fat_ctrl_t *p_ctrl,
freertos_plus_fat_cfg_t *p_cfg)

 Returns the version of this module. The version number is encoded
such that the top two bytes are the major version number and the
bottom two bytes are the minor version number. More...

fsp_err_t RM_FREERTOS_PLUS_FAT_Close (freertos_plus_fat_ctrl_t *p_ctrl)

 Returns the version of this module. The version number is encoded
such that the top two bytes are the major version number and the
bottom two bytes are the minor version number. More...

fsp_err_t RM_FREERTOS_PLUS_FAT_VersionGet (fsp_version_t *const
p_version)

 Returns the version of this module. The version number is encoded
such that the top two bytes are the major version number and the

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 222 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > FreeRTOS Plus FAT (rm_freertos_plus_fat)

bottom two bytes are the minor version number. More...

Detailed Description

Middleware for the Fat File System control on RA MCUs.

Overview
The FreeRTOS Plus FAT performs Fat File System control. This middleware is based on open source.
Please refer to the following URL for details. https://www.freertos.org/FreeRTOS-
Plus/FreeRTOS_Plus_FAT/index.html

Features

The FreeRTOS Plus FAT module supports the following features:

File read support
File write support

Configuration
Configurations for FreeRTOS+FAT

This module can be added to the Threads tab from New -> FreeRTOS+ -> FreeRTOS+FAT:

Configuration Options Description

pcDeviceName Name must be a valid C symbol Name must be a valid C symbol

Partition Must be a valid number Select the partition.

ulNumberOfSectors Name must be a valid number Select the ulNumberOfSectors.

NumberOfMemory Must be a valid number Select the NumberOfMemory.

ulSectorSize Must be a valid number Select the ulSectorSize.

xBlockDeviceIsReentrant Disable Reentrant
Enable Reentrant

Select the Reentrant.

ulSignature Must be a valid number Select the ulSignature.

bPartitionNumber Must be a valid number Select the bPartitionNumber.

device_type FREERTOS_PLUS_FAT_D
EVICE_TYPE_USB
FREERTOS_PLUS_FAT_D
EVICE_TYPE_END

Select the device_type.

status FREERTOS_PLUS_FAT_D
EVICE_STATUS_UNINITUI
ALIZED
FREERTOS_PLUS_FAT_D
EVICE_STATUS_INITUIALI

Select the status.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 223 / 601

https://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_FAT/index.html
https://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_FAT/index.html

Flexible Software Package

User’s Manual
API Reference > Modules > FreeRTOS Plus FAT (rm_freertos_plus_fat)

ZED

Build Time Configurations for rm_freertos_plus_fat

The following build time configurations are defined in freertos_plus/FreeRTOSFATConfig.h:

4.2.43 Amazon FreeRTOS Port (rm_freertos_port)
Modules

Amazon FreeRTOS port for RA MCUs.

Overview
Note

The FreeRTOS Port does not provide any interfaces to the user. Consult the AWS FreeRTOS documentation at
https://www.freertos.org/ for further information.

Features

The RA FreeRTOS port supports the following features:

Standard AWS FreeRTOS configurations
Hardware stack monitor

Configuration
Build Time Configurations for all

The following build time configurations are defined in aws/FreeRTOSConfig.h:

Configuration Options Description

General|Custom
FreeRTOSConfig.h

Configurable String Add a path to your custom
FreeRTOSConfig.h file. It can be
used to override some or all of
the configurations defined here,
and to define additional
configurations.

General|Use Preemption Enabled
Disabled

Set to Enabled to use the
preemptive RTOS scheduler, or
Disabled to use the cooperative
RTOS scheduler.

General|Use Port Optimised
Task Selection

Enabled
Disabled

Some FreeRTOS ports have two
methods of selecting the next
task to execute - a generic
method, and a method that is
specific to that port.
The Generic method:

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 224 / 601

https://www.freertos.org/

Flexible Software Package

User’s Manual
API Reference > Modules > Amazon FreeRTOS Port (rm_freertos_port)

Is used when Use Port
Optimized Task Selection is set
to 0, or when a port specific
method is not implemented.
Can be used with all FreeRTOS
ports.
Is completely written in C,
making it less efficient than a
port specific method.
Does not impose a limit on the
maximum number of available
priorities.
A port specific method:

Is not available for all ports.
Is used when Use Port
Optimized Task Selection is
Enabled.
Relies on one or more
architecture specific assembly
instructions (typically a Count
Leading Zeros [CLZ] or
equivalent instruction) so can
only be used with the
architecture for which it was
specifically written.
Is more efficient than the
generic method.
Typically imposes a limit of 32
on the maximum number of
available priorities.

General|Use Tickless Idle Enabled
Disabled

Set Use Tickless Idle to Enabled
to use the low power tickless
mode, or Disabled to keep the
tick interrupt running at all
times. Low power tickless
implementations are not
provided for all FreeRTOS ports.

Hooks|Use Idle Hook Enabled
Disabled

Set to Enabled if you wish to
use an idle hook, or Disabled to
omit an idle hook.

Hooks|Use Malloc Failed Hook Enabled
Disabled

The kernel uses a call to
pvPortMalloc() to allocate
memory from the heap each
time a task, queue or
semaphore is created. The
official FreeRTOS download
includes four sample memory
allocation schemes for this
purpose. The schemes are
implemented in the heap_1.c,
heap_2.c, heap_3.c, heap_4.c

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 225 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Amazon FreeRTOS Port (rm_freertos_port)

and heap_5.c source files
respectively. Use Malloc Failed
Hook is only relevant when one
of these three sample schemes
is being used.
The malloc() failed hook
function is a hook (or callback)
function that, if defined and
configured, will be called if
pvPortMalloc() ever returns
NULL. NULL will be returned
only if there is insufficient
FreeRTOS heap memory
remaining for the requested
allocation to succeed.

If Use Malloc Failed Hook is
Enabled then the application
must define a malloc() failed
hook function. If Use Malloc
Failed Hook is set to Dosab;ed
then the malloc() failed hook
function will not be called, even
if one is defined. Malloc() failed
hook functions must have the
name and prototype shown
below.

void
vApplicationMallocFailedHook(
void);

Hooks|Use Daemon Task
Startup Hook

Enabled
Disabled

If Use Timers and Use Daemon
Task Startup Hook are both
Enabled then the application
must define a hook function
that has the exact name and
prototype as shown below. The
hook function will be called
exactly once when the RTOS
daemon task (also known as
the timer service task) executes
for the first time. Any
application initialisation code
that needs the RTOS to be
running can be placed in the
hook function.
void void vApplicationDaemonT
askStartupHook(void);

Hooks|Use Tick Hook Enabled
Disabled

Set to Enabled if you wish to
use an tick hook, or Disabled to
omit an tick hook.

General|Cpu Clock Hz Configurable String Enter the frequency in Hz at
which the internal clock that

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 226 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Amazon FreeRTOS Port (rm_freertos_port)

drives the peripheral used to
generate the tick interrupt will
be executing - this is normally
the same clock that drives the
internal CPU clock. This value is
required in order to correctly
configure timer peripherals.

General|Tick Rate Hz Must be an integer and greater
than 0

The frequency of the RTOS tick
interrupt.
The tick interrupt is used to
measure time. Therefore a
higher tick frequency means
time can be measured to a
higher resolution. However, a
high tick frequency also means
that the RTOS kernel will use
more CPU time so be less
efficient. The RTOS demo
applications all use a tick rate
of 1000Hz. This is used to test
the RTOS kernel and is higher
than would normally be
required.

More than one task can share
the same priority. The RTOS
scheduler will share processor
time between tasks of the same
priority by switching between
the tasks during each RTOS
tick. A high tick rate frequency
will therefore also have the
effect of reducing the 'time
slice' given to each task.

General|Max Priorities Must be an integer and greater
than 0

The number of priorities
available to the application
tasks. Any number of tasks can
share the same priority.
Each available priority
consumes RAM within the RTOS
kernel so this value should not
be set any higher than actually
required by your application.

General|Minimal Stack Size Must be an integer and greater
than 0

The size of the stack used by
the idle task. Generally this
should not be reduced from the
value set in the
FreeRTOSConfig.h file provided
with the demo application for
the port you are using.
Like the stack size parameter to
the xTaskCreate() and
xTaskCreateStatic() functions,

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 227 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Amazon FreeRTOS Port (rm_freertos_port)

the stack size is specified in
words, not bytes. If each item
placed on the stack is 32-bits,
then a stack size of 100 means
400 bytes (each 32-bit stack
item consuming 4 bytes).

General|Max Task Name Len Must be an integer and greater
than 0

The maximum permissible
length of the descriptive name
given to a task when the task is
created. The length is specified
in the number of characters
including the NULL termination
byte.

Stats|Use Trace Facility Enabled
Disabled

Set to Enabled if you wish to
include additional structure
members and functions to
assist with execution
visualisation and tracing.

Stats|Use Stats Formatting
Functions

Enabled
Disabled

Set Use Trace Facility and Use
Stats Formatting Functions to
Enabled to include the
vTaskList() and
vTaskGetRunTimeStats()
functions in the build. Setting
either to Disabled will omit
vTaskList() and
vTaskGetRunTimeStates() from
the build.

General|Use 16 Bit Ticks Disabled Time is measured in 'ticks' -
which is the number of times
the tick interrupt has executed
since the RTOS kernel was
started. The tick count is held in
a variable of type TickType_t.
Defining
configUSE_16_BIT_TICKS as 1
causes TickType_t to be defined
(typedef'ed) as an unsigned
16bit type. Defining
configUSE_16_BIT_TICKS as 0
causes TickType_t to be defined
(typedef'ed) as an unsigned
32bit type.

Using a 16 bit type will greatly
improve performance on 8 and
16 bit architectures, but limits
the maximum specifiable time
period to 65535 'ticks'.
Therefore, assuming a tick
frequency of 250Hz, the
maximum time a task can delay

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 228 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Amazon FreeRTOS Port (rm_freertos_port)

or block when a 16bit counter is
used is 262 seconds, compared
to 17179869 seconds when
using a 32bit counter.

General|Idle Should Yield Enabled
Disabled

This parameter controls the
behaviour of tasks at the idle
priority. It only has an effect if:
The preemptive scheduler is
being used.
The application creates tasks
that run at the idle priority.
If Use Time Slicing is Enabled
then tasks that share the same
priority will time slice. If none of
the tasks get preempted then it
might be assumed that each
task at a given priority will be
allocated an equal amount of
processing time - and if the
priority is above the idle priority
then this is indeed the case.
When tasks share the idle
priority the behaviour can be
slightly different. If Idle Should
Yield is Enabled then the idle
task will yield immediately if
any other task at the idle
priority is ready to run. This
ensures the minimum amount
of time is spent in the idle task
when application tasks are
available for scheduling. This
behaviour can however have
undesirable effects (depending
on the needs of your
application) as depicted below:

The diagram above shows the
execution pattern of four tasks
that are all running at the idle
priority. Tasks A, B and C are
application tasks. Task I is the
idle task. A context switch
occurs with regular period at
times T0, T1, ..., T6. When the
idle task yields task A starts to
execute - but the idle task has
already consumed some of the
current time slice. This results
in task I and task A effectively
sharing the same time slice.
The application tasks B and C
therefore get more processing

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 229 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Amazon FreeRTOS Port (rm_freertos_port)

time than the application task
A.

This situation can be avoided
by:

If appropriate, using an idle
hook in place of separate tasks
at the idle priority.
Creating all application tasks at
a priority greater than the idle
priority.
Setting Idle Should Yield to
Disabled.
Setting Idle Should Yield to
Disabled prevents the idle task
from yielding processing time
until the end of its time slice.
This ensure all tasks at the idle
priority are allocated an equal
amount of processing time (if
none of the tasks get pre-
empted) - but at the cost of a
greater proportion of the total
processing time being allocated
to the idle task.

General|Use Task Notifications Enabled
Disabled

Setting Use Task Notifications
to Enabled will include direct to
task notification functionality
and its associated API in the
build.
Setting Use Task Notifications
to Disabled will exclude direct
to task notification functionality
and its associated API from the
build.

Each task consumes 8
additional bytes of RAM when
direct to task notifications are
included in the build.

General|Use Mutexes Enabled
Disabled

Set to Enabled to include mutex
functionality in the build, or
Disabled to omit mutex
functionality from the build.
Readers should familiarise
themselves with the differences
between mutexes and binary
semaphores in relation to the
FreeRTOS functionality.

General|Use Recursive Mutexes Enabled
Disabled

Set to Enabled to include
recursive mutex functionality in
the build, or Disabled to omit

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 230 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Amazon FreeRTOS Port (rm_freertos_port)

recursive mutex functionality
from the build.

General|Use Counting
Semaphores

Enabled
Disabled

Set to Enabled to include
counting semaphore
functionality in the build, or
Disabled to omit counting
semaphore functionality from
the build.

Hooks|Check For Stack
Overflow

Enabled
Disabled

The stack overflow detection
page describes the use of this
parameter. This is not
recommended for RA MCUs
with hardware stack monitor
support. RA MCU designs
should enable the RA hardware
stack monitor instead.

General|Queue Registry Size Must be an integer and greater
than 0

The queue registry has two
purposes, both of which are
associated with RTOS kernel
aware debugging:
It allows a textual name to be
associated with a queue for
easy queue identification within
a debugging GUI.
It contains the information
required by a debugger to
locate each registered queue
and semaphore.
The queue registry has no
purpose unless you are using a
RTOS kernel aware debugger.
Registry Size defines the
maximum number of queues
and semaphores that can be
registered. Only those queues
and semaphores that you want
to view using a RTOS kernel
aware debugger need be
registered. See the API
reference documentation for
vQueueAddToRegistry() and
vQueueUnregisterQueue() for
more information.

General|Use Queue Sets Enabled
Disabled

Set to Enabled to include queue
set functionality (the ability to
block, or pend, on multiple
queues and semaphores), or
Disabled to omit queue set
functionality.

General|Use Time Slicing Enabled
Disabled

If Use Time Slicing is Enabled,
FreeRTOS uses prioritised
preemptive scheduling with

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 231 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Amazon FreeRTOS Port (rm_freertos_port)

time slicing. That means the
RTOS scheduler will always run
the highest priority task that is
in the Ready state, and will
switch between tasks of equal
priority on every RTOS tick
interrupt. If Use Time Slicing is
Disabled then the RTOS
scheduler will still run the
highest priority task that is in
the Ready state, but will not
switch between tasks of equal
priority just because a tick
interrupt has occurred.

General|Use Newlib Reentrant Enabled
Disabled

If Use Newlib Reentrant is
Enabled then a newlib reent
structure will be allocated for
each created task.
Note Newlib support has been
included by popular demand,
but is not used by the
FreeRTOS maintainers
themselves. FreeRTOS is not
responsible for resulting newlib
operation. User must be
familiar with newlib and must
provide system-wide
implementations of the
necessary stubs. Be warned
that (at the time of writing) the
current newlib design
implements a system-wide
malloc() that must be provided
with locks.

General|Enable Backward
Compatibility

Enabled
Disabled

The FreeRTOS.h header file
includes a set of #define
macros that map the names of
data types used in versions of
FreeRTOS prior to version 8.0.0
to the names used in FreeRTOS
version 8.0.0. The macros allow
application code to update the
version of FreeRTOS they are
built against from a pre 8.0.0
version to a post 8.0.0 version
without modification. Setting
Enable Backward Compatibility
to Disabled in
FreeRTOSConfig.h excludes the
macros from the build, and in
so doing allowing validation
that no pre version 8.0.0 names
are being used.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 232 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Amazon FreeRTOS Port (rm_freertos_port)

General|Num Thread Local
Storage Pointers

Must be an integer and greater
than 0

Sets the number of indexes in
each task's thread local storage
array.

General|Stack Depth Type Configurable String Sets the type used to specify
the stack depth in calls to
xTaskCreate(), and various
other places stack sizes are
used (for example, when
returning the stack high water
mark).
Older versions of FreeRTOS
specified stack sizes using
variables of type UBaseType_t,
but that was found to be too
restrictive on 8-bit
microcontrollers. Stack Depth
Type removes that restriction
by enabling application
developers to specify the type
to use.

General|Message Buffer Length
Type

Configurable String FreeRTOS Message buffers use
variables of type Message
Buffer Length Type to store the
length of each message. If
Message Buffer Length Type is
not defined then it will default
to size_t. If the messages
stored in a message buffer will
never be larger than 255 bytes
then defining Message Buffer
Length Type to uint8_t will save
3 bytes per message on a
32-bit microcontroller. Likewise
if the messages stored in a
message buffer will never be
larger than 65535 bytes then
defining Message Buffer Length
Type to uint16_t will save 2
bytes per message on a 32-bit
microcontroller.

Memory Allocation|Support
Static Allocation

Enabled
Disabled

If Support Static Allocation is
Enabled then RTOS objects can
be created using RAM provided
by the application writer.
If Support Static Allocation is
Disabled then RTOS objects can
only be created using RAM
allocated from the FreeRTOS
heap.

If Support Static Allocation is
left undefined it will default to
0.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 233 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Amazon FreeRTOS Port (rm_freertos_port)

If Support Static Allocation is
Enabled then the application
writer must also provide two
callback functions: vApplication
GetIdleTaskMemory() to provide
the memory for use by the
RTOS Idle task, and (if Use
Timers is Enabled) vApplication
GetTimerTaskMemory() to
provide memory for use by the
RTOS Daemon/Timer Service
task. Examples are provided
below.

/* Support Static Allocation is
Enabled, so the application
must provide an
implementation of vApplication
GetIdleTaskMemory() to provide
the memory that is
used by the Idle task. */
void
vApplicationGetIdleTaskMemory
(StaticTask_t
**ppxIdleTaskTCBBuffer,

StackType_t
**ppxIdleTaskStackBuffer,

uint32_t *pulIdleTaskStackSize)
{
/* If the buffers to be provided
to the Idle task are declared
inside this
function then they must be
declared static - otherwise they
will be allocated on
the stack and so not exists after
this function exits. */
static StaticTask_t
xIdleTaskTCB;
static StackType_t
uxIdleTaskStack[
configMINIMAL_STACK_SIZE];

/* Pass out a pointer to the
StaticTask_t structure in which
the Idle task's
state will be stored. */
*ppxIdleTaskTCBBuffer =

/* Pass out the array that will be
used as the Idle task's stack. */
*ppxIdleTaskStackBuffer =
uxIdleTaskStack;

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 234 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Amazon FreeRTOS Port (rm_freertos_port)

/* Pass out the size of the array
pointed to by
*ppxIdleTaskStackBuffer.
Note that, as the array is
necessarily of type
StackType_t,
configMINIMAL_STACK_SIZE is
specified in words, not bytes. */
*pulIdleTaskStackSize =
configMINIMAL_STACK_SIZE;
}
/*--
-----------------*/

/* Support Static Allocation and
Use Timers are both Enabled,
so the
application must provide an
implementation of vApplication
GetTimerTaskMemory()
to provide the memory that is
used by the Timer service task.
*/
void vApplicationGetTimerTask
Memory(StaticTask_t
**ppxTimerTaskTCBBuffer,

StackType_t **ppxTimerTaskSta
ckBuffer,
 uint32_t
*pulTimerTaskStackSize)
{
/* If the buffers to be provided
to the Timer task are declared
inside this
function then they must be
declared static - otherwise they
will be allocated on
the stack and so not exists after
this function exits. */
static StaticTask_t
xTimerTaskTCB;
static StackType_t
uxTimerTaskStack[configTIMER
_TASK_STACK_DEPTH];

/* Pass out a pointer to the
StaticTask_t structure in which
the Timer
task's state will be stored. */
*ppxTimerTaskTCBBuffer =

/* Pass out the array that will be
used as the Timer task's stack.
*/
*ppxTimerTaskStackBuffer =

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 235 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Amazon FreeRTOS Port (rm_freertos_port)

uxTimerTaskStack;

/* Pass out the size of the array
pointed to by
*ppxTimerTaskStackBuffer.
Note that, as the array is
necessarily of type
StackType_t,
configTIMER_TASK_STACK_DEPT
H is specified in words, not
bytes. */
*pulTimerTaskStackSize = confi
gTIMER_TASK_STACK_DEPTH;
}

Examples of the callback
functions that must be provided
by the application to
supply the RAM used by the Idle
and Timer Service tasks if
Support Static Allocation
is Enabled.

See the Static Vs Dynamic
Memory Allocation page for
more information.

Memory Allocation|Support
Dynamic Allocation

Enabled
Disabled

If Support Dynamic Allocation is
Enabled then RTOS objects can
be created using RAM that is
automatically allocated from
the FreeRTOS heap.
If Support Dynamic Allocation is
set to 0 then RTOS objects can
only be created using RAM
provided by the application
writer.

See the Static Vs Dynamic
Memory Allocation page for
more information.

Memory Allocation|Total Heap
Size

Must be an integer and greater
than 0

The total amount of RAM
available in the FreeRTOS heap.
This value will only be used if
Support Dynamic Allocation is
Enabled and the application
makes use of one of the sample
memory allocation schemes
provided in the FreeRTOS
source code download. See the
memory configuration section
for further details.

Memory Allocation|Application
Allocated Heap

Enabled
Disabled

By default the FreeRTOS heap
is declared by FreeRTOS and

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 236 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Amazon FreeRTOS Port (rm_freertos_port)

placed in memory by the linker.
Setting Application Allocated
Heap to Enabled allows the
heap to instead be declared by
the application writer, which
allows the application writer to
place the heap wherever they
like in memory.
If heap_1.c, heap_2.c or
heap_4.c is used, and
Application Allocated Heap is
Enabled, then the application
writer must provide a uint8_t
array with the exact name and
dimension as shown below. The
array will be used as the
FreeRTOS heap. How the array
is placed at a specific memory
location is dependent on the
compiler being used - refer to
your compiler's documentation.

uint8_t ucHeap[
configTOTAL_HEAP_SIZE];

Stats|Generate Run Time Stats Enabled
Disabled

The Run Time Stats page
describes the use of this
parameter.

Timers|Use Timers Enabled
Disabled

Set to Enabled to include
software timer functionality, or
Disabled to omit software timer
functionality. See the FreeRTOS
software timers page for a full
description.

Timers|Timer Task Priority Must be an integer and greater
than 0

Sets the priority of the software
timer service/daemon task. See
the FreeRTOS software timers
page for a full description.

Timers|Timer Queue Length Must be an integer and greater
than 0

Sets the length of the software
timer command queue. See the
FreeRTOS software timers page
for a full description.

Timers|Timer Task Stack Depth Must be an integer and greater
than 0

Sets the stack depth allocated
to the software timer
service/daemon task. See the
FreeRTOS software timers page
for a full description.

General|Library Max Syscall
Interrupt Priority

MCU Specific Options The highest interrupt priority
that can be used by any
interrupt service routine that
makes calls to interrupt safe
FreeRTOS API functions. DO

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 237 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Amazon FreeRTOS Port (rm_freertos_port)

NOT CALL INTERRUPT SAFE
FREERTOS API FUNCTIONS
FROM ANY INTERRUPT THAT
HAS A HIGHER PRIORITY THAN
THIS! (higher priorities are
lower numeric values)

Below is explanation for macros
that are set based on this value
from FreeRTOS website.

In the RA port, configKERNEL_IN
TERRUPT_PRIORITY is not used
and the kernel runs at the
lowest priority.

Note in the following discussion
that only API functions that end
in "FromISR" can be called from
within an interrupt service
routine.

configMAX_SYSCALL_INTERRUP
T_PRIORITY sets the highest
interrupt priority from which
interrupt safe FreeRTOS API
functions can be called.

A full interrupt nesting model is
achieved by setting configMAX_
SYSCALL_INTERRUPT_PRIORITY
above (that is, at a higher
priority level) than configKERNE
L_INTERRUPT_PRIORITY. This
means the FreeRTOS kernel
does not completely disable
interrupts, even inside critical
sections. Further, this is
achieved without the
disadvantages of a segmented
kernel architecture.

Interrupts that do not call API
functions can execute at
priorities above configMAX_SYS
CALL_INTERRUPT_PRIORITY and
therefore never be delayed by
the RTOS kernel execution.

A special note for ARM Cortex-M
users: Please read the page
dedicated to interrupt priority
settings on ARM Cortex-M
devices. As a minimum,
remember that ARM Cortex-M

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 238 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Amazon FreeRTOS Port (rm_freertos_port)

cores use numerically low
priority numbers to represent
HIGH priority interrupts, which
can seem counter-intuitive and
is easy to forget! If you wish to
assign an interrupt a low
priority do NOT assign it a
priority of 0 (or other low
numeric value) as this can
result in the interrupt actually
having the highest priority in
the system - and therefore
potentially make your system
crash if this priority is above co
nfigMAX_SYSCALL_INTERRUPT_
PRIORITY.

The lowest priority on a ARM
Cortex-M core is in fact 255 -
however different ARM Cortex-
M vendors implement a
different number of priority bits
and supply library functions
that expect priorities to be
specified in different ways. For
example, on the RA6M3 the
lowest priority you can specify
is 15 - and the highest priority
you can specify is 0.

General|Assert Configurable String The semantics of the
configASSERT() macro are the
same as the standard C assert()
macro. An assertion is triggered
if the parameter passed into
configASSERT() is zero.
configASSERT() is called
throughout the FreeRTOS
source files to check how the
application is using FreeRTOS.
It is highly recommended to
develop FreeRTOS applications
with configASSERT() defined.

The example definition (shown
at the top of the file and
replicated below) calls
vAssertCalled(), passing in the
file name and line number of
the triggering configASSERT()
call (__FILE__ and __LINE__ are
standard macros provided by
most compilers). This is just for
demonstration as
vAssertCalled() is not a

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 239 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Amazon FreeRTOS Port (rm_freertos_port)

FreeRTOS function,
configASSERT() can be defined
to take whatever action the
application writer deems
appropriate.

It is normal to define
configASSERT() in such a way
that it will prevent the
application from executing any
further. This if for two reasons;
stopping the application at the
point of the assertion allows the
cause of the assertion to be
debugged, and executing past
a triggered assertion will
probably result in a crash
anyway.

Note defining configASSERT()
will increase both the
application code size and
execution time. When the
application is stable the
additional overhead can be
removed by simply
commenting out the
configASSERT() definition in
FreeRTOSConfig.h.

/* Define configASSERT() to call
vAssertCalled() if the assertion
fails. The assertion
has failed if the value of the
parameter passed into
configASSERT() equals zero. */
#define configASSERT((x)) if(
(x) == 0) vAssertCalled(
__FILE__, __LINE__)
If running FreeRTOS under the
control of a debugger, then
configASSERT() can be defined
to just disable interrupts and sit
in a loop, as demonstrated
below. That will have the effect
of stopping the code on the line
that failed the assert test -
pausing the debugger will then
immediately take you to the
offending line so you can see
why it failed.

/* Define configASSERT() to
disable interrupts and sit in a
loop. */

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 240 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Amazon FreeRTOS Port (rm_freertos_port)

#define configASSERT((x)) if(
(x) == 0) {
taskDISABLE_INTERRUPTS();
for(;;); }

General|Include Application
Defined Privileged Functions

Enabled
Disabled

Include Application Defined
Privileged Functions is only
used by FreeRTOS MPU.
If Include Application Defined
Privileged Functions is Enabled
then the application writer must
provide a header file called "ap
plication_defined_privileged_fun
ctions.h", in which functions the
application writer needs to
execute in privileged mode can
be implemented. Note that,
despite having a .h extension,
the header file should contain
the implementation of the C
functions, not just the functions'
prototypes.

Functions implemented in "appl
ication_defined_privileged_funct
ions.h" must save and restore
the processor's privilege state
using the prvRaisePrivilege()
function and
portRESET_PRIVILEGE() macro
respectively. For example, if a
library provided print function
accesses RAM that is outside of
the control of the application
writer, and therefore cannot be
allocated to a memory
protected user mode task, then
the print function can be
encapsulated in a privileged
function using the following
code:

void MPU_debug_printf(const
char *pcMessage)
{
/* State the privilege level of
the processor when the
function was called. */
BaseType_t xRunningPrivileged
= prvRaisePrivilege();

/* Call the library function,
which now has access to all
RAM. */
debug_printf(pcMessage);

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 241 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Amazon FreeRTOS Port (rm_freertos_port)

/* Reset the processor privilege
level to its original value. */
portRESET_PRIVILEGE(
xRunningPrivileged);
}
This technique should only be
use during development, and
not deployment, as it
circumvents the memory
protection.

Optional
Functions|vTaskPrioritySet()
Function

Enabled
Disabled

Include vTaskPrioritySet()
function in build

Optional
Functions|uxTaskPriorityGet()
Function

Enabled
Disabled

Include uxTaskPriorityGet()
function in build

Optional
Functions|vTaskDelete()
Function

Enabled
Disabled

Include vTaskDelete() function
in build

Optional
Functions|vTaskSuspend()
Function

Enabled
Disabled

Include vTaskSuspend()
function in build

Optional
Functions|xResumeFromISR()
Function

Enabled
Disabled

Include xResumeFromISR()
function in build

Optional
Functions|vTaskDelayUntil()
Function

Enabled
Disabled

Include vTaskDelayUntil()
function in build

Optional
Functions|vTaskDelay()
Function

Enabled
Disabled

Include vTaskDelay() function in
build

Optional Functions|xTaskGetSc
hedulerState() Function

Enabled
Disabled

Include
xTaskGetSchedulerState()
function in build

Optional Functions|xTaskGetCur
rentTaskHandle() Function

Enabled
Disabled

Include
xTaskGetCurrentTaskHandle()
function in build

Optional Functions|uxTaskGetSt
ackHighWaterMark() Function

Enabled
Disabled

Include uxTaskGetStackHighWa
terMark() function in build

Optional Functions|xTaskGetIdl
eTaskHandle() Function

Enabled
Disabled

Include
xTaskGetIdleTaskHandle()
function in build

Optional
Functions|eTaskGetState()
Function

Enabled
Disabled

Include eTaskGetState()
function in build

Optional Functions|xEventGrou Enabled Include

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 242 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Amazon FreeRTOS Port (rm_freertos_port)

pSetBitFromISR() Function Disabled xEventGroupSetBitFromISR()
function in build

Optional Functions|xTimerPend
FunctionCall() Function

Enabled
Disabled

Include
xTimerPendFunctionCall()
function in build

Optional
Functions|xTaskAbortDelay()
Function

Enabled
Disabled

Include xTaskAbortDelay()
function in build

Optional
Functions|xTaskGetHandle()
Function

Enabled
Disabled

Include xTaskGetHandle()
function in build

Optional Functions|xTaskResum
eFromISR() Function

Enabled
Disabled

Include xTaskResumeFromISR()
function in build

RA|Hardware Stack Monitor Enabled
Disabled

Include RA stack monitor

4.2.44 Crypto Middleware (rm_psa_crypto)
Modules

Functions

fsp_err_t RM_PSA_CRYPTO_TRNG_Read (uint8_t *const p_rngbuf, uint32_t
num_req_bytes, uint32_t *p_num_gen_bytes)

 Reads requested length of random data from the TRNG. Generate
nbytes of random bytes and store them in p_rngbuf buffer. More...

int mbedtls_platform_setup (mbedtls_platform_context *ctx)

void mbedtls_platform_teardown (mbedtls_platform_context *ctx)

Detailed Description

Hardware acceleration for the mbedCrypto implementation of the ARM PSA Crypto API.

Overview
Note

The PSA Crypto module does not provide any interfaces to the user. This release uses the mbed-Crypto version
1.1.0 which conforms to the PSA Crypto API 1.0 beta2 specification. Consult the ARM mbedCrypto
documentation at https://github.com/ARMmbed/mbed-crypto/blob/mbedcrypto-1.1.0/docs/getting_started.md for
further information.

Features

The PSA_Crypto module provides hardware support for the following PSA Crypto operations

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 243 / 601

https://github.com/ARMmbed/mbed-crypto/blob/mbedcrypto-1.1.0/docs/getting_started.md

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

SHA256 calculation
SHA224 calculation
AES128/256.

Plain-Text Key generation
Encryption with no padding and with PKCS7 padding.
Decryption
CBC and CTR modes

RSA2048
Plain-Text Key Generation
Signing
Verification

Random number generation

Configuration
Build Time Configurations for mbedCrypto

The following build time configurations are defined in fsp_cfg/mbedtls/config.h:

Configuration Options Description

Hardware Acceleration|TRNG Enabled Defines MBEDTLS_ENTROPY_HA
RDWARE_ALT.

Hardware
Acceleration|Hash|SHA256/224

MCU Specific Options Defines MBEDTLS_SHA256_ALT
and MBEDTLS_SHA256_PROCES
S_ALT.

Hardware
Acceleration|Cipher|AES

MCU Specific Options Defines MBEDTLS_AES_SETKEY_
ENC_ALT, MBEDTLS_AES_SETKE
Y_DEC_ALT,
MBEDTLS_AES_ENCRYPT_ALT
and
MBEDTLS_AES_DECRYPT_ALT

Hardware Acceleration|Public
Key Cryptography (PKC)|RSA

MCU Specific Options Defines MBEDTLS_RSA_ALT.

Hardware Acceleration|Secure
Crypto Engine Initialization

Enabled MBEDTLS_PLATFORM_SETUP_TE
ARDOWN_ALT

Platform|MBEDTLS_HAVE_ASM Define
Undefine

MBEDTLS_HAVE_ASM

Platform|MBEDTLS_NO_UDBL_DI
VISION

Define
Undefine

MBEDTLS_NO_UDBL_DIVISION

Platform|MBEDTLS_NO_64BIT_M
ULTIPLICATION

Define
Undefine

MBEDTLS_NO_64BIT_MULTIPLIC
ATION

Platform|MBEDTLS_HAVE_SSE2 Define
Undefine

MBEDTLS_HAVE_SSE2

Platform|MBEDTLS_HAVE_TIME Define
Undefine

MBEDTLS_HAVE_TIME

Platform|MBEDTLS_HAVE_TIME_ Define MBEDTLS_HAVE_TIME_DATE

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 244 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

DATE Undefine

Platform|MBEDTLS_PLATFORM_
MEMORY

Define
Undefine

MBEDTLS_PLATFORM_MEMORY

Platform|MBEDTLS_PLATFORM_
NO_STD_FUNCTIONS

Define
Undefine

MBEDTLS_PLATFORM_NO_STD_
FUNCTIONS

Platform|Alternate|MBEDTLS_PL
ATFORM_EXIT_ALT

Define
Undefine

MBEDTLS_PLATFORM_EXIT_ALT

Platform|Alternate|MBEDTLS_PL
ATFORM_TIME_ALT

Define
Undefine

MBEDTLS_PLATFORM_TIME_ALT

Platform|Alternate|MBEDTLS_PL
ATFORM_FPRINTF_ALT

Define
Undefine

MBEDTLS_PLATFORM_FPRINTF_
ALT

Platform|Alternate|MBEDTLS_PL
ATFORM_PRINTF_ALT

Define
Undefine

MBEDTLS_PLATFORM_PRINTF_A
LT

Platform|Alternate|MBEDTLS_PL
ATFORM_SNPRINTF_ALT

Define
Undefine

MBEDTLS_PLATFORM_SNPRINTF
_ALT

Platform|Alternate|MBEDTLS_PL
ATFORM_VSNPRINTF_ALT

Define
Undefine

MBEDTLS_PLATFORM_VSNPRINT
F_ALT

Platform|Alternate|MBEDTLS_PL
ATFORM_NV_SEED_ALT

Define
Undefine

MBEDTLS_PLATFORM_NV_SEED
_ALT

General|MBEDTLS_DEPRECATE
D_WARNING

Define
Undefine

MBEDTLS_DEPRECATED_WARNI
NG

General|MBEDTLS_DEPRECATE
D_REMOVED

Define
Undefine

MBEDTLS_DEPRECATED_REMOV
ED

General|MBEDTLS_CHECK_PARA
MS

Define
Undefine

MBEDTLS_CHECK_PARAMS

Platform|MBEDTLS_TIMING_ALT Define
Undefine

MBEDTLS_TIMING_ALT

Cipher|Alternate|MBEDTLS_AES
_ALT

Define
Undefine

MBEDTLS_AES_ALT

Cipher|Alternate|MBEDTLS_ARC
4_ALT

Define
Undefine

MBEDTLS_ARC4_ALT

Cipher|Alternate|MBEDTLS_ARIA
_ALT

Define
Undefine

MBEDTLS_ARIA_ALT

Cipher|Alternate|MBEDTLS_BLO
WFISH_ALT

Define
Undefine

MBEDTLS_BLOWFISH_ALT

Cipher|Alternate|MBEDTLS_CAM
ELLIA_ALT

Define
Undefine

MBEDTLS_CAMELLIA_ALT

Cipher|Alternate|MBEDTLS_CCM
_ALT

Define
Undefine

MBEDTLS_CCM_ALT

Cipher|Alternate|MBEDTLS_CHA
CHA20_ALT

Define
Undefine

MBEDTLS_CHACHA20_ALT

Cipher|Alternate|MBEDTLS_CHA Define MBEDTLS_CHACHAPOLY_ALT

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 245 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

CHAPOLY_ALT Undefine

Cipher|Alternate|MBEDTLS_CMA
C_ALT

Define
Undefine

MBEDTLS_CMAC_ALT

Cipher|Alternate|MBEDTLS_DES
_ALT

Define
Undefine

MBEDTLS_DES_ALT

Public Key Cryptography (PKC)|
DHM|Alternate|MBEDTLS_DHM_
ALT

Define
Undefine

MBEDTLS_DHM_ALT

Public Key Cryptography (PKC)|
ECC|Alternate|MBEDTLS_ECJPAK
E_ALT

Define
Undefine

MBEDTLS_ECJPAKE_ALT

Cipher|Alternate|MBEDTLS_GCM
_ALT

Define
Undefine

MBEDTLS_GCM_ALT

Cipher|Alternate|MBEDTLS_NIST
_KW_ALT

Define
Undefine

MBEDTLS_NIST_KW_ALT

Hash|Alternate|MBEDTLS_MD2_
ALT

Define
Undefine

MBEDTLS_MD2_ALT

Hash|Alternate|MBEDTLS_MD4_
ALT

Define
Undefine

MBEDTLS_MD4_ALT

Hash|Alternate|MBEDTLS_MD5_
ALT

Define
Undefine

MBEDTLS_MD5_ALT

Message Authentication Code (
MAC)|Alternate|MBEDTLS_POLY
1305_ALT

Define
Undefine

MBEDTLS_POLY1305_ALT

Hash|Alternate|MBEDTLS_RIPEM
D160_ALT

Define
Undefine

MBEDTLS_RIPEMD160_ALT

Hash|Alternate|MBEDTLS_SHA1
_ALT

Define
Undefine

MBEDTLS_SHA1_ALT

Hash|Alternate|MBEDTLS_SHA5
12_ALT

Define
Undefine

MBEDTLS_SHA512_ALT

Cipher|Alternate|MBEDTLS_XTE
A_ALT

Define
Undefine

MBEDTLS_XTEA_ALT

Public Key Cryptography (PKC)|
ECC|Alternate|MBEDTLS_ECP_A
LT

Define
Undefine

MBEDTLS_ECP_ALT

Hash|Alternate|MBEDTLS_MD2_
PROCESS_ALT

Define
Undefine

MBEDTLS_MD2_PROCESS_ALT

Hash|Alternate|MBEDTLS_MD4_
PROCESS_ALT

Define
Undefine

MBEDTLS_MD4_PROCESS_ALT

Hash|Alternate|MBEDTLS_MD5_
PROCESS_ALT

Define
Undefine

MBEDTLS_MD5_PROCESS_ALT

Hash|Alternate|MBEDTLS_RIPEM
D160_PROCESS_ALT

Define
Undefine

MBEDTLS_RIPEMD160_PROCESS
_ALT

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 246 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

Hash|Alternate|MBEDTLS_SHA1
_PROCESS_ALT

Define
Undefine

MBEDTLS_SHA1_PROCESS_ALT

Hash|Alternate|MBEDTLS_SHA5
12_PROCESS_ALT

Define
Undefine

MBEDTLS_SHA512_PROCESS_AL
T

Cipher|Alternate|MBEDTLS_DES
_SETKEY_ALT

Define
Undefine

MBEDTLS_DES_SETKEY_ALT

Cipher|Alternate|MBEDTLS_DES
_CRYPT_ECB_ALT

Define
Undefine

MBEDTLS_DES_CRYPT_ECB_ALT

Cipher|Alternate|MBEDTLS_DES
3_CRYPT_ECB_ALT

Define
Undefine

MBEDTLS_DES3_CRYPT_ECB_AL
T

Public Key Cryptography (PKC)|
ECC|MBEDTLS_ECDH_GEN_PUBL
IC_ALT

Define
Undefine

MBEDTLS_ECDH_GEN_PUBLIC_A
LT

Public Key Cryptography (PKC)|
ECC|MBEDTLS_ECDH_COMPUTE
_SHARED_ALT

Define
Undefine

MBEDTLS_ECDH_COMPUTE_SHA
RED_ALT

Public Key Cryptography (PKC)|
ECC|Alternate|MBEDTLS_ECDSA
_VERIFY_ALT

Define
Undefine

MBEDTLS_ECDSA_VERIFY_ALT

Public Key Cryptography (PKC)|
ECC|Alternate|MBEDTLS_ECDSA
_SIGN_ALT

Define
Undefine

MBEDTLS_ECDSA_SIGN_ALT

Public Key Cryptography (PKC)|
ECC|Alternate|MBEDTLS_ECDSA
_GENKEY_ALT

Define
Undefine

MBEDTLS_ECDSA_GENKEY_ALT

Public Key Cryptography (PKC)|
ECC|Alternate|MBEDTLS_ECDSA
_GENKEY_ALT

Define
Undefine

MBEDTLS_ECDSA_GENKEY_ALT

Public Key Cryptography (PKC)|
ECC|Alternate|MBEDTLS_ECP_IN
TERNAL_ALT

Define
Undefine

MBEDTLS_ECP_INTERNAL_ALT

Public Key Cryptography (PKC)|
ECC|Alternate|MBEDTLS_ECP_R
ANDOMIZE_JAC_ALT

Define
Undefine

MBEDTLS_ECP_RANDOMIZE_JAC
_ALT

Public Key Cryptography (PKC)|
ECC|Alternate|MBEDTLS_ECP_A
DD_MIXED_ALT

Define
Undefine

MBEDTLS_ECP_ADD_MIXED_ALT

Public Key Cryptography (PKC)|
ECC|Alternate|MBEDTLS_ECP_D
OUBLE_JAC_ALT

Define
Undefine

MBEDTLS_ECP_DOUBLE_JAC_AL
T

Public Key Cryptography (PKC)|
ECC|Alternate|MBEDTLS_ECP_N
ORMALIZE_JAC_MANY_ALT

Define
Undefine

MBEDTLS_ECP_NORMALIZE_JAC
_MANY_ALT

Public Key Cryptography (PKC)|
ECC|Alternate|MBEDTLS_ECP_N

Define
Undefine

MBEDTLS_ECP_NORMALIZE_JAC
_ALT

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 247 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

ORMALIZE_JAC_ALT

Public Key Cryptography (PKC)|
ECC|Alternate|MBEDTLS_ECP_D
OUBLE_ADD_MXZ_ALT

Define
Undefine

MBEDTLS_ECP_DOUBLE_ADD_M
XZ_ALT

Public Key Cryptography (PKC)|
ECC|Alternate|MBEDTLS_ECP_R
ANDOMIZE_MXZ_ALT

Define
Undefine

MBEDTLS_ECP_RANDOMIZE_MX
Z_ALT

Public Key Cryptography (PKC)|
ECC|Alternate|MBEDTLS_ECP_N
ORMALIZE_MXZ_ALT

Define
Undefine

MBEDTLS_ECP_NORMALIZE_MX
Z_ALT

RNG|MBEDTLS_TEST_NULL_ENT
ROPY

Define
Undefine

MBEDTLS_TEST_NULL_ENTROPY

Cipher|AES|MBEDTLS_AES_ROM
_TABLES

Define
Undefine

MBEDTLS_AES_ROM_TABLES

Cipher|AES|MBEDTLS_AES_FEW
ER_TABLES

Define
Undefine

MBEDTLS_AES_FEWER_TABLES

Cipher|MBEDTLS_CAMELLIA_SM
ALL_MEMORY

Define
Undefine

MBEDTLS_CAMELLIA_SMALL_ME
MORY

Cipher|MBEDTLS_CIPHER_MODE
_CBC

Define
Undefine

MBEDTLS_CIPHER_MODE_CBC

Cipher|MBEDTLS_CIPHER_MODE
_CFB

Define
Undefine

MBEDTLS_CIPHER_MODE_CFB

Cipher|MBEDTLS_CIPHER_MODE
_CTR

Define
Undefine

MBEDTLS_CIPHER_MODE_CTR

Cipher|MBEDTLS_CIPHER_MODE
_OFB

Define
Undefine

MBEDTLS_CIPHER_MODE_OFB

Cipher|MBEDTLS_CIPHER_MODE
_XTS

Define
Undefine

MBEDTLS_CIPHER_MODE_XTS

Cipher|MBEDTLS_CIPHER_NULL_
CIPHER

Define
Undefine

MBEDTLS_CIPHER_NULL_CIPHER

Cipher|MBEDTLS_CIPHER_PADDI
NG_PKCS7

Define
Undefine

MBEDTLS_CIPHER_PADDING_PK
CS7

Cipher|MBEDTLS_CIPHER_PADDI
NG_ONE_AND_ZEROS

Define
Undefine

MBEDTLS_CIPHER_PADDING_ON
E_AND_ZEROS

Cipher|MBEDTLS_CIPHER_PADDI
NG_ZEROS_AND_LEN

Define
Undefine

MBEDTLS_CIPHER_PADDING_ZE
ROS_AND_LEN

Cipher|MBEDTLS_CIPHER_PADDI
NG_ZEROS

Define
Undefine

MBEDTLS_CIPHER_PADDING_ZE
ROS

Public Key Cryptography (PKC)|
ECC|Curves|MBEDTLS_ECP_DP_
SECP192R1_ENABLED

Define
Undefine

MBEDTLS_ECP_DP_SECP192R1_
ENABLED

Public Key Cryptography (PKC)|
ECC|Curves|MBEDTLS_ECP_DP_

Define
Undefine

MBEDTLS_ECP_DP_SECP224R1_
ENABLED

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 248 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

SECP224R1_ENABLED

Public Key Cryptography (PKC)|
ECC|Curves|MBEDTLS_ECP_DP_
SECP256R1_ENABLED

Define
Undefine

MBEDTLS_ECP_DP_SECP256R1_
ENABLED

Public Key Cryptography (PKC)|
ECC|Curves|MBEDTLS_ECP_DP_
SECP384R1_ENABLED

Define
Undefine

MBEDTLS_ECP_DP_SECP384R1_
ENABLED

Public Key Cryptography (PKC)|
ECC|Curves|MBEDTLS_ECP_DP_
SECP521R1_ENABLED

Define
Undefine

MBEDTLS_ECP_DP_SECP521R1_
ENABLED

Public Key Cryptography (PKC)|
ECC|Curves|MBEDTLS_ECP_DP_
SECP192K1_ENABLED

Define
Undefine

MBEDTLS_ECP_DP_SECP192K1_
ENABLED

Public Key Cryptography (PKC)|
ECC|Curves|MBEDTLS_ECP_DP_
SECP224K1_ENABLED

Define
Undefine

MBEDTLS_ECP_DP_SECP224K1_
ENABLED

Public Key Cryptography (PKC)|
ECC|Curves|MBEDTLS_ECP_DP_
SECP256K1_ENABLED

Define
Undefine

MBEDTLS_ECP_DP_SECP256K1_
ENABLED

Public Key Cryptography (PKC)|
ECC|Curves|MBEDTLS_ECP_DP_
BP256R1_ENABLED

Define
Undefine

MBEDTLS_ECP_DP_BP256R1_EN
ABLED

Public Key Cryptography (PKC)|
ECC|Curves|MBEDTLS_ECP_DP_
BP384R1_ENABLED

Define
Undefine

MBEDTLS_ECP_DP_BP384R1_EN
ABLED

Public Key Cryptography (PKC)|
ECC|Curves|MBEDTLS_ECP_DP_
BP512R1_ENABLED

Define
Undefine

MBEDTLS_ECP_DP_BP512R1_EN
ABLED

Public Key Cryptography (PKC)|
ECC|Curves|MBEDTLS_ECP_DP_
CURVE25519_ENABLED

Define
Undefine

MBEDTLS_ECP_DP_CURVE25519
_ENABLED

Public Key Cryptography (PKC)|
ECC|Curves|MBEDTLS_ECP_DP_
CURVE448_ENABLED

Define
Undefine

MBEDTLS_ECP_DP_CURVE448_E
NABLED

Public Key Cryptography (PKC)|
ECC|MBEDTLS_ECP_NIST_OPTIM

Define
Undefine

MBEDTLS_ECP_NIST_OPTIM

Public Key Cryptography (PKC)|
ECC|MBEDTLS_ECP_RESTARTAB
LE

Define
Undefine

MBEDTLS_ECP_RESTARTABLE

Public Key Cryptography (PKC)|
ECC|MBEDTLS_ECDH_LEGACY_C
ONTEXT

Define
Undefine

MBEDTLS_ECDH_LEGACY_CONT
EXT

Public Key Cryptography (PKC)|
ECC|MBEDTLS_ECDSA_DETERMI
NISTIC

Define
Undefine

MBEDTLS_ECDSA_DETERMINIST
IC

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 249 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

Public Key Cryptography (PKC)|
ECC|MBEDTLS_PK_PARSE_EC_E
XTENDED

Define
Undefine

MBEDTLS_PK_PARSE_EC_EXTEN
DED

General|MBEDTLS_ERROR_STRE
RROR_DUMMY

Define
Undefine

MBEDTLS_ERROR_STRERROR_D
UMMY

Public Key Cryptography
(PKC)|MBEDTLS_GENPRIME

Define
Undefine

MBEDTLS_GENPRIME

Storage|MBEDTLS_FS_IO Define
Undefine

MBEDTLS_FS_IO

RNG|MBEDTLS_NO_DEFAULT_E
NTROPY_SOURCES

Define
Undefine

MBEDTLS_NO_DEFAULT_ENTRO
PY_SOURCES

Platform|MBEDTLS_NO_PLATFO
RM_ENTROPY

Define
Undefine

MBEDTLS_NO_PLATFORM_ENTR
OPY

RNG|MBEDTLS_ENTROPY_FORC
E_SHA256

Define
Undefine

MBEDTLS_ENTROPY_FORCE_SH
A256

RNG|MBEDTLS_ENTROPY_NV_SE
ED

Define
Undefine

MBEDTLS_ENTROPY_NV_SEED

Storage|MBEDTLS_PSA_CRYPTO
_KEY_FILE_ID_ENCODES_OWNE
R

Define
Undefine

MBEDTLS_PSA_CRYPTO_KEY_FIL
E_ID_ENCODES_OWNER

General|MBEDTLS_MEMORY_DE
BUG

Define
Undefine

MBEDTLS_MEMORY_DEBUG

General|MBEDTLS_MEMORY_BA
CKTRACE

Define
Undefine

MBEDTLS_MEMORY_BACKTRAC
E

Public Key Cryptography (PKC)|
RSA|MBEDTLS_PK_RSA_ALT_SUP
PORT

Define
Undefine

MBEDTLS_PK_RSA_ALT_SUPPOR
T

Public Key Cryptography
(PKC)|MBEDTLS_PKCS1_V15

Define
Undefine

MBEDTLS_PKCS1_V15

Public Key Cryptography
(PKC)|MBEDTLS_PKCS1_V21

Define
Undefine

MBEDTLS_PKCS1_V21

General|MBEDTLS_PSA_CRYPTO
_SPM

Define
Undefine

MBEDTLS_PSA_CRYPTO_SPM

RNG|MBEDTLS_PSA_INJECT_ENT
ROPY

Define
Undefine

MBEDTLS_PSA_INJECT_ENTROPY

Public Key Cryptography (PKC)|
RSA|MBEDTLS_RSA_NO_CRT

Define
Undefine

MBEDTLS_RSA_NO_CRT

General|MBEDTLS_SELF_TEST Define
Undefine

MBEDTLS_SELF_TEST

Hash|MBEDTLS_SHA256_SMALL
ER

Define
Undefine

MBEDTLS_SHA256_SMALLER

General|MBEDTLS_THREADING_
ALT

Define
Undefine

MBEDTLS_THREADING_ALT

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 250 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

General|MBEDTLS_THREADING_
PTHREAD

Define
Undefine

MBEDTLS_THREADING_PTHREA
D

General|MBEDTLS_USE_PSA_CR
YPTO

Define
Undefine

MBEDTLS_USE_PSA_CRYPTO

General|MBEDTLS_VERSION_FE
ATURES

Define
Undefine

MBEDTLS_VERSION_FEATURES

Platform|MBEDTLS_AESNI_C Define
Undefine

MBEDTLS_AESNI_C

Cipher|MBEDTLS_AES_C Define MBEDTLS_AES_C

Cipher|MBEDTLS_ARC4_C Define
Undefine

MBEDTLS_ARC4_C

Public Key Cryptography
(PKC)|MBEDTLS_ASN1_PARSE_C

Define
Undefine

MBEDTLS_ASN1_PARSE_C

Public Key Cryptography
(PKC)|MBEDTLS_ASN1_WRITE_C

Define
Undefine

MBEDTLS_ASN1_WRITE_C

Public Key Cryptography
(PKC)|MBEDTLS_BASE64_C

Define
Undefine

MBEDTLS_BASE64_C

Public Key Cryptography
(PKC)|MBEDTLS_BIGNUM_C

Define
Undefine

MBEDTLS_BIGNUM_C

Cipher|MBEDTLS_BLOWFISH_C Define
Undefine

MBEDTLS_BLOWFISH_C

Cipher|MBEDTLS_CAMELLIA_C Define
Undefine

MBEDTLS_CAMELLIA_C

Cipher|MBEDTLS_ARIA_C Define
Undefine

MBEDTLS_ARIA_C

Cipher|MBEDTLS_CCM_C Define
Undefine

MBEDTLS_CCM_C

Cipher|MBEDTLS_CHACHA20_C Define
Undefine

MBEDTLS_CHACHA20_C

Cipher|MBEDTLS_CHACHAPOLY_
C

Define
Undefine

MBEDTLS_CHACHAPOLY_C

Cipher|MBEDTLS_CIPHER_C Define
Undefine

MBEDTLS_CIPHER_C

Message Authentication Code
(MAC)|MBEDTLS_CMAC_C

Define
Undefine

MBEDTLS_CMAC_C

RNG|MBEDTLS_CTR_DRBG_C Define
Undefine

MBEDTLS_CTR_DRBG_C

Cipher|MBEDTLS_DES_C Define
Undefine

MBEDTLS_DES_C

Public Key Cryptography
(PKC)|DHM|MBEDTLS_DHM_C

Define
Undefine

MBEDTLS_DHM_C

Public Key Cryptography Define MBEDTLS_ECDH_C

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 251 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

(PKC)|ECC|MBEDTLS_ECDH_C Undefine

Public Key Cryptography
(PKC)|ECC|MBEDTLS_ECDSA_C

Define
Undefine

MBEDTLS_ECDSA_C

Public Key Cryptography
(PKC)|ECC|MBEDTLS_ECJPAKE_C

Define
Undefine

MBEDTLS_ECJPAKE_C

Public Key Cryptography
(PKC)|ECC|MBEDTLS_ECP_C

Define
Undefine

MBEDTLS_ECP_C

Platform|MBEDTLS_ENTROPY_C Define
Undefine

MBEDTLS_ENTROPY_C

General|MBEDTLS_ERROR_C Define
Undefine

MBEDTLS_ERROR_C

Cipher|MBEDTLS_GCM_C Define
Undefine

MBEDTLS_GCM_C

RNG|MBEDTLS_HAVEGE_C Define
Undefine

MBEDTLS_HAVEGE_C

Message Authentication Code
(MAC)|MBEDTLS_HKDF_C

Define
Undefine

MBEDTLS_HKDF_C

Message Authentication Code
(MAC)|MBEDTLS_HMAC_DRBG_
C

Define
Undefine

MBEDTLS_HMAC_DRBG_C

Cipher|MBEDTLS_NIST_KW_C Define
Undefine

MBEDTLS_NIST_KW_C

Hash|MBEDTLS_MD_C Define
Undefine

MBEDTLS_MD_C

Hash|MBEDTLS_MD2_C Define
Undefine

MBEDTLS_MD2_C

Hash|MBEDTLS_MD4_C Define
Undefine

MBEDTLS_MD4_C

Hash|MBEDTLS_MD5_C Define
Undefine

MBEDTLS_MD5_C

General|MBEDTLS_MEMORY_BU
FFER_ALLOC_C

Define
Undefine

MBEDTLS_MEMORY_BUFFER_AL
LOC_C

Public Key Cryptography
(PKC)|MBEDTLS_OID_C

Define
Undefine

MBEDTLS_OID_C

Cipher|MBEDTLS_PADLOCK_C Define
Undefine

MBEDTLS_PADLOCK_C

Public Key Cryptography
(PKC)|MBEDTLS_PEM_PARSE_C

Define
Undefine

MBEDTLS_PEM_PARSE_C

Public Key Cryptography
(PKC)|MBEDTLS_PEM_WRITE_C

Define
Undefine

MBEDTLS_PEM_WRITE_C

Public Key Cryptography
(PKC)|MBEDTLS_PK_C

Define
Undefine

MBEDTLS_PK_C

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 252 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

Public Key Cryptography
(PKC)|MBEDTLS_PK_PARSE_C

Define
Undefine

MBEDTLS_PK_PARSE_C

Public Key Cryptography
(PKC)|MBEDTLS_PK_WRITE_C

Define
Undefine

MBEDTLS_PK_WRITE_C

Public Key Cryptography
(PKC)|MBEDTLS_PKCS5_C

Define
Undefine

MBEDTLS_PKCS5_C

Public Key Cryptography
(PKC)|MBEDTLS_PKCS12_C

Define
Undefine

MBEDTLS_PKCS12_C

Platform|MBEDTLS_PLATFORM_
C

Define
Undefine

MBEDTLS_PLATFORM_C

Message Authentication Code
(MAC)|MBEDTLS_POLY1305_C

Define
Undefine

MBEDTLS_POLY1305_C

General|MBEDTLS_PSA_CRYPTO
_C

Define
Undefine

MBEDTLS_PSA_CRYPTO_C

Storage|MBEDTLS_PSA_CRYPTO
_STORAGE_C

Define
Undefine

MBEDTLS_PSA_CRYPTO_STORA
GE_C

Storage|MBEDTLS_PSA_ITS_FILE
_C

Define
Undefine

MBEDTLS_PSA_ITS_FILE_C

Hash|MBEDTLS_RIPEMD160_C Define
Undefine

MBEDTLS_RIPEMD160_C

Public Key Cryptography
(PKC)|RSA|MBEDTLS_RSA_C

Define
Undefine

MBEDTLS_RSA_C

Hash|MBEDTLS_SHA1_C Define
Undefine

MBEDTLS_SHA1_C

Hash|MBEDTLS_SHA256_C Define
Undefine

MBEDTLS_SHA256_C

Hash|MBEDTLS_SHA512_C Define
Undefine

MBEDTLS_SHA512_C

General|MBEDTLS_THREADING_
C

Define
Undefine

MBEDTLS_THREADING_C

General|MBEDTLS_TIMING_C Define
Undefine

MBEDTLS_TIMING_C

General|MBEDTLS_VERSION_C Define
Undefine

MBEDTLS_VERSION_C

Cipher|MBEDTLS_XTEA_C Define
Undefine

MBEDTLS_XTEA_C

Public Key Cryptography (PKC)|
MBEDTLS_MPI_WINDOW_SIZE

Define
Undefine

MBEDTLS_MPI_WINDOW_SIZE

Public Key Cryptography (PKC)|
MBEDTLS_MPI_WINDOW_SIZE
value

Configurable String MBEDTLS_MPI_WINDOW_SIZE
value

Public Key Cryptography Define MBEDTLS_MPI_MAX_SIZE

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 253 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

(PKC)|MBEDTLS_MPI_MAX_SIZE Undefine

Public Key Cryptography
(PKC)|MBEDTLS_MPI_MAX_SIZE
value

Configurable String MBEDTLS_MPI_MAX_SIZE value

RNG|MBEDTLS_CTR_DRBG_ENT
ROPY_LEN

Define
Undefine

RNG|MBEDTLS_CTR_DRBG_ENT
ROPY_LEN

RNG|MBEDTLS_CTR_DRBG_ENT
ROPY_LEN value

Configurable String RNG value|MBEDTLS_CTR_DRB
G_ENTROPY_LEN

RNG|MBEDTLS_CTR_DRBG_RES
EED_INTERVAL

Define
Undefine

RNG|MBEDTLS_CTR_DRBG_RES
EED_INTERVAL

RNG|MBEDTLS_CTR_DRBG_RES
EED_INTERVAL value

Configurable String RNG value|MBEDTLS_CTR_DRB
G_RESEED_INTERVAL

RNG|MBEDTLS_CTR_DRBG_MAX
_INPUT

Define
Undefine

MBEDTLS_CTR_DRBG_MAX_INP
UT

RNG|MBEDTLS_CTR_DRBG_MAX
_INPUT value

Configurable String MBEDTLS_CTR_DRBG_MAX_INP
UT value

RNG|MBEDTLS_CTR_DRBG_MAX
_REQUEST

Define
Undefine

MBEDTLS_CTR_DRBG_MAX_REQ
UEST

RNG|MBEDTLS_CTR_DRBG_MAX
_REQUEST value

Configurable String MBEDTLS_CTR_DRBG_MAX_REQ
UEST value

RNG|MBEDTLS_CTR_DRBG_MAX
_SEED_INPUT

Define
Undefine

MBEDTLS_CTR_DRBG_MAX_SEE
D_INPUT

RNG|MBEDTLS_CTR_DRBG_MAX
_SEED_INPUT value

Configurable String MBEDTLS_CTR_DRBG_MAX_SEE
D_INPUT value

RNG|MBEDTLS_CTR_DRBG_USE
_128_BIT_KEY

Define
Undefine

MBEDTLS_CTR_DRBG_USE_128_
BIT_KEY

RNG|MBEDTLS_HMAC_DRBG_RE
SEED_INTERVAL

Define
Undefine

MBEDTLS_HMAC_DRBG_RESEED
_INTERVAL

RNG|MBEDTLS_HMAC_DRBG_RE
SEED_INTERVAL value

Configurable String MBEDTLS_HMAC_DRBG_RESEED
_INTERVAL value

RNG|MBEDTLS_HMAC_DRBG_M
AX_INPUT

Define
Undefine

MBEDTLS_HMAC_DRBG_MAX_IN
PUT

RNG|MBEDTLS_HMAC_DRBG_M
AX_INPUT value

Configurable String MBEDTLS_HMAC_DRBG_MAX_IN
PUT value

RNG|MBEDTLS_HMAC_DRBG_M
AX_REQUEST

Define
Undefine

MBEDTLS_HMAC_DRBG_MAX_R
EQUEST

RNG|MBEDTLS_HMAC_DRBG_M
AX_REQUEST value

Configurable String MBEDTLS_HMAC_DRBG_MAX_R
EQUEST value

RNG|MBEDTLS_HMAC_DRBG_M
AX_SEED_INPUT

Define
Undefine

MBEDTLS_HMAC_DRBG_MAX_SE
ED_INPUT

RNG|MBEDTLS_HMAC_DRBG_M
AX_SEED_INPUT value

Configurable String MBEDTLS_HMAC_DRBG_MAX_SE
ED_INPUT value

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 254 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

Public Key Cryptography (PKC)|
ECC|MBEDTLS_ECP_MAX_BITS

Define
Undefine

MBEDTLS_ECP_MAX_BITS

Public Key Cryptography (PKC)|
ECC|MBEDTLS_ECP_MAX_BITS
value

Configurable String MBEDTLS_ECP_MAX_BITS value

Public Key Cryptography (PKC)|
ECC|MBEDTLS_ECP_WINDOW_SI
ZE

Define
Undefine

MBEDTLS_ECP_WINDOW_SIZE

Public Key Cryptography (PKC)|
ECC|MBEDTLS_ECP_WINDOW_SI
ZE value

Configurable String MBEDTLS_ECP_WINDOW_SIZE
value

Public Key Cryptography (PKC)|
ECC|MBEDTLS_ECP_FIXED_POIN
T_OPTIM

Define
Undefine

MBEDTLS_ECP_FIXED_POINT_OP
TIM

Public Key Cryptography (PKC)|
ECC|MBEDTLS_ECP_FIXED_POIN
T_OPTIM value

Configurable String MBEDTLS_ECP_FIXED_POINT_OP
TIM value

RNG|MBEDTLS_ENTROPY_MAX_
SOURCES

Define
Undefine

MBEDTLS_ENTROPY_MAX_SOUR
CES

RNG|MBEDTLS_ENTROPY_MAX_
SOURCES value

Configurable String MBEDTLS_ENTROPY_MAX_SOUR
CES value

RNG|MBEDTLS_ENTROPY_MAX_
GATHER

Define
Undefine

MBEDTLS_ENTROPY_MAX_GATH
ER

RNG|MBEDTLS_ENTROPY_MAX_
GATHER value

Configurable String MBEDTLS_ENTROPY_MAX_GATH
ER value

RNG|MBEDTLS_ENTROPY_MIN_H
ARDWARE

Define
Undefine

MBEDTLS_ENTROPY_MIN_HARD
WARE

RNG|MBEDTLS_ENTROPY_MIN_H
ARDWARE value

Configurable String MBEDTLS_ENTROPY_MIN_HARD
WARE value

General|MBEDTLS_MEMORY_ALI
GN_MULTIPLE

Define
Undefine

MBEDTLS_MEMORY_ALIGN_MUL
TIPLE

General|MBEDTLS_MEMORY_ALI
GN_MULTIPLE value

Configurable String MBEDTLS_MEMORY_ALIGN_MUL
TIPLE value

Platform|MBEDTLS_PLATFORM_
STD_CALLOC

Define
Undefine

MBEDTLS_PLATFORM_STD_CALL
OC

Platform|MBEDTLS_PLATFORM_
STD_CALLOC value

Configurable String MBEDTLS_PLATFORM_STD_CALL
OC value

Platform|MBEDTLS_PLATFORM_
STD_FREE

Define
Undefine

MBEDTLS_PLATFORM_STD_FREE

Platform|MBEDTLS_PLATFORM_
STD_FREE value

Configurable String MBEDTLS_PLATFORM_STD_FREE
value

Platform|MBEDTLS_PLATFORM_
STD_EXIT

Define
Undefine

MBEDTLS_PLATFORM_STD_EXIT

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 255 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

Platform|MBEDTLS_PLATFORM_
STD_EXIT value

Configurable String MBEDTLS_PLATFORM_STD_EXIT
value

Platform|MBEDTLS_PLATFORM_
STD_TIME

Define
Undefine

MBEDTLS_PLATFORM_STD_TIME

Platform|MBEDTLS_PLATFORM_
STD_TIME value

Configurable String MBEDTLS_PLATFORM_STD_TIME
value

Platform|MBEDTLS_PLATFORM_
STD_FPRINTF

Define
Undefine

MBEDTLS_PLATFORM_STD_FPRI
NTF

Platform|MBEDTLS_PLATFORM_
STD_FPRINTF value

Configurable String MBEDTLS_PLATFORM_STD_FPRI
NTF value

Platform|MBEDTLS_PLATFORM_
STD_PRINTF

Define
Undefine

MBEDTLS_PLATFORM_STD_PRIN
TF

Platform|MBEDTLS_PLATFORM_
STD_PRINTF value

Configurable String MBEDTLS_PLATFORM_STD_PRIN
TF value

Platform|MBEDTLS_PLATFORM_
STD_SNPRINTF

Define
Undefine

MBEDTLS_PLATFORM_STD_SNP
RINTF

Platform|MBEDTLS_PLATFORM_
STD_SNPRINTF value

Configurable String MBEDTLS_PLATFORM_STD_SNP
RINTF value

Platform|MBEDTLS_PLATFORM_
STD_EXIT_SUCCESS

Define
Undefine

MBEDTLS_PLATFORM_STD_EXIT
_SUCCESS

Platform|MBEDTLS_PLATFORM_
STD_EXIT_SUCCESS value

Configurable String MBEDTLS_PLATFORM_STD_EXIT
_SUCCESS value

Platform|MBEDTLS_PLATFORM_
STD_EXIT_FAILURE

Define
Undefine

MBEDTLS_PLATFORM_STD_EXIT
_FAILURE

Platform|MBEDTLS_PLATFORM_
STD_EXIT_FAILURE value

Configurable String MBEDTLS_PLATFORM_STD_EXIT
_FAILURE value

Platform|MBEDTLS_PLATFORM_
STD_NV_SEED_READ

Define
Undefine

MBEDTLS_PLATFORM_STD_NV_
SEED_READ

Platform|MBEDTLS_PLATFORM_
STD_NV_SEED_READ value

Configurable String MBEDTLS_PLATFORM_STD_NV_
SEED_READ value

Platform|MBEDTLS_PLATFORM_
STD_NV_SEED_WRITE

Define
Undefine

MBEDTLS_PLATFORM_STD_NV_
SEED_WRITE

Platform|MBEDTLS_PLATFORM_
STD_NV_SEED_WRITE value

Configurable String MBEDTLS_PLATFORM_STD_NV_
SEED_WRITE value

Platform|MBEDTLS_PLATFORM_
STD_NV_SEED_FILE

Define
Undefine

MBEDTLS_PLATFORM_STD_NV_
SEED_FILE

Platform|MBEDTLS_PLATFORM_
STD_NV_SEED_FILE value

Configurable String MBEDTLS_PLATFORM_STD_NV_
SEED_FILE value

Platform|MBEDTLS_PLATFORM_
CALLOC_MACRO

Define
Undefine

MBEDTLS_PLATFORM_CALLOC_
MACRO

Platform|MBEDTLS_PLATFORM_
CALLOC_MACRO value

Configurable String MBEDTLS_PLATFORM_CALLOC_
MACRO value

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 256 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

Platform|MBEDTLS_PLATFORM_
FREE_MACRO

Define
Undefine

MBEDTLS_PLATFORM_FREE_MA
CRO

Platform|MBEDTLS_PLATFORM_
FREE_MACRO value

Configurable String MBEDTLS_PLATFORM_FREE_MA
CRO value

Platform|MBEDTLS_PLATFORM_
EXIT_MACRO

Define
Undefine

MBEDTLS_PLATFORM_EXIT_MAC
RO

Platform|MBEDTLS_PLATFORM_
EXIT_MACRO value

Configurable String MBEDTLS_PLATFORM_EXIT_MAC
RO value

Platform|MBEDTLS_PLATFORM_
TIME_MACRO

Define
Undefine

MBEDTLS_PLATFORM_TIME_MA
CRO

Platform|MBEDTLS_PLATFORM_
TIME_MACRO value

Configurable String MBEDTLS_PLATFORM_TIME_MA
CRO value

Platform|MBEDTLS_PLATFORM_
TIME_TYPE_MACRO

Define
Undefine

MBEDTLS_PLATFORM_TIME_TYP
E_MACRO

Platform|MBEDTLS_PLATFORM_
TIME_TYPE_MACRO value

Configurable String MBEDTLS_PLATFORM_TIME_TYP
E_MACRO value

Platform|MBEDTLS_PLATFORM_
FPRINTF_MACRO

Define
Undefine

MBEDTLS_PLATFORM_FPRINTF_
MACRO

Platform|MBEDTLS_PLATFORM_
FPRINTF_MACRO value

Configurable String MBEDTLS_PLATFORM_FPRINTF_
MACRO value

Platform|MBEDTLS_PLATFORM_
PRINTF_MACRO

Define
Undefine

MBEDTLS_PLATFORM_PRINTF_M
ACRO

Platform|MBEDTLS_PLATFORM_
PRINTF_MACRO value

Configurable String MBEDTLS_PLATFORM_PRINTF_M
ACRO value

Platform|MBEDTLS_PLATFORM_
SNPRINTF_MACRO

Define
Undefine

MBEDTLS_PLATFORM_SNPRINTF
_MACRO

Platform|MBEDTLS_PLATFORM_
SNPRINTF_MACRO value

Configurable String MBEDTLS_PLATFORM_SNPRINTF
_MACRO value

Platform|MBEDTLS_PLATFORM_
VSNPRINTF_MACRO

Define
Undefine

MBEDTLS_PLATFORM_VSNPRINT
F_MACRO

Platform|MBEDTLS_PLATFORM_
VSNPRINTF_MACRO value

Configurable String MBEDTLS_PLATFORM_VSNPRINT
F_MACRO value

Platform|MBEDTLS_PLATFORM_
NV_SEED_READ_MACRO

Define
Undefine

MBEDTLS_PLATFORM_NV_SEED
_READ_MACRO

Platform|MBEDTLS_PLATFORM_
NV_SEED_READ_MACRO value

Configurable String MBEDTLS_PLATFORM_NV_SEED
_READ_MACRO value

Platform|MBEDTLS_PLATFORM_
NV_SEED_WRITE_MACRO

Define
Undefine

MBEDTLS_PLATFORM_NV_SEED
_WRITE_MACRO

Platform|MBEDTLS_PLATFORM_
NV_SEED_WRITE_MACRO value

Configurable String MBEDTLS_PLATFORM_NV_SEED
_WRITE_MACRO value

Platform|Alternate|MBEDTLS_PL
ATFORM_ZEROIZE_ALT

Define
Undefine

MBEDTLS_PLATFORM_ZEROIZE_
ALT

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 257 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

Platform|Alternate|MBEDTLS_PL
ATFORM_GMTIME_R_ALT

Define
Undefine

MBEDTLS_PLATFORM_GMTIME_
R_ALT

4.2.45 Capacitive Touch Middleware (rm_touch)
Modules

Functions

fsp_err_t RM_TOUCH_Open (touch_ctrl_t *const p_ctrl, touch_cfg_t const *const
p_cfg)

 Opens and configures the TOUCH Middle module. Implements
touch_api_t::open. More...

fsp_err_t RM_TOUCH_ScanStart (touch_ctrl_t *const p_ctrl)

 This function should be called each time a periodic timer expires.
More...

fsp_err_t RM_TOUCH_DataGet (touch_ctrl_t *const p_ctrl, uint64_t
*p_button_status, uint16_t *p_slider_position, uint16_t
*p_wheel_position)

 Gets the 64-bit mask indicating which buttons are pressed. More...

fsp_err_t RM_TOUCH_Close (touch_ctrl_t *const p_ctrl)

 Disables specified TOUCH control block. Implements
transfer_api_t::close. More...

fsp_err_t RM_TOUCH_VersionGet (fsp_version_t *const p_version)

Detailed Description

This module supports the Capacitive Touch Sensing Unit (CTSU). It implements the Touch
Middleware Interface.

Overview
This module controls the CTSU API and provides touch buttons, sliders, and wheels. By editing the
settings, the user can make various settings for these. The CTSU HAL driver is always required.

Features

um_touch_slider_5position um_touch_button_on_off

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 258 / 601

Flexible Software Package

User’s Manual
API Reference > Modules > Capacitive Touch Middleware (rm_touch)

Supports touch buttons(Self and Mutual), sliders and wheels
Supports touch buttons(Self and Mutual), sliders, and wheels.

The button status shows the status of up to 64 buttons in 64 bitmap.
The slider position is in the range of 0 to 100.
The Wheel position is in the range of 0 to 360.

Starts scanning at any time.
The scan may be started by a software trigger or an external trigger.
The scan completion is signalled by the callback function.

Gets all results after scans are complete.
Additional build-time features

Optional (build time) support for real-time monitoring function by QE. (Not yet
available)

Configuration
Build Time Configurations for rm_touch

The following build time configurations are defined in fsp_cfg/rm_touch_cfg.h:

Configuration Options Description

Parameter Checking Default (BSP)
Enabled
Disabled

If selected code for parameter
checking is included in the
build.

QE_UPDATE_MONITOR Enabled
Disabled

If enabled,

Number of buttons Name must be a valid C symbol Number of buttons

Number of sliders Name must be a valid C symbol Number of sliders

Number of wheels Name must be a valid C symbol Number of wheels

Configurations for TOUCH Driver on rm_touch

This module can be added to the Threads tab from New -> Middleware -> CapTouch -> TOUCH
Driver on rm_touch:

4.3 Interfaces

Detailed Description

The FSP interfaces provide APIs for common functionality. They can be implemented by one or more
modules. Modules can use other modules as dependencies using this interface layer.

Modules

ADC Interface

 Interface for A/D Converters.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 259 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces

CAC Interface

 Interface for clock frequency accuracy measurements.

CGC Interface

 Interface for clock generation.

Comparator Interface

 Interface for comparators.

CRC Interface

 Interface for cyclic redundancy checking.

CTSU Interface

 Interface for Capacitive Touch Sensing Unit (CTSU) functions.

DAC Interface

 Interface for D/A converters.

Display Interface

 Interface for LCD panel displays.

DOC Interface

 Interface for the Data Operation Circuit.

ELC Interface

 Interface for the Event Link Controller.

Ethernet Interface

 Interface for Ethernet functions.

Ethernet PHY Interface

 Interface for Ethernet phy functions.

External IRQ Interface

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 260 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces

 Interface for detecting external interrupts.

Flash Interface

 Interface for the Flash Memory.

I2C Master Interface

 Interface for I2C master communication.

I2C Slave Interface

 Interface for I2C slave communication.

I2S Interface

 Interface for I2S audio communication.

I/O Port Interface

 Interface for accessing I/O ports and configuring I/O functionality.

JPEG Codec Interface

 Interface for JPEG functions.

Key Matrix Interface

 Interface for key matrix functions.

Low Power Modes Interface

 Interface for accessing low power modes.

Low Voltage Detection Interface

 Interface for Low Voltage Detection.

RTC Interface

 Interface for accessing the Realtime Clock.

SD/MMC Interface

 Interface for accessing SD, eMMC, and SDIO devices.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 261 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces

SPI Interface

 Interface for SPI communications.

Timer Interface

 Interface for timer functions.

Transfer Interface

 Interface for data transfer functions.

UART Interface

 Interface for UART communications.

USB Interface

 Interface for USB functions.

USB HMSC Interface

 Interface for USB HMSC functions.

USB PCDC Interface

 Interface for USB PCDC functions.

WDT Interface

 Interface for watch dog timer functions.

Touch Middleware Interface

 Interface for Touch Middleware functions.

4.3.1 ADC Interface
Interfaces

Detailed Description

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 262 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > ADC Interface

Interface for A/D Converters.

Summary
The ADC interface provides standard ADC functionality including one-shot mode (single scan),
continuous scan and group scan. It also allows configuration of hardware and software triggers for
starting scans. After each conversion an interrupt can be triggered, and if a callback function is
provided, the call back is invoked with the appropriate event information.

Implemented by: Analog to Digital Converter (r_adc)

Data Structures

struct adc_sample_state_t

struct adc_status_t

struct adc_callback_args_t

struct adc_info_t

struct adc_channel_cfg_t

struct adc_cfg_t

struct adc_api_t

struct adc_instance_t

Typedefs

typedef void adc_ctrl_t

Enumerations

enum adc_mode_t

enum adc_resolution_t

enum adc_alignment_t

enum adc_add_t

enum adc_clear_t

enum adc_trigger_t

enum adc_sample_state_reg_t

enum adc_event_t

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 263 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > ADC Interface

enum adc_group_a_t

enum adc_channel_t

enum adc_state_t

Data Structure Documentation

◆ adc_sample_state_t

struct adc_sample_state_t

ADC sample state configuration

Data Fields

adc_sample_state_reg_t reg_id Sample state register ID.

uint8_t num_states Number of sampling states for
conversion. Ch16-20/21 use the
same value.

◆ adc_status_t

struct adc_status_t

ADC status.

Data Fields

adc_state_t state Current state.

◆ adc_callback_args_t

struct adc_callback_args_t

ADC callback arguments definitions

Data Fields

uint16_t unit ADC device in use.

adc_event_t event ADC callback event.

void const * p_context Placeholder for user data.

adc_channel_t channel Channel of conversion result.
Only valid for ADC_EVENT_CON
VERSION_COMPLETE.

◆ adc_info_t

struct adc_info_t

ADC Information Structure for Transfer Interface

Data Fields

__I uint16_t * p_address The address to start reading the
data from.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 264 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > ADC Interface

uint32_t length The total number of transfers to
read.

transfer_size_t transfer_size The size of each transfer.

elc_peripheral_t elc_peripheral Name of the peripheral in the
ELC list.

elc_event_t elc_event Name of the ELC event for the
peripheral.

uint32_t calibration_data Temperature sensor calibration
data (0xFFFFFFFF if
unsupported) for reference
voltage.

int16_t slope_microvolts Temperature sensor slope in
microvolts/degrees C.

bool calibration_ongoing Calibration is in progress.

◆ adc_channel_cfg_t

struct adc_channel_cfg_t

ADC channel(s) configuration

Data Fields

uint32_t scan_mask Channels/bits: bit 0 is ch0; bit
15 is ch15. Use
ADC_MASK_CHANNEL_x.

uint32_t scan_mask_group_b Valid for group modes. Use
ADC_MASK_CHANNEL_x.

uint32_t add_mask Valid if add enabled in Open().
Use ADC_MASK_CHANNEL_x.

adc_group_a_t priority_group_a Valid for group modes.

uint8_t sample_hold_mask Channels/bits 0-2. Use
ADC_MASK_CHANNEL_x.

uint8_t sample_hold_states Number of states to be used for
sample and hold. Affects
channels 0-2.

◆ adc_cfg_t

struct adc_cfg_t

ADC general configuration

Data Fields

uint16_t unit

 ADC Unit to be used.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 265 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > ADC Interface

adc_mode_t mode

 ADC operation mode.

adc_resolution_t resolution

 ADC resolution 8, 10, or 12-bit.

adc_alignment_t alignment

 Specify left or right alignment; ignored if addition used.

adc_add_t add_average_count

 Add or average samples.

adc_clear_t clearing

 Clear after read.

adc_trigger_t trigger

 Default and Group A trigger source.

adc_trigger_t trigger_group_b

 Group B trigger source; valid only for group mode.

IRQn_Type scan_end_irq

 Scan end IRQ number.

IRQn_Type scan_end_b_irq

 Scan end group B IRQ number.

uint8_t scan_end_ipl

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 266 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > ADC Interface

 Scan end interrupt priority.

uint8_t scan_end_b_ipl

 Scan end group B interrupt priority.

void(* p_callback)(adc_callback_args_t *p_args)

 Callback function; set to NULL for none.

void const * p_context

 Placeholder for user data. Passed to the user callback in
adc_api_t::adc_callback_args_t.

void const * p_extend

 Extension parameter for hardware specific settings.

◆ adc_api_t

struct adc_api_t

ADC functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(adc_ctrl_t *const p_ctrl, adc_cfg_t const *const p_cfg)

fsp_err_t(* scanCfg)(adc_ctrl_t *const p_ctrl, adc_channel_cfg_t const *const
p_channel_cfg)

fsp_err_t(* scanStart)(adc_ctrl_t *const p_ctrl)

fsp_err_t(* scanStop)(adc_ctrl_t *const p_ctrl)

fsp_err_t(* scanStatusGet)(adc_ctrl_t *const p_ctrl, adc_status_t *p_status)

fsp_err_t(* read)(adc_ctrl_t *const p_ctrl, adc_channel_t const reg_id, uint16_t

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 267 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > ADC Interface

*const p_data)

fsp_err_t(* read32)(adc_ctrl_t *const p_ctrl, adc_channel_t const reg_id,
uint32_t *const p_data)

fsp_err_t(* sampleStateCountSet)(adc_ctrl_t *const p_ctrl, adc_sample_state_t
*p_sample)

fsp_err_t(* calibrate)(adc_ctrl_t *const p_ctrl, void *const p_extend)

fsp_err_t(* offsetSet)(adc_ctrl_t *const p_ctrl, adc_channel_t const reg_id,
int32_t const offset)

fsp_err_t(* close)(adc_ctrl_t *const p_ctrl)

fsp_err_t(* infoGet)(adc_ctrl_t *const p_ctrl, adc_info_t *const p_adc_info)

fsp_err_t(* versionGet)(fsp_version_t *const p_version)

Field Documentation

◆ open

fsp_err_t(* adc_api_t::open) (adc_ctrl_t *const p_ctrl, adc_cfg_t const *const p_cfg)

Initialize ADC Unit; apply power, set the operational mode, trigger sources, interrupt priority, and
configurations common to all channels and sensors.

Implemented as

R_ADC_Open()
R_SDADC_Open()

Precondition
Configure peripheral clocks, ADC pins and IRQs prior to calling this function.

Parameters
[in] p_ctrl Pointer to control handle

structure

[in] p_cfg Pointer to configuration
structure

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 268 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > ADC Interface

◆ scanCfg

fsp_err_t(* adc_api_t::scanCfg) (adc_ctrl_t *const p_ctrl, adc_channel_cfg_t const *const
p_channel_cfg)

Configure the scan including the channels, groups, and scan triggers to be used for the unit that
was initialized in the open call. Some configurations are not supported for all implementations. See
implementation for details.

Implemented as

R_ADC_ScanCfg()
R_SDADC_ScanConfigure()

Parameters
[in] p_ctrl Pointer to control handle

structure

[in] p_channel_cfg Pointer to scan configuration
structure

◆ scanStart

fsp_err_t(* adc_api_t::scanStart) (adc_ctrl_t *const p_ctrl)

Start the scan (in case of a software trigger), or enable the hardware trigger.

Implemented as

R_ADC_ScanStart()
R_SDADC_ScanStart()

Parameters
[in] p_ctrl Pointer to control handle

structure

◆ scanStop

fsp_err_t(* adc_api_t::scanStop) (adc_ctrl_t *const p_ctrl)

Stop the ADC scan (in case of a software trigger), or disable the hardware trigger.

Implemented as

R_ADC_ScanStop()
R_SDADC_ScanStop()

Parameters
[in] p_ctrl Pointer to control handle

structure

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 269 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > ADC Interface

◆ scanStatusGet

fsp_err_t(* adc_api_t::scanStatusGet) (adc_ctrl_t *const p_ctrl, adc_status_t *p_status)

Check scan status.

Implemented as

R_ADC_StatusGet()
R_SDADC_StatusGet()

Parameters
[in] p_ctrl Pointer to control handle

structure

[out] p_status Pointer to store current
status in

◆ read

fsp_err_t(* adc_api_t::read) (adc_ctrl_t *const p_ctrl, adc_channel_t const reg_id, uint16_t *const
p_data)

Read ADC conversion result.

Implemented as

R_ADC_Read()
R_SDADC_Read()

Parameters
[in] p_ctrl Pointer to control handle

structure

[in] reg_id ADC channel to read (see
enumeration adc_channel_t)

[in] p_data Pointer to variable to load
value into.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 270 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > ADC Interface

◆ read32

fsp_err_t(* adc_api_t::read32) (adc_ctrl_t *const p_ctrl, adc_channel_t const reg_id, uint32_t *const
p_data)

Read ADC conversion result into a 32-bit word.

Implemented as

R_SDADC_Read32()
Parameters

[in] p_ctrl Pointer to control handle
structure

[in] reg_id ADC channel to read (see
enumeration adc_channel_t)

[in] p_data Pointer to variable to load
value into.

◆ sampleStateCountSet

fsp_err_t(* adc_api_t::sampleStateCountSet) (adc_ctrl_t *const p_ctrl, adc_sample_state_t
*p_sample)

Set the sample state count for the specified channel. Not supported for all implementations. See
implementation for details.

Implemented as

R_ADC_SetSampleStateCount()
Parameters

[in] p_ctrl Pointer to control handle
structure

[in] p_sample Pointer to the ADC channels
and corresponding sample
states to be set

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 271 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > ADC Interface

◆ calibrate

fsp_err_t(* adc_api_t::calibrate) (adc_ctrl_t *const p_ctrl, void *const p_extend)

Calibrate ADC or associated PGA (programmable gain amplifier). The driver may require
implementation specific arguments to the p_extend input. Not supported for all implementations.
See implementation for details.

Implemented as

R_SDADC_Calibrate()
Parameters

[in] p_ctrl Pointer to control handle
structure

[in] p_extend Pointer to implementation
specific arguments

◆ offsetSet

fsp_err_t(* adc_api_t::offsetSet) (adc_ctrl_t *const p_ctrl, adc_channel_t const reg_id, int32_t const
offset)

Set offset for input PGA configured for differential input. Not supported for all implementations. See
implementation for details.

Implemented as

R_SDADC_OffsetSet()
Parameters

[in] p_ctrl Pointer to control handle
structure

[in] reg_id ADC channel to read (see
enumeration adc_channel_t)

[in] offset See implementation for
details.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 272 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > ADC Interface

◆ close

fsp_err_t(* adc_api_t::close) (adc_ctrl_t *const p_ctrl)

Close the specified ADC unit by ending any scan in progress, disabling interrupts, and removing
power to the specified A/D unit.

Implemented as

R_ADC_Close()
R_SDADC_Close()

Parameters
[in] p_ctrl Pointer to control handle

structure

◆ infoGet

fsp_err_t(* adc_api_t::infoGet) (adc_ctrl_t *const p_ctrl, adc_info_t *const p_adc_info)

Return the ADC data register address of the first (lowest number) channel and the total number of
bytes to be read in order for the DTC/DMAC to read the conversion results of all configured
channels. Return the temperature sensor calibration and slope data.

Implemented as

R_ADC_InfoGet()
R_SDADC_InfoGet()

Parameters
[in] p_ctrl Pointer to control handle

structure

[out] p_adc_info Pointer to ADC information
structure

◆ versionGet

fsp_err_t(* adc_api_t::versionGet) (fsp_version_t *const p_version)

Retrieve the API version.

Implemented as

R_ADC_VersionGet()
R_SDADC_VersionGet()

Precondition
This function retrieves the API version.

Parameters
[in] p_version Pointer to version structure

◆ adc_instance_t

struct adc_instance_t

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 273 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > ADC Interface

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

adc_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

adc_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

adc_channel_cfg_t const * p_channel_cfg Pointer to the channel
configuration structure for this
instance.

adc_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ adc_ctrl_t

typedef void adc_ctrl_t

ADC control block. Allocate using driver instance control structure from driver instance header file.

Enumeration Type Documentation

◆ adc_mode_t

enum adc_mode_t

ADC operation mode definitions

Enumerator

ADC_MODE_SINGLE_SCAN Single scan - one or more channels.

ADC_MODE_GROUP_SCAN Two trigger sources to trigger scan for two
groups which contain one or more channels.

ADC_MODE_CONTINUOUS_SCAN Continuous scan - one or more channels.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 274 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > ADC Interface

◆ adc_resolution_t

enum adc_resolution_t

ADC data resolution definitions

Enumerator

ADC_RESOLUTION_12_BIT 12 bit resolution

ADC_RESOLUTION_10_BIT 10 bit resolution

ADC_RESOLUTION_8_BIT 8 bit resolution

ADC_RESOLUTION_14_BIT 14 bit resolution

ADC_RESOLUTION_16_BIT 16 bit resolution

ADC_RESOLUTION_24_BIT 24 bit resolution

◆ adc_alignment_t

enum adc_alignment_t

ADC data alignment definitions

Enumerator

ADC_ALIGNMENT_RIGHT Data alignment right.

ADC_ALIGNMENT_LEFT Data alignment left.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 275 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > ADC Interface

◆ adc_add_t

enum adc_add_t

ADC data sample addition and averaging options

Enumerator

ADC_ADD_OFF Addition turned off for channels/sensors.

ADC_ADD_TWO Add two samples.

ADC_ADD_THREE Add three samples.

ADC_ADD_FOUR Add four samples.

ADC_ADD_SIXTEEN Add sixteen samples.

ADC_ADD_AVERAGE_TWO Average two samples.

ADC_ADD_AVERAGE_FOUR Average four samples.

ADC_ADD_AVERAGE_EIGHT Average eight samples.

ADC_ADD_AVERAGE_SIXTEEN Add sixteen samples.

◆ adc_clear_t

enum adc_clear_t

ADC clear after read definitions

Enumerator

ADC_CLEAR_AFTER_READ_OFF Clear after read off.

ADC_CLEAR_AFTER_READ_ON Clear after read on.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 276 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > ADC Interface

◆ adc_trigger_t

enum adc_trigger_t

ADC trigger mode definitions

Enumerator

ADC_TRIGGER_SOFTWARE Software trigger; not for group modes.

ADC_TRIGGER_SYNC_ELC Synchronous trigger via ELC.

ADC_TRIGGER_ASYNC_EXTERNAL External asynchronous trigger; not for group
modes.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 277 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > ADC Interface

◆ adc_sample_state_reg_t

enum adc_sample_state_reg_t

ADC sample state registers

Enumerator

ADC_SAMPLE_STATE_CHANNEL_0 Sample state register channel 0.

ADC_SAMPLE_STATE_CHANNEL_1 Sample state register channel 1.

ADC_SAMPLE_STATE_CHANNEL_2 Sample state register channel 2.

ADC_SAMPLE_STATE_CHANNEL_3 Sample state register channel 3.

ADC_SAMPLE_STATE_CHANNEL_4 Sample state register channel 4.

ADC_SAMPLE_STATE_CHANNEL_5 Sample state register channel 5.

ADC_SAMPLE_STATE_CHANNEL_6 Sample state register channel 6.

ADC_SAMPLE_STATE_CHANNEL_7 Sample state register channel 7.

ADC_SAMPLE_STATE_CHANNEL_8 Sample state register channel 8.

ADC_SAMPLE_STATE_CHANNEL_9 Sample state register channel 9.

ADC_SAMPLE_STATE_CHANNEL_10 Sample state register channel 10.

ADC_SAMPLE_STATE_CHANNEL_11 Sample state register channel 11.

ADC_SAMPLE_STATE_CHANNEL_12 Sample state register channel 12.

ADC_SAMPLE_STATE_CHANNEL_13 Sample state register channel 13.

ADC_SAMPLE_STATE_CHANNEL_14 Sample state register channel 14.

ADC_SAMPLE_STATE_CHANNEL_15 Sample state register channel 15.

ADC_SAMPLE_STATE_CHANNEL_16_TO_31 Sample state register channel 16 to 31.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 278 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > ADC Interface

◆ adc_event_t

enum adc_event_t

ADC callback event definitions

Enumerator

ADC_EVENT_SCAN_COMPLETE Normal/Group A scan complete.

ADC_EVENT_SCAN_COMPLETE_GROUP_B Group B scan complete.

ADC_EVENT_CALIBRATION_COMPLETE Calibration complete.

ADC_EVENT_CONVERSION_COMPLETE Conversion complete.

◆ adc_group_a_t

enum adc_group_a_t

ADC action for group A interrupts group B scan. This enumeration is used to specify the priority
between Group A and B in group mode.

Enumerator

ADC_GROUP_A_PRIORITY_OFF Group A ignored and does not interrupt
ongoing group B scan.

ADC_GROUP_A_GROUP_B_WAIT_FOR_TRIGGER Group A interrupts Group B(single scan) which
restarts at next Group B trigger.

ADC_GROUP_A_GROUP_B_RESTART_SCAN Group A interrupts Group B(single scan) which
restarts immediately after Group A scan is
complete.

ADC_GROUP_A_GROUP_B_CONTINUOUS_SCAN Group A interrupts Group B(continuous scan)
which continues scanning without a new Group
B trigger.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 279 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > ADC Interface

◆ adc_channel_t

enum adc_channel_t

ADC channels

Enumerator

ADC_CHANNEL_0 ADC channel 0.

ADC_CHANNEL_1 ADC channel 1.

ADC_CHANNEL_2 ADC channel 2.

ADC_CHANNEL_3 ADC channel 3.

ADC_CHANNEL_4 ADC channel 4.

ADC_CHANNEL_5 ADC channel 5.

ADC_CHANNEL_6 ADC channel 6.

ADC_CHANNEL_7 ADC channel 7.

ADC_CHANNEL_8 ADC channel 8.

ADC_CHANNEL_9 ADC channel 9.

ADC_CHANNEL_10 ADC channel 10.

ADC_CHANNEL_11 ADC channel 11.

ADC_CHANNEL_12 ADC channel 12.

ADC_CHANNEL_13 ADC channel 13.

ADC_CHANNEL_14 ADC channel 14.

ADC_CHANNEL_15 ADC channel 15.

ADC_CHANNEL_16 ADC channel 16.

ADC_CHANNEL_17 ADC channel 17.

ADC_CHANNEL_18 ADC channel 18.

ADC_CHANNEL_19 ADC channel 19.

ADC_CHANNEL_20 ADC channel 20.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 280 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > ADC Interface

ADC_CHANNEL_21 ADC channel 21.

ADC_CHANNEL_22 ADC channel 22.

ADC_CHANNEL_23 ADC channel 23.

ADC_CHANNEL_24 ADC channel 24.

ADC_CHANNEL_25 ADC channel 25.

ADC_CHANNEL_26 ADC channel 26.

ADC_CHANNEL_27 ADC channel 27.

ADC_CHANNEL_TEMPERATURE Temperature sensor output.

ADC_CHANNEL_VOLT Internal reference voltage.

◆ adc_state_t

enum adc_state_t

ADC states.

Enumerator

ADC_STATE_IDLE ADC is idle.

ADC_STATE_SCAN_IN_PROGRESS ADC scan in progress.

4.3.2 CAC Interface
Interfaces

Detailed Description

Interface for clock frequency accuracy measurements.

Summary
The interface for the clock frequency accuracy measurement circuit (CAC) peripheral is used to
check a system clock frequency with a reference clock signal by counting the number of pulses of
the clock to be measured.

Implemented by: Clock Frequency Accuracy Measurement Circuit (r_cac)

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 281 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > CAC Interface

Data Structures

struct cac_ref_clock_config_t

struct cac_meas_clock_config_t

struct cac_callback_args_t

struct cac_cfg_t

struct cac_api_t

struct cac_instance_t

Typedefs

typedef void cac_ctrl_t

Enumerations

enum cac_event_t

enum cac_clock_type_t

enum cac_clock_source_t

enum cac_ref_divider_t

enum cac_ref_digfilter_t

enum cac_ref_edge_t

enum cac_meas_divider_t

Data Structure Documentation

◆ cac_ref_clock_config_t

struct cac_ref_clock_config_t

Structure defining the settings that apply to reference clock configuration.

Data Fields

cac_ref_divider_t divider Divider specification for the
Reference clock.

cac_clock_source_t clock Clock source for the Reference
clock.

cac_ref_digfilter_t digfilter Digital filter selection for the
CACREF ext clock.

cac_ref_edge_t edge Edge detection for the

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 282 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > CAC Interface

Reference clock.

◆ cac_meas_clock_config_t

struct cac_meas_clock_config_t

Structure defining the settings that apply to measurement clock configuration.

Data Fields

cac_meas_divider_t divider Divider specification for the
Measurement clock.

cac_clock_source_t clock Clock source for the
Measurement clock.

◆ cac_callback_args_t

struct cac_callback_args_t

Callback function parameter data

Data Fields

cac_event_t event The event can be used to
identify what caused the
callback.

void const * p_context Value provided in configuration
structure.

◆ cac_cfg_t

struct cac_cfg_t

CAC Configuration

Data Fields

cac_ref_clock_config_t cac_ref_clock

 reference clock specific settings

cac_meas_clock_config_t cac_meas_clock

 measurement clock specific settings

uint16_t cac_upper_limit

 the upper limit counter threshold

uint16_t cac_lower_limit

 the lower limit counter threshold

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 283 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > CAC Interface

IRQn_Type mendi_irq

 Measurement End IRQ number.

IRQn_Type ovfi_irq

 Measurement Overflow IRQ number.

IRQn_Type ferri_irq

 Frequency Error IRQ number.

uint8_t mendi_ipl

 Measurement end interrupt priority.

uint8_t ovfi_ipl

 Overflow interrupt priority.

uint8_t ferri_ipl

 Frequency error interrupt priority.

void(* p_callback)(cac_callback_args_t *p_args)

 Callback provided when a CAC interrupt ISR occurs.

void const * p_context

 Passed to user callback in cac_callback_args_t.

void const * p_extend

 CAC hardware dependent configuration */.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 284 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > CAC Interface

◆ cac_api_t

struct cac_api_t

CAC functions implemented at the HAL layer API

Data Fields

fsp_err_t(* open)(cac_ctrl_t *const p_ctrl, cac_cfg_t const *const p_cfg)

fsp_err_t(* startMeasurement)(cac_ctrl_t *const p_ctrl)

fsp_err_t(* stopMeasurement)(cac_ctrl_t *const p_ctrl)

fsp_err_t(* read)(cac_ctrl_t *const p_ctrl, uint16_t *const p_counter)

fsp_err_t(* close)(cac_ctrl_t *const p_ctrl)

fsp_err_t(* versionGet)(fsp_version_t *p_version)

Field Documentation

◆ open

fsp_err_t(* cac_api_t::open) (cac_ctrl_t *const p_ctrl, cac_cfg_t const *const p_cfg)

Open function for CAC device.

Parameters
[out] p_ctrl Pointer to CAC device

control. Must be declared by
user.

[in] cac_cfg_t Pointer to CAC configuration
structure.

◆ startMeasurement

fsp_err_t(* cac_api_t::startMeasurement) (cac_ctrl_t *const p_ctrl)

Begin a measurement for the CAC peripheral.

Parameters
[in] p_ctrl Pointer to CAC device

control.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 285 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > CAC Interface

◆ stopMeasurement

fsp_err_t(* cac_api_t::stopMeasurement) (cac_ctrl_t *const p_ctrl)

End a measurement for the CAC peripheral.

Parameters
[in] p_ctrl Pointer to CAC device

control.

◆ read

fsp_err_t(* cac_api_t::read) (cac_ctrl_t *const p_ctrl, uint16_t *const p_counter)

Read function for CAC peripheral.

Parameters
[in] p_ctrl Control for the CAC device

context.

[in] p_counter Pointer to variable in which
to store the current
CACNTBR register contents.

◆ close

fsp_err_t(* cac_api_t::close) (cac_ctrl_t *const p_ctrl)

Close function for CAC device.

Parameters
[in] p_ctrl Pointer to CAC device

control.

◆ versionGet

fsp_err_t(* cac_api_t::versionGet) (fsp_version_t *p_version)

Get the CAC API and code version information.

Parameters
[out] p_version is value returned.

◆ cac_instance_t

struct cac_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 286 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > CAC Interface

cac_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

cac_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

cac_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ cac_ctrl_t

typedef void cac_ctrl_t

CAC control block. Allocate an instance specific control block to pass into the CAC API calls.

Implemented as

cac_instance_ctrl_t

Enumeration Type Documentation

◆ cac_event_t

enum cac_event_t

Event types returned by the ISR callback when used in CAC interrupt mode

Enumerator

CAC_EVENT_FREQUENCY_ERROR Frequency error.

CAC_EVENT_MEASUREMENT_COMPLETE Measurement complete.

CAC_EVENT_COUNTER_OVERFLOW Counter overflow.

◆ cac_clock_type_t

enum cac_clock_type_t

Enumeration of the two possible clocks.

Enumerator

CAC_CLOCK_MEASURED Measurement clock.

CAC_CLOCK_REFERENCE Reference clock.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 287 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > CAC Interface

◆ cac_clock_source_t

enum cac_clock_source_t

Enumeration of the possible clock sources for both the reference and measurement clocks.

Enumerator

CAC_CLOCK_SOURCE_MAIN_OSC Main clock oscillator.

CAC_CLOCK_SOURCE_SUBCLOCK Sub-clock.

CAC_CLOCK_SOURCE_HOCO HOCO (High speed on chip oscillator)

CAC_CLOCK_SOURCE_MOCO MOCO (Middle speed on chip oscillator)

CAC_CLOCK_SOURCE_LOCO LOCO (Middle speed on chip oscillator)

CAC_CLOCK_SOURCE_PCLKB PCLKB (Peripheral Clock B)

CAC_CLOCK_SOURCE_IWDT IWDT- Dedicated on-chip oscillator.

CAC_CLOCK_SOURCE_EXTERNAL Externally supplied measurement clock on
CACREF pin.

◆ cac_ref_divider_t

enum cac_ref_divider_t

Enumeration of available dividers for the reference clock.

Enumerator

CAC_REF_DIV_32 Reference clock divided by 32.

CAC_REF_DIV_128 Reference clock divided by 128.

CAC_REF_DIV_1024 Reference clock divided by 1024.

CAC_REF_DIV_8192 Reference clock divided by 8192.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 288 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > CAC Interface

◆ cac_ref_digfilter_t

enum cac_ref_digfilter_t

Enumeration of available digital filter settings for an external reference clock.

Enumerator

CAC_REF_DIGITAL_FILTER_OFF No digital filter on the CACREF pin for
reference clock.

CAC_REF_DIGITAL_FILTER_1 Sampling clock for digital filter = measuring
frequency.

CAC_REF_DIGITAL_FILTER_4 Sampling clock for digital filter = measuring
frequency/4.

CAC_REF_DIGITAL_FILTER_16 Sampling clock for digital filter = measuring
frequency/16.

◆ cac_ref_edge_t

enum cac_ref_edge_t

Enumeration of available edge detect settings for the reference clock.

Enumerator

CAC_REF_EDGE_RISE Rising edge detect for the Reference clock.

CAC_REF_EDGE_FALL Falling edge detect for the Reference clock.

CAC_REF_EDGE_BOTH Both Rising and Falling edges detect for the
Reference clock.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 289 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > CAC Interface

◆ cac_meas_divider_t

enum cac_meas_divider_t

Enumeration of available dividers for the measurement clock

Enumerator

CAC_MEAS_DIV_1 Measurement clock divided by 1.

CAC_MEAS_DIV_4 Measurement clock divided by 4.

CAC_MEAS_DIV_8 Measurement clock divided by 8.

CAC_MEAS_DIV_32 Measurement clock divided by 32.

4.3.3 CGC Interface
Interfaces

Detailed Description

Interface for clock generation.

Summary
The CGC interface provides the ability to configure and use all of the CGC module's capabilities.
Among the capabilities is the selection of several clock sources to use as the system clock source.
Additionally, the system clocks can be divided down to provide a wide range of frequencies for
various system and peripheral needs.

Clock stability can be checked and clocks may also be stopped to save power when not needed. The
API has a function to return the frequency of the system and system peripheral clocks at run time.
There is also a feature to detect when the main oscillator has stopped, with the option of calling a
user provided callback function.

The CGC interface is implemented by:

Clock Generation Circuit (r_cgc)

Data Structures

struct cgc_callback_args_t

struct cgc_pll_cfg_t

union cgc_divider_cfg_t

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 290 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > CGC Interface

struct cgc_cfg_t

struct cgc_clocks_cfg_t

struct cgc_api_t

struct cgc_instance_t

Typedefs

typedef void cgc_ctrl_t

Enumerations

enum cgc_event_t

enum cgc_clock_t

enum cgc_pll_div_t

enum cgc_pll_mul_t

enum cgc_sys_clock_div_t

enum cgc_usb_clock_div_t

enum cgc_clock_change_t

Data Structure Documentation

◆ cgc_callback_args_t

struct cgc_callback_args_t

Callback function parameter data

Data Fields

cgc_event_t event The event can be used to
identify what caused the
callback.

void const * p_context Placeholder for user data.

◆ cgc_pll_cfg_t

struct cgc_pll_cfg_t

Clock configuration structure - Used as an input parameter to the cgc_api_t::clockStart function for
the PLL clock.

Data Fields

cgc_clock_t source_clock PLL source clock (main
oscillator or HOCO)

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 291 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > CGC Interface

cgc_pll_div_t divider PLL divider.

cgc_pll_mul_t multiplier PLL multiplier.

◆ cgc_divider_cfg_t

union cgc_divider_cfg_t

Clock configuration structure - Used as an input parameter to the cgc_api_t::systemClockSet and
cgc_api_t::systemClockGet functions.

Data Fields

uint32_t sckdivcr_w (@ 0x4001E020) System clock
Division control register

struct cgc_divider_cfg_t __unnamed__

◆ cgc_cfg_t

struct cgc_cfg_t

Configuration options.

◆ cgc_clocks_cfg_t

struct cgc_clocks_cfg_t

Clock configuration

Data Fields

cgc_clock_t system_clock System clock source
enumeration.

cgc_pll_cfg_t pll_cfg PLL configuration structure.

cgc_divider_cfg_t divider_cfg Clock dividers structure.

cgc_clock_change_t loco_state State of LOCO.

cgc_clock_change_t moco_state State of MOCO.

cgc_clock_change_t hoco_state State of HOCO.

cgc_clock_change_t mainosc_state State of Main oscillator.

cgc_clock_change_t pll_state State of PLL.

◆ cgc_api_t

struct cgc_api_t

CGC functions implemented at the HAL layer follow this API.

Data Fields

fsp_err_t(* open)(cgc_ctrl_t *const p_ctrl, cgc_cfg_t const *const p_cfg)

fsp_err_t(* clocksCfg)(cgc_ctrl_t *const p_ctrl, cgc_clocks_cfg_t const *const
p_clock_cfg)

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 292 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > CGC Interface

fsp_err_t(* clockStart)(cgc_ctrl_t *const p_ctrl, cgc_clock_t clock_source,
cgc_pll_cfg_t const *const p_pll_cfg)

fsp_err_t(* clockStop)(cgc_ctrl_t *const p_ctrl, cgc_clock_t clock_source)

fsp_err_t(* clockCheck)(cgc_ctrl_t *const p_ctrl, cgc_clock_t clock_source)

fsp_err_t(* systemClockSet)(cgc_ctrl_t *const p_ctrl, cgc_clock_t clock_source,
cgc_divider_cfg_t const *const p_divider_cfg)

fsp_err_t(* systemClockGet)(cgc_ctrl_t *const p_ctrl, cgc_clock_t *const
p_clock_source, cgc_divider_cfg_t *const p_divider_cfg)

fsp_err_t(* oscStopDetectEnable)(cgc_ctrl_t *const p_ctrl)

fsp_err_t(* oscStopDetectDisable)(cgc_ctrl_t *const p_ctrl)

fsp_err_t(* oscStopStatusClear)(cgc_ctrl_t *const p_ctrl)

fsp_err_t(* close)(cgc_ctrl_t *const p_ctrl)

fsp_err_t(* versionGet)(fsp_version_t *p_version)

Field Documentation

◆ open

fsp_err_t(* cgc_api_t::open) (cgc_ctrl_t *const p_ctrl, cgc_cfg_t const *const p_cfg)

Initial configuration

Implemented as

R_CGC_Open()
Parameters

[in] p_ctrl Pointer to instance control
block

[in] p_cfg Pointer to configuration

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 293 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > CGC Interface

◆ clocksCfg

fsp_err_t(* cgc_api_t::clocksCfg) (cgc_ctrl_t *const p_ctrl, cgc_clocks_cfg_t const *const p_clock_cfg)

Configure all system clocks.

Implemented as

R_CGC_ClocksCfg()
Parameters

[in] p_ctrl Pointer to instance control
block

[in] p_clock_cfg Pointer to desired
configuration of system
clocks

◆ clockStart

fsp_err_t(* cgc_api_t::clockStart) (cgc_ctrl_t *const p_ctrl, cgc_clock_t clock_source, cgc_pll_cfg_t
const *const p_pll_cfg)

Start a clock.

Implemented as

R_CGC_ClockStart()
Parameters

[in] p_ctrl Pointer to instance control
block

[in] clock_source Clock source to start

[in] p_pll_cfg Pointer to PLL configuration,
can be NULL if clock_source
is not CGC_CLOCK_PLL

◆ clockStop

fsp_err_t(* cgc_api_t::clockStop) (cgc_ctrl_t *const p_ctrl, cgc_clock_t clock_source)

Stop a clock.

Implemented as

R_CGC_ClockStop()
Parameters

[in] p_ctrl Pointer to instance control
block

[in] clock_source The clock source to stop

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 294 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > CGC Interface

◆ clockCheck

fsp_err_t(* cgc_api_t::clockCheck) (cgc_ctrl_t *const p_ctrl, cgc_clock_t clock_source)

Check the stability of the selected clock.

Implemented as

R_CGC_ClockCheck()
Parameters

[in] p_ctrl Pointer to instance control
block

[in] clock_source Which clock source to check
for stability

◆ systemClockSet

fsp_err_t(* cgc_api_t::systemClockSet) (cgc_ctrl_t *const p_ctrl, cgc_clock_t clock_source,
cgc_divider_cfg_t const *const p_divider_cfg)

Set the system clock.

Implemented as

R_CGC_SystemClockSet()
Parameters

[in] p_ctrl Pointer to instance control
block

[in] clock_source Clock source to set as
system clock

[in] p_divider_cfg Pointer to the clock divider
configuration

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 295 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > CGC Interface

◆ systemClockGet

fsp_err_t(* cgc_api_t::systemClockGet) (cgc_ctrl_t *const p_ctrl, cgc_clock_t *const p_clock_source,
cgc_divider_cfg_t *const p_divider_cfg)

Get the system clock information.

Implemented as

R_CGC_SystemClockGet()
Parameters

[in] p_ctrl Pointer to instance control
block

[out] p_clock_source Returns the current system
clock

[out] p_divider_cfg Returns the current system
clock dividers

◆ oscStopDetectEnable

fsp_err_t(* cgc_api_t::oscStopDetectEnable) (cgc_ctrl_t *const p_ctrl)

Enable and optionally register a callback for Main Oscillator stop detection.

Implemented as

R_CGC_OscStopDetectEnable()
Parameters

[in] p_ctrl Pointer to instance control
block

[in] p_callback Callback function that will be
called by the NMI interrupt
when an oscillation stop is
detected. If the second
argument is "false", then
this argument can be NULL.

[in] enable Enable/disable Oscillation
Stop Detection

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 296 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > CGC Interface

◆ oscStopDetectDisable

fsp_err_t(* cgc_api_t::oscStopDetectDisable) (cgc_ctrl_t *const p_ctrl)

Disable Main Oscillator stop detection.

Implemented as

R_CGC_OscStopDetectDisable()
Parameters

[in] p_ctrl Pointer to instance control
block

◆ oscStopStatusClear

fsp_err_t(* cgc_api_t::oscStopStatusClear) (cgc_ctrl_t *const p_ctrl)

Clear the oscillator stop detection flag.

Implemented as

R_CGC_OscStopStatusClear()
Parameters

[in] p_ctrl Pointer to instance control
block

◆ close

fsp_err_t(* cgc_api_t::close) (cgc_ctrl_t *const p_ctrl)

Close the CGC driver.

Implemented as

R_CGC_Close()
Parameters

[in] p_ctrl Pointer to instance control
block

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 297 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > CGC Interface

◆ versionGet

fsp_err_t(* cgc_api_t::versionGet) (fsp_version_t *p_version)

Gets the CGC driver version.

Implemented as

R_CGC_VersionGet()
Parameters

[out] p_version Code and API version used

◆ cgc_instance_t

struct cgc_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

cgc_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

cgc_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

cgc_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ cgc_ctrl_t

typedef void cgc_ctrl_t

CGC control block. Allocate an instance specific control block to pass into the CGC API calls.

Implemented as

cgc_instance_ctrl_t

Enumeration Type Documentation

◆ cgc_event_t

enum cgc_event_t

Events that can trigger a callback function

Enumerator

CGC_EVENT_OSC_STOP_DETECT Oscillator stop detection has caused the
event.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 298 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > CGC Interface

◆ cgc_clock_t

enum cgc_clock_t

System clock source identifiers - The source of ICLK, BCLK, FCLK, PCLKS A-D and UCLK prior to the
system clock divider

Enumerator

CGC_CLOCK_HOCO The high speed on chip oscillator.

CGC_CLOCK_MOCO The middle speed on chip oscillator.

CGC_CLOCK_LOCO The low speed on chip oscillator.

CGC_CLOCK_MAIN_OSC The main oscillator.

CGC_CLOCK_SUBCLOCK The subclock oscillator.

CGC_CLOCK_PLL The PLL oscillator.

◆ cgc_pll_div_t

enum cgc_pll_div_t

PLL divider values

Enumerator

CGC_PLL_DIV_1 PLL divider of 1.

CGC_PLL_DIV_2 PLL divider of 2.

CGC_PLL_DIV_3 PLL divider of 3 (S7, S5 only)

CGC_PLL_DIV_4 PLL divider of 4 (S3 only)

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 299 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > CGC Interface

◆ cgc_pll_mul_t

enum cgc_pll_mul_t

PLL multiplier values

Enumerator

CGC_PLL_MUL_8_0 PLL multiplier of 8.0.

CGC_PLL_MUL_9_0 PLL multiplier of 9.0.

CGC_PLL_MUL_10_0 PLL multiplier of 10.0.

CGC_PLL_MUL_10_5 PLL multiplier of 10.5.

CGC_PLL_MUL_11_0 PLL multiplier of 11.0.

CGC_PLL_MUL_11_5 PLL multiplier of 11.5.

CGC_PLL_MUL_12_0 PLL multiplier of 12.0.

CGC_PLL_MUL_12_5 PLL multiplier of 12.5.

CGC_PLL_MUL_13_0 PLL multiplier of 13.0.

CGC_PLL_MUL_13_5 PLL multiplier of 13.5.

CGC_PLL_MUL_14_0 PLL multiplier of 14.0.

CGC_PLL_MUL_14_5 PLL multiplier of 14.5.

CGC_PLL_MUL_15_0 PLL multiplier of 15.0.

CGC_PLL_MUL_15_5 PLL multiplier of 15.5.

CGC_PLL_MUL_16_0 PLL multiplier of 16.0.

CGC_PLL_MUL_16_5 PLL multiplier of 16.5.

CGC_PLL_MUL_17_0 PLL multiplier of 17.0.

CGC_PLL_MUL_17_5 PLL multiplier of 17.5.

CGC_PLL_MUL_18_0 PLL multiplier of 18.0.

CGC_PLL_MUL_18_5 PLL multiplier of 18.5.

CGC_PLL_MUL_19_0 PLL multiplier of 19.0.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 300 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > CGC Interface

CGC_PLL_MUL_19_5 PLL multiplier of 19.5.

CGC_PLL_MUL_20_0 PLL multiplier of 20.0.

CGC_PLL_MUL_20_5 PLL multiplier of 20.5.

CGC_PLL_MUL_21_0 PLL multiplier of 21.0.

CGC_PLL_MUL_21_5 PLL multiplier of 21.5.

CGC_PLL_MUL_22_0 PLL multiplier of 22.0.

CGC_PLL_MUL_22_5 PLL multiplier of 22.5.

CGC_PLL_MUL_23_0 PLL multiplier of 23.0.

CGC_PLL_MUL_23_5 PLL multiplier of 23.5.

CGC_PLL_MUL_24_0 PLL multiplier of 24.0.

CGC_PLL_MUL_24_5 PLL multiplier of 24.5.

CGC_PLL_MUL_25_0 PLL multiplier of 25.0.

CGC_PLL_MUL_25_5 PLL multiplier of 25.5.

CGC_PLL_MUL_26_0 PLL multiplier of 26.0.

CGC_PLL_MUL_26_5 PLL multiplier of 26.5.

CGC_PLL_MUL_27_0 PLL multiplier of 27.0.

CGC_PLL_MUL_27_5 PLL multiplier of 27.5.

CGC_PLL_MUL_28_0 PLL multiplier of 28.0.

CGC_PLL_MUL_28_5 PLL multiplier of 28.5.

CGC_PLL_MUL_29_0 PLL multiplier of 29.0.

CGC_PLL_MUL_29_5 PLL multiplier of 29.5.

CGC_PLL_MUL_30_0 PLL multiplier of 30.0.

CGC_PLL_MUL_31_0 PLL multiplier of 31.0.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 301 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > CGC Interface

◆ cgc_sys_clock_div_t

enum cgc_sys_clock_div_t

System clock divider vlues - The individually selectable divider of each of the system clocks, ICLK,
BCLK, FCLK, PCLKS A-D.

Enumerator

CGC_SYS_CLOCK_DIV_1 System clock divided by 1.

CGC_SYS_CLOCK_DIV_2 System clock divided by 2.

CGC_SYS_CLOCK_DIV_4 System clock divided by 4.

CGC_SYS_CLOCK_DIV_8 System clock divided by 8.

CGC_SYS_CLOCK_DIV_16 System clock divided by 16.

CGC_SYS_CLOCK_DIV_32 System clock divided by 32.

CGC_SYS_CLOCK_DIV_64 System clock divided by 64.

◆ cgc_usb_clock_div_t

enum cgc_usb_clock_div_t

USB clock divider values

Enumerator

CGC_USB_CLOCK_DIV_3 Divide USB source clock by 3.

CGC_USB_CLOCK_DIV_4 Divide USB source clock by 4.

CGC_USB_CLOCK_DIV_5 Divide USB source clock by 5.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 302 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > CGC Interface

◆ cgc_clock_change_t

enum cgc_clock_change_t

Clock options

Enumerator

CGC_CLOCK_CHANGE_START Start the clock.

CGC_CLOCK_CHANGE_STOP Stop the clock.

CGC_CLOCK_CHANGE_NONE No change to the clock.

4.3.4 Comparator Interface
Interfaces

Detailed Description

Interface for comparators.

Summary
The comparator interface provides standard comparator functionality, including generating an event
when the comparator result changes.

Implemented by: High-Speed Analog Comparator (r_acmphs) Low-Power Analog Comparator
(r_acmplp)

Data Structures

struct comparator_info_t

struct comparator_status_t

struct comparator_callback_args_t

struct comparator_cfg_t

struct comparator_api_t

struct comparator_instance_t

Macros

#define COMPARATOR_API_VERSION_MAJOR

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 303 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Comparator Interface

Typedefs

typedef void comparator_ctrl_t

Enumerations

enum comparator_mode_t

enum comparator_trigger_t

enum comparator_polarity_invert_t

enum comparator_pin_output_t

enum comparator_filter_t

enum comparator_state_t

Data Structure Documentation

◆ comparator_info_t

struct comparator_info_t

Comparator information.

Data Fields

uint32_t min_stabilization_wait_us Minimum stabilization wait time
in microseconds.

◆ comparator_status_t

struct comparator_status_t

Comparator status.

Data Fields

comparator_state_t state Current comparator state.

◆ comparator_callback_args_t

struct comparator_callback_args_t

Callback function parameter data

Data Fields

void const * p_context Placeholder for user data. Set in
comparator_api_t::open
function in comparator_cfg_t.

uint32_t channel The physical hardware channel
that caused the interrupt.

◆ comparator_cfg_t

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 304 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Comparator Interface

struct comparator_cfg_t

User configuration structure, used in open function

Data Fields

uint8_t channel

 Hardware channel used.

comparator_mode_t mode

 Normal or window mode.

comparator_trigger_t trigger

 Trigger setting.

comparator_filter_t filter

 Digital filter clock divisor setting.

comparator_polarity_invert_t invert

 Whether to invert output.

comparator_pin_output_t pin_output

 Whether to include output on output pin.

uint8_t vref_select

 Internal Vref Select.

uint8_t ipl

 Interrupt priority.

IRQn_Type irq

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 305 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Comparator Interface

 NVIC interrupt number.

void(* p_callback)(comparator_callback_args_t *p_args)

void const * p_context

void const * p_extend

 Comparator hardware dependent configuration.

Field Documentation

◆ p_callback

void(* comparator_cfg_t::p_callback) (comparator_callback_args_t *p_args)

Callback called when comparator event occurs.

◆ p_context

void const* comparator_cfg_t::p_context

Placeholder for user data. Passed to the user callback in comparator_callback_args_t.

◆ comparator_api_t

struct comparator_api_t

Comparator functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(comparator_ctrl_t *const p_ctrl, comparator_cfg_t const
*const p_cfg)

fsp_err_t(* outputEnable)(comparator_ctrl_t *const p_ctrl)

fsp_err_t(* infoGet)(comparator_ctrl_t *const p_ctrl, comparator_info_t *const
p_info)

fsp_err_t(* statusGet)(comparator_ctrl_t *const p_ctrl, comparator_status_t
*const p_status)

fsp_err_t(* close)(comparator_ctrl_t *const p_ctrl)

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 306 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Comparator Interface

fsp_err_t(* versionGet)(fsp_version_t *const p_version)

Field Documentation

◆ open

fsp_err_t(* comparator_api_t::open) (comparator_ctrl_t *const p_ctrl, comparator_cfg_t const *const
p_cfg)

Initialize the comparator.

Implemented as

R_ACMPHS_Open()
R_ACMPLP_Open()

Parameters
[in] p_ctrl Pointer to instance control

block

[in] p_cfg Pointer to configuration

◆ outputEnable

fsp_err_t(* comparator_api_t::outputEnable) (comparator_ctrl_t *const p_ctrl)

Start the comparator.

Implemented as

R_ACMPHS_OutputEnable()
R_ACMPLP_OutputEnable()

Parameters
[in] p_ctrl Pointer to instance control

block

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 307 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Comparator Interface

◆ infoGet

fsp_err_t(* comparator_api_t::infoGet) (comparator_ctrl_t *const p_ctrl, comparator_info_t *const
p_info)

Provide information such as the recommended minimum stabilization wait time.

Implemented as

R_ACMPHS_InfoGet()
R_ACMPLP_InfoGet()

Parameters
[in] p_ctrl Pointer to instance control

block

[out] p_info Comparator information
stored here

◆ statusGet

fsp_err_t(* comparator_api_t::statusGet) (comparator_ctrl_t *const p_ctrl, comparator_status_t
*const p_status)

Provide current comparator status.

Implemented as

R_ACMPHS_StatusGet()
R_ACMPLP_StatusGet()

Parameters
[in] p_ctrl Pointer to instance control

block

[out] p_status Status stored here

◆ close

fsp_err_t(* comparator_api_t::close) (comparator_ctrl_t *const p_ctrl)

Stop the comparator.

Implemented as

R_ACMPHS_Close()
R_ACMPLP_Close()

Parameters
[in] p_ctrl Pointer to instance control

block

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 308 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Comparator Interface

◆ versionGet

fsp_err_t(* comparator_api_t::versionGet) (fsp_version_t *const p_version)

Retrieve the API version.

Implemented as

R_ACMPHS_VersionGet()
R_ACMPLP_VersionGet()

Precondition
This function retrieves the API version.

Parameters
[in] p_version Pointer to version structure

◆ comparator_instance_t

struct comparator_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

comparator_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

comparator_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

comparator_api_t const * p_api Pointer to the API structure for
this instance.

Macro Definition Documentation

◆ COMPARATOR_API_VERSION_MAJOR

#define COMPARATOR_API_VERSION_MAJOR

Includes board and MCU related header files. Version Number of API.

Typedef Documentation

◆ comparator_ctrl_t

typedef void comparator_ctrl_t

Comparator control block. Allocate an instance specific control block to pass into the comparator
API calls.

Implemented as

acmphs_instance_ctrl_t
acmplp_instance_ctrl_t

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 309 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Comparator Interface

Enumeration Type Documentation

◆ comparator_mode_t

enum comparator_mode_t

Select whether to invert the polarity of the comparator output.

Enumerator

COMPARATOR_MODE_NORMAL Normal mode.

COMPARATOR_MODE_WINDOW Window mode, not supported by all
implementations.

◆ comparator_trigger_t

enum comparator_trigger_t

Trigger type: rising edge, falling edge, both edges, low level.

Enumerator

COMPARATOR_TRIGGER_RISING Rising edge trigger.

COMPARATOR_TRIGGER_FALLING Falling edge trigger.

COMPARATOR_TRIGGER_BOTH_EDGE Both edges trigger.

◆ comparator_polarity_invert_t

enum comparator_polarity_invert_t

Select whether to invert the polarity of the comparator output.

Enumerator

COMPARATOR_POLARITY_INVERT_OFF Do not invert polarity.

COMPARATOR_POLARITY_INVERT_ON Invert polarity.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 310 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Comparator Interface

◆ comparator_pin_output_t

enum comparator_pin_output_t

Select whether to include the comparator output on the output pin.

Enumerator

COMPARATOR_PIN_OUTPUT_OFF Do not include comparator output on output
pin.

COMPARATOR_PIN_OUTPUT_ON Include comparator output on output pin.

◆ comparator_filter_t

enum comparator_filter_t

Comparator digital filtering sample clock divisor settings.

Enumerator

COMPARATOR_FILTER_OFF Disable debounce filter.

COMPARATOR_FILTER_1 Filter using PCLK divided by 1, not supported
by all implementations.

COMPARATOR_FILTER_8 Filter using PCLK divided by 8.

COMPARATOR_FILTER_16 Filter using PCLK divided by 16, not supported
by all implementations.

COMPARATOR_FILTER_32 Filter using PCLK divided by 32.

◆ comparator_state_t

enum comparator_state_t

Current comparator state.

Enumerator

COMPARATOR_STATE_OUTPUT_LOW VCMP < VREF if polarity is not inverted, VCMP
> VREF if inverted.

COMPARATOR_STATE_OUTPUT_HIGH VCMP > VREF if polarity is not inverted, VCMP
< VREF if inverted.

COMPARATOR_STATE_OUTPUT_DISABLED comparator_api_t::outputEnable() has not been
called

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 311 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Comparator Interface

4.3.5 CRC Interface
Interfaces

Detailed Description

Interface for cyclic redundancy checking.

Summary
The CRC (Cyclic Redundancy Check) calculator generates CRC codes using five different polynomials
including 8 bit, 16 bit, and 32 bit variations. Calculation can be performed by sending data to the
block using the CPU or by snooping on read or write activity on one of 10 SCI channels.

Implemented by:

Cyclic Redundancy Check (CRC) Calculator (r_crc)

Data Structures

struct crc_cfg_t

struct crc_api_t

struct crc_instance_t

Typedefs

typedef void crc_ctrl_t

Enumerations

enum crc_polynomial_t

enum crc_bit_order_t

enum crc_snoop_direction_t

Data Structure Documentation

◆ crc_cfg_t

struct crc_cfg_t

User configuration structure, used in open function

Data Fields

crc_polynomial_t polynomial CRC Generating Polynomial
Switching (GPS)

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 312 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > CRC Interface

crc_bit_order_t bit_order CRC Calculation Switching
(LMS)

crc_snoop_address_t snoop_address Register Snoop Address
(CRCSA)

void const * p_extend CRC Hardware Dependent
Configuration.

◆ crc_api_t

struct crc_api_t

CRC driver structure. General CRC functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(crc_ctrl_t *const p_ctrl, crc_cfg_t const *const p_cfg)

fsp_err_t(* close)(crc_ctrl_t *const p_ctrl)

fsp_err_t(* crcResultGet)(crc_ctrl_t *const p_ctrl, uint32_t *crc_result)

fsp_err_t(* snoopEnable)(crc_ctrl_t *const p_ctrl, uint32_t crc_seed)

fsp_err_t(* snoopDisable)(crc_ctrl_t *const p_ctrl)

fsp_err_t(* calculate)(crc_ctrl_t *const p_ctrl, crc_input_t *const p_crc_input,
uint32_t *p_crc_result)

fsp_err_t(* versionGet)(fsp_version_t *version)

Field Documentation

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 313 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > CRC Interface

◆ open

fsp_err_t(* crc_api_t::open) (crc_ctrl_t *const p_ctrl, crc_cfg_t const *const p_cfg)

Open the CRC driver module.

Implemented as

R_CRC_Open()
Parameters

[in] p_ctrl Pointer to CRC device
handle.

[in] p_cfg Pointer to a configuration
structure.

◆ close

fsp_err_t(* crc_api_t::close) (crc_ctrl_t *const p_ctrl)

Close the CRC module driver

Implemented as

R_CRC_Close()
Parameters

[in] p_ctrl Pointer to crc device handle

Return values
FSP_SUCCESS Configuration was successful.

◆ crcResultGet

fsp_err_t(* crc_api_t::crcResultGet) (crc_ctrl_t *const p_ctrl, uint32_t *crc_result)

Return the current calculated value.

Implemented as

R_CRC_CalculatedValueGet()
Parameters

[in] p_ctrl Pointer to CRC device
handle.

[out] crc_result The calculated value from
the last CRC calculation.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 314 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > CRC Interface

◆ snoopEnable

fsp_err_t(* crc_api_t::snoopEnable) (crc_ctrl_t *const p_ctrl, uint32_t crc_seed)

Configure and Enable snooping.

Implemented as

R_CRC_SnoopEnable()
Parameters

[in] p_ctrl Pointer to CRC device
handle.

[in] crc_seed CRC seed.

◆ snoopDisable

fsp_err_t(* crc_api_t::snoopDisable) (crc_ctrl_t *const p_ctrl)

Disable snooping.

Implemented as

R_CRC_SnoopDisbale()
Parameters

[in] p_ctrl Pointer to CRC device
handle.

◆ calculate

fsp_err_t(* crc_api_t::calculate) (crc_ctrl_t *const p_ctrl, crc_input_t *const p_crc_input, uint32_t
*p_crc_result)

Perform a CRC calculation on a block of data.

Implemented as

R_CRC_Calculate()
Parameters

[in] p_ctrl Pointer to crc device handle.

[in] p_crc_input A pointer to structure for
CRC inputs

[out] crc_result The calculated value of the
CRC calculation.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 315 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > CRC Interface

◆ versionGet

fsp_err_t(* crc_api_t::versionGet) (fsp_version_t *version)

Get the driver version based on compile time macros.

Implemented as

R_CRC_VersionGet()

◆ crc_instance_t

struct crc_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

crc_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

crc_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

crc_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ crc_ctrl_t

typedef void crc_ctrl_t

CRC control block. Allocate an instance specific control block to pass into the CRC API calls.

Implemented as

crc_instance_ctrl_t

Enumeration Type Documentation

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 316 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > CRC Interface

◆ crc_polynomial_t

enum crc_polynomial_t

CRC Generating Polynomial Switching (GPS).

Enumerator

CRC_POLYNOMIAL_CRC_8 8-bit CRC-8 (X^8 + X^2 + X + 1)

CRC_POLYNOMIAL_CRC_16 16-bit CRC-16 (X^16 + X^15 + X^2 + 1)

CRC_POLYNOMIAL_CRC_CCITT 16-bit CRC-CCITT (X^16 + X^12 + X^5 + 1)

CRC_POLYNOMIAL_CRC_32 32-bit CRC-32 (X^32 + X^26 + X^23 + X^22
+ X^16 + X^12 + X^11 + X^10 + X^8 +
X^7 + X^5 + X^4 + X^2 + X + 1)

CRC_POLYNOMIAL_CRC_32C 32-bit CRC-32C (X^32 + X^28 + X^27 +
X^26 + X^25 + X^23 + X^22 + X^20 +
X^19 + X^18 + X^14 + X^13 + X^11 +
X^10 + X^9 + X^8 + X^6 + 1)

◆ crc_bit_order_t

enum crc_bit_order_t

CRC Calculation Switching (LMS)

Enumerator

CRC_BIT_ORDER_LMS_LSB Generates CRC for LSB first communication.

CRC_BIT_ORDER_LMS_MSB Generates CRC for MSB first communication.

◆ crc_snoop_direction_t

enum crc_snoop_direction_t

Snoop-On-Write/Read Switch (CRCSWR)

Enumerator

CRC_SNOOP_DIRECTION_RECEIVE Snoop-on-read.

CRC_SNOOP_DIRECTION_TRANSMIT Snoop-on-write.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 317 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > CTSU Interface

4.3.6 CTSU Interface
Interfaces

Detailed Description

Interface for Capacitive Touch Sensing Unit (CTSU) functions.

Summary
The CTSU interface provides CTSU functionality.

The CTSU interface can be implemented by:

Capacitive Touch Sensing Unit (r_ctsu)

Data Structures

struct ctsu_callback_args_t

struct ctsu_element_cfg_t

struct ctsu_cfg_t

struct ctsu_api_t

struct ctsu_instance_t

Typedefs

typedef void ctsu_ctrl_t

Enumerations

enum ctsu_event_t

enum ctsu_cap_t

enum ctsu_txvsel_t

enum ctsu_txvsel2_t

enum ctsu_atune0_t

enum ctsu_atune1_t

enum ctsu_atune12_t

enum ctsu_clk_t

enum ctsu_md_t

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 318 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > CTSU Interface

enum ctsu_posel_t

enum ctsu_ssdiv_t

Data Structure Documentation

◆ ctsu_callback_args_t

struct ctsu_callback_args_t

Callback function parameter data

Data Fields

ctsu_event_t event The event can be used to
identify what caused the
callback.

void const * p_context Placeholder for user data. Set in
CTSU_api_t::open function in
ctsu_cfg_t.

◆ ctsu_element_cfg_t

struct ctsu_element_cfg_t

CTSU Configuration parameters. Element Configuration

Data Fields

ctsu_ssdiv_t ssdiv CTSU Spectrum Diffusion
Frequency Division Setting
(CTSU Only)

uint16_t so CTSU Sensor Offset Adjustment.

uint8_t snum CTSU Measurement Count
Setting.

uint8_t sdpa CTSU Base Clock Setting.

◆ ctsu_cfg_t

struct ctsu_cfg_t

User configuration structure, used in open function

Data Fields

ctsu_cap_t cap

 CTSU Measurement Operation Start Trigger Select.

ctsu_txvsel_t txvsel

 CTSU Transmission Power Supply Select.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 319 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > CTSU Interface

ctsu_txvsel2_t txvsel2

 CTSU Transmission Power Supply Select 2 (CTSU2 Only)

ctsu_atune0_t atune0

 CTSU Power Supply Operating Mode Setting.

ctsu_atune1_t atune1

 CTSU Power Supply Capacity Adjustment (CTSU Only)

ctsu_atune12_t atune12

 CTSU Power Supply Capacity Adjustment (CTSU2 Only)

ctsu_clk_t clk

 CTSU Operating Clock Select.

ctsu_md_t md

 CTSU Measurement Mode Select.

ctsu_posel_t posel

 CTSU Non-Measured Channel Output Select (CTSU2 Only)

uint8_t ctsuchac0

 TS00-TS07 enable mask.

uint8_t ctsuchac1

 TS08-TS15 enable mask.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 320 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > CTSU Interface

uint8_t ctsuchac2

 TS16-TS23 enable mask.

uint8_t ctsuchac3

 TS24-TS31 enable mask.

uint8_t ctsuchac4

 TS32-TS39 enable mask.

uint8_t ctsuchtrc0

 TS00-TS07 mutual-tx mask.

uint8_t ctsuchtrc1

 TS08-TS15 mutual-tx mask.

uint8_t ctsuchtrc2

 TS16-TS23 mutual-tx mask.

uint8_t ctsuchtrc3

 TS24-TS31 mutual-tx mask.

uint8_t ctsuchtrc4

 TS32-TS39 mutual-tx mask.

ctsu_element_cfg_t const * p_elements

 Pointer to elements configuration array.

uint8_t num_rx

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 321 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > CTSU Interface

 Number of receive terminals.

uint8_t num_tx

 Number of transmit terminals.

uint16_t threshold_3freq

 CTSU majority threshold at three frequency (CTSU2 Only)

uint16_t num_moving_average

 Number of moving average for measurement data.

bool tunning_enable

 Initial offset tuning flag.

uint8_t number

 Configuration number for QE monitor.

void(* p_callback)(ctsu_callback_args_t *p_args)

 Callback provided when CTSUFN ISR occurs.

transfer_instance_t const * p_transfer_tx

 DTC instance for transmit at CTSUWR. Set to NULL if unused.

transfer_instance_t const * p_transfer_rx

 DTC instance for receive at CTSURD. Set to NULL if unused.

IRQn_Type write_irq

 CTSU_CTSUWR interrupt vector.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 322 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > CTSU Interface

IRQn_Type read_irq

 CTSU_CTSURD interrupt vector.

IRQn_Type end_irq

 CTSU_CTSUFN interrupt vector.

void const * p_context

 User defined context passed into callback function.

void const * p_extend

 Pointer to extended configuration by instance of interface.

◆ ctsu_api_t

struct ctsu_api_t

Functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(ctsu_ctrl_t *const p_ctrl, ctsu_cfg_t const *const p_cfg)

fsp_err_t(* scanStart)(ctsu_ctrl_t *const p_ctrl)

fsp_err_t(* dataGet)(ctsu_ctrl_t *const p_ctrl, uint16_t *p_data)

fsp_err_t(* close)(ctsu_ctrl_t *const p_ctrl)

fsp_err_t(* versionGet)(fsp_version_t *const p_data)

Field Documentation

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 323 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > CTSU Interface

◆ open

fsp_err_t(* ctsu_api_t::open) (ctsu_ctrl_t *const p_ctrl, ctsu_cfg_t const *const p_cfg)

Open driver.

Implemented as

R_CTSU_Open()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to pin configuration
structure.

◆ scanStart

fsp_err_t(* ctsu_api_t::scanStart) (ctsu_ctrl_t *const p_ctrl)

Scan start.

Implemented as

R_CTSU_ScanStart()
Parameters

[in] p_ctrl Pointer to control structure.

◆ dataGet

fsp_err_t(* ctsu_api_t::dataGet) (ctsu_ctrl_t *const p_ctrl, uint16_t *p_data)

Data get.

Implemented as

R_CTSU_DataGet()
Parameters

[in] p_ctrl Pointer to control structure.

[out] p_data Pointer to get data array.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 324 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > CTSU Interface

◆ close

fsp_err_t(* ctsu_api_t::close) (ctsu_ctrl_t *const p_ctrl)

Close driver.

Implemented as

R_CTSU_Close()
Parameters

[in] p_ctrl Pointer to control structure.

◆ versionGet

fsp_err_t(* ctsu_api_t::versionGet) (fsp_version_t *const p_data)

Return the version of the driver.

Implemented as

R_CTSU_VersionGet()
Parameters

[in] p_ctrl Pointer to control structure.

[out] p_data Memory address to return
version information to.

◆ ctsu_instance_t

struct ctsu_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

ctsu_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

ctsu_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

ctsu_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 325 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > CTSU Interface

◆ ctsu_ctrl_t

typedef void ctsu_ctrl_t

CTSU Control block. Allocate an instance specific control block to pass into the API calls.

Implemented as

ctsu_instance_ctrl_t

Enumeration Type Documentation

◆ ctsu_event_t

enum ctsu_event_t

CTSU Events for callback function

Enumerator

CTSU_EVENT_SCAN_COMPLETE Normal end.

CTSU_EVENT_OVERFLOW Sensor counter overflow (CTSUST.CTSUSOVF
set)

CTSU_EVENT_ICOMP Abnormal TSCAP voltage
(CTSUERRS.CTSUICOMP set)

CTSU_EVENT_ICOMP1 Abnormal sensor current (CTSUSR.ICOMP1 set)

◆ ctsu_cap_t

enum ctsu_cap_t

CTSU Measurement Operation Start Trigger Select

Enumerator

CTSU_CAP_SOFTWARE Scan started by software trigger.

CTSU_CAP_EXTERNAL Scan started by external trigger, DTC use only.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 326 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > CTSU Interface

◆ ctsu_txvsel_t

enum ctsu_txvsel_t

CTSU Transmission Power Supply Select

Enumerator

CTSU_TXVSEL_VCC VCC selected.

CTSU_TXVSEL_INTERNAL_POWER Internal logic power supply selected.

◆ ctsu_txvsel2_t

enum ctsu_txvsel2_t

CTSU Transmission Power Supply Select 2 (CTSU2 Only)

Enumerator

CTSU_TXVSEL_MODE Follow TXVSEL setting.

CTSU_TXVSEL_VCC_PRIVATE VCC private selected.

◆ ctsu_atune0_t

enum ctsu_atune0_t

CTSU Power Supply Operating Mode Setting

Enumerator

CTSU_ATUNE0_NORMAL Normal operating mode.

CTSU_ATUNE0_LOW Low-voltage operating mode.

◆ ctsu_atune1_t

enum ctsu_atune1_t

CTSU Power Supply Capacity Adjustment (CTSU Only)

Enumerator

CTSU_ATUNE1_NORMAL Normal output(40uA)

CTSU_ATUNE1_HIGH High-current output(80uA)

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 327 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > CTSU Interface

◆ ctsu_atune12_t

enum ctsu_atune12_t

CTSU Power Supply Capacity Adjustment (CTSU2 Only)

Enumerator

CTSU_ATUNE12_80UA High-current output(80uA)

CTSU_ATUNE12_40UA Normal output(40uA)

CTSU_ATUNE12_20UA Low-current output(20uA)

CTSU_ATUNE12_160UA Very high-current output(160uA)

◆ ctsu_clk_t

enum ctsu_clk_t

CTSU Operating Clock Select

Enumerator

CTSU_CLK_DIV_1 PCLKB.

CTSU_CLK_DIV_2 PCLKB divided by 2.

CTSU_CLK_DIV_4 PCLKB divided by 4.

CTSU_CLK_DIV_8 PCLKB divided by 8 (CTSU2 Only)

◆ ctsu_md_t

enum ctsu_md_t

CTSU Measurement Mode Select

Enumerator

CTSU_MODE_SELF_MULTI_SCAN Self-capacitance multi scan mode.

CTSU_MODE_MUTUAL_FULL_SCAN Mutual capacitance full scan mode.

CTSU_MODE_MUTUAL_CFC_SCAN Mutual capacitance cfc scan mode (CTSU2
Only)

CTSU_MODE_CURRENT_SCAN Current scan mode (CTSU2 Only)

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 328 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > CTSU Interface

◆ ctsu_posel_t

enum ctsu_posel_t

CTSU Non-Measured Channel Output Select (CTSU2 Only)

Enumerator

CTSU_POSEL_LOW_GPIO Output low through GPIO.

CTSU_POSEL_HI_Z Hi-Z.

CTSU_POSEL_LOW Output low through the power setting by the
TXVSEL[1:0] bits.

CTSU_POSEL_SAME_PULSE Same phase pulse output as transmission
channel through the power setting by the
TXVSEL[1:0] bits.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 329 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > CTSU Interface

◆ ctsu_ssdiv_t

enum ctsu_ssdiv_t

CTSU Spectrum Diffusion Frequency Division Setting (CTSU Only)

Enumerator

CTSU_SSDIV_4000 4.00 <= Base clock frequency(MHz)

CTSU_SSDIV_2000 2.00 <= Base clock frequency(MHz) < 4.00

CTSU_SSDIV_1330 1.33 <= Base clock frequency(MHz) < 2.00

CTSU_SSDIV_1000 1.00 <= Base clock frequency(MHz) < 1.33

CTSU_SSDIV_0800 0.80 <= Base clock frequency(MHz) < 1.00

CTSU_SSDIV_0670 0.67 <= Base clock frequency(MHz) < 0.80

CTSU_SSDIV_0570 0.57 <= Base clock frequency(MHz) < 0.67

CTSU_SSDIV_0500 0.50 <= Base clock frequency(MHz) < 0.57

CTSU_SSDIV_0440 0.44 <= Base clock frequency(MHz) < 0.50

CTSU_SSDIV_0400 0.40 <= Base clock frequency(MHz) < 0.44

CTSU_SSDIV_0360 0.36 <= Base clock frequency(MHz) < 0.40

CTSU_SSDIV_0330 0.33 <= Base clock frequency(MHz) < 0.36

CTSU_SSDIV_0310 0.31 <= Base clock frequency(MHz) < 0.33

CTSU_SSDIV_0290 0.29 <= Base clock frequency(MHz) < 0.31

CTSU_SSDIV_0270 0.27 <= Base clock frequency(MHz) < 0.29

CTSU_SSDIV_0000 0.00 <= Base clock frequency(MHz) < 0.27

4.3.7 DAC Interface
Interfaces

Detailed Description

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 330 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > DAC Interface

Interface for D/A converters.

Summary
The DAC interface provides standard Digital/Analog Converter functionality. A DAC application writes
digital sample data to the device and generates analog output on the DAC output pin.

Implemented by: Digital to Analog Converter (r_dac)

Data Structures

struct dac_info_t

struct dac_cfg_t

struct dac_api_t

struct dac_instance_t

Typedefs

typedef void dac_ctrl_t

Enumerations

enum dac_data_format_t

Data Structure Documentation

◆ dac_info_t

struct dac_info_t

DAC information structure to store various information for a DAC

Data Fields

uint8_t bit_width Resolution of the DAC.

◆ dac_cfg_t

struct dac_cfg_t

DAC Open API configuration parameter

Data Fields

uint8_t channel ID associated with this DAC
channel.

bool ad_da_synchronized AD/DA synchronization.

dac_data_format_t data_format Data format.

bool output_amplifier_enabled Output amplifier enable.

void const * p_extend

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 331 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > DAC Interface

◆ dac_api_t

struct dac_api_t

DAC driver structure. General DAC functions implemented at the HAL layer follow this API.

Data Fields

fsp_err_t(* open)(dac_ctrl_t *p_ctrl, dac_cfg_t const *const p_cfg)

fsp_err_t(* close)(dac_ctrl_t *p_ctrl)

fsp_err_t(* write)(dac_ctrl_t *p_ctrl, uint16_t value)

fsp_err_t(* start)(dac_ctrl_t *p_ctrl)

fsp_err_t(* stop)(dac_ctrl_t *p_ctrl)

fsp_err_t(* versionGet)(fsp_version_t *p_version)

fsp_err_t(* infoGet)(dac_info_t *const p_info)

Field Documentation

◆ open

fsp_err_t(* dac_api_t::open) (dac_ctrl_t *p_ctrl, dac_cfg_t const *const p_cfg)

Initial configuration.

Implemented as

R_DAC_Open()
R_DAC8_Open()

Parameters
[in] p_ctrl Pointer to control block.

Must be declared by user.
Elements set here.

[in] p_cfg Pointer to configuration
structure. All elements of
this structure must be set by
user.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 332 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > DAC Interface

◆ close

fsp_err_t(* dac_api_t::close) (dac_ctrl_t *p_ctrl)

Close the D/A Converter.

Implemented as

R_DAC_Close()
R_DAC8_Close()

Parameters
[in] p_ctrl Control block set in

dac_api_t::open call for this
timer.

◆ write

fsp_err_t(* dac_api_t::write) (dac_ctrl_t *p_ctrl, uint16_t value)

Write sample value to the D/A Converter.

Implemented as

R_DAC_Write()
R_DAC8_Write()

Parameters
[in] p_ctrl Control block set in

dac_api_t::open call for this
timer.

[in] value Sample value to be written
to the D/A Converter.

◆ start

fsp_err_t(* dac_api_t::start) (dac_ctrl_t *p_ctrl)

Start the D/A Converter if it has not been started yet.

Implemented as

R_DAC_Start()
R_DAC8_Start()

Parameters
[in] p_ctrl Control block set in

dac_api_t::open call for this
timer.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 333 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > DAC Interface

◆ stop

fsp_err_t(* dac_api_t::stop) (dac_ctrl_t *p_ctrl)

Stop the D/A Converter if the converter is running.

Implemented as

R_DAC_Stop()
R_DAC8_Stop()

Parameters
[in] p_ctrl Control block set in

dac_api_t::open call for this
timer.

◆ versionGet

fsp_err_t(* dac_api_t::versionGet) (fsp_version_t *p_version)

Get version and store it in provided pointer p_version.

Implemented as

R_DAC_VersionGet()
R_DAC8_VersionGet()

Parameters
[out] p_version Code and API version used.

◆ infoGet

fsp_err_t(* dac_api_t::infoGet) (dac_info_t *const p_info)

Get information about DAC Resolution and store it in provided pointer p_info.

Implemented as

R_DAC_InfoGet()
R_DAC8_InfoGet()

Parameters
[out] p_info Collection of information for

this DAC.

◆ dac_instance_t

struct dac_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

dac_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 334 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > DAC Interface

dac_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

dac_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ dac_ctrl_t

typedef void dac_ctrl_t

DAC control block. Allocate an instance specific control block to pass into the DAC API calls.

Implemented as

dac_instance_ctrl_t

Enumeration Type Documentation

◆ dac_data_format_t

enum dac_data_format_t

DAC Open API data format settings.

Enumerator

DAC_DATA_FORMAT_FLUSH_RIGHT LSB of data is flush to the right leaving the top
4 bits unused.

DAC_DATA_FORMAT_FLUSH_LEFT MSB of data is flush to the left leaving the
bottom 4 bits unused.

4.3.8 Display Interface
Interfaces

Detailed Description

Interface for LCD panel displays.

Summary
The display interface provides standard display functionality:

Signal timing configuration for LCD panels with RGB interface.
Dot clock source selection (internal or external) and frequency divider.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 335 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Display Interface

Blending of multiple graphics layers on the background screen.
Color correction (brightness/configuration/gamma correction).
Interrupts and callback function.

Implemented by: Graphics LCD Controller (r_glcdc)

Data Structures

struct display_timing_t

struct display_color_t

struct display_coordinate_t

struct display_brightness_t

struct display_contrast_t

struct display_correction_t

struct gamma_correction_t

struct display_gamma_correction_t

struct display_clut_t

struct display_input_cfg_t

struct display_output_cfg_t

struct display_layer_t

struct display_callback_args_t

struct display_cfg_t

struct display_runtime_cfg_t

struct display_clut_cfg_t

struct display_status_t

struct display_api_t

struct display_instance_t

Typedefs

typedef void display_ctrl_t

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 336 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Display Interface

Enumerations

enum display_frame_layer_t

enum display_state_t

enum display_event_t

enum display_in_format_t

enum display_out_format_t

enum display_endian_t

enum display_color_order_t

enum display_signal_polarity_t

enum display_sync_edge_t

enum display_fade_control_t

enum display_fade_status_t

Data Structure Documentation

◆ display_timing_t

struct display_timing_t

Display signal timing setting

Data Fields

uint16_t total_cyc Total cycles in one line or total
lines in one frame.

uint16_t display_cyc Active video cycles or lines.

uint16_t back_porch Back porch cycles or lines.

uint16_t sync_width Sync signal asserting width.

display_signal_polarity_t sync_polarity Sync signal polarity.

◆ display_color_t

struct display_color_t

RGB Color setting

◆ display_coordinate_t

struct display_coordinate_t

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 337 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Display Interface

Contrast (gain) correction setting

Data Fields

int16_t x Coordinate X, this allows to set
signed value.

int16_t y Coordinate Y, this allows to set
signed value.

◆ display_brightness_t

struct display_brightness_t

Brightness (DC) correction setting

Data Fields

bool enable Brightness Correction On/Off.

uint16_t r Brightness (DC) adjustment for
R channel.

uint16_t g Brightness (DC) adjustment for
G channel.

uint16_t b Brightness (DC) adjustment for
B channel.

◆ display_contrast_t

struct display_contrast_t

Contrast (gain) correction setting

Data Fields

bool enable Contrast Correction On/Off.

uint8_t r Contrast (gain) adjustment for
R channel.

uint8_t g Contrast (gain) adjustment for
G channel.

uint8_t b Contrast (gain) adjustment for
B channel.

◆ display_correction_t

struct display_correction_t

Color correction setting

Data Fields

display_brightness_t brightness Brightness.

display_contrast_t contrast Contrast.

◆ gamma_correction_t

struct gamma_correction_t

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 338 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Display Interface

Gamma correction setting for each color

Data Fields

bool enable Gamma Correction On/Off.

uint16_t * gain Gain adjustment.

uint16_t * threshold Start threshold.

◆ display_gamma_correction_t

struct display_gamma_correction_t

Gamma correction setting

Data Fields

gamma_correction_t r Gamma correction for R
channel.

gamma_correction_t g Gamma correction for G
channel.

gamma_correction_t b Gamma correction for B
channel.

◆ display_clut_t

struct display_clut_t

CLUT setting

Data Fields

uint32_t color_num The number of colors in CLUT.

const uint32_t * p_clut Address of the area storing the
CLUT data (in ARGB8888
format)

◆ display_input_cfg_t

struct display_input_cfg_t

Graphics plane input configuration structure

Data Fields

uint32_t * p_base Base address to the frame
buffer.

uint16_t hsize Horizontal pixel size in a line.

uint16_t vsize Vertical pixel size in a frame.

uint32_t hstride Memory stride (bytes) in a line.

display_in_format_t format Input format setting.

bool line_descending_enable Line descending enable.

bool lines_repeat_enable Line repeat enable.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 339 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Display Interface

uint16_t lines_repeat_times Expected number of line
repeating.

◆ display_output_cfg_t

struct display_output_cfg_t

Display output configuration structure

Data Fields

display_timing_t htiming Horizontal display cycle setting.

display_timing_t vtiming Vertical display cycle setting.

display_out_format_t format Output format setting.

display_endian_t endian Bit order of output data.

display_color_order_t color_order Color order in pixel.

display_signal_polarity_t data_enable_polarity Data Enable signal polarity.

display_sync_edge_t sync_edge Signal sync edge selection.

display_color_t bg_color Background color.

display_brightness_t brightness Brightness setting.

display_contrast_t contrast Contrast setting.

display_gamma_correction_t * p_gamma_correction Pointer to gamma correction
setting.

bool dithering_on Dithering on/off.

◆ display_layer_t

struct display_layer_t

Graphics layer blend setup parameter structure

Data Fields

display_coordinate_t coordinate Blending location (starting point
of image)

display_color_t bg_color Color outside region.

display_fade_control_t fade_control Layer fade-in/out control on/off.

uint8_t fade_speed Layer fade-in/out frame rate.

◆ display_callback_args_t

struct display_callback_args_t

Display callback parameter definition

Data Fields

display_event_t event Event code.

void const * p_context Context provided to user during

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 340 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Display Interface

callback.

◆ display_cfg_t

struct display_cfg_t

Display main configuration structure

Data Fields

display_input_cfg_t input [2]

 Graphics input frame setting. More...

display_output_cfg_t output

 Graphics output frame setting.

display_layer_t layer [2]

 Graphics layer blend setting.

uint8_t line_detect_ipl

 Line detect interrupt priority.

uint8_t underflow_1_ipl

 Underflow 1 interrupt priority.

uint8_t underflow_2_ipl

 Underflow 2 interrupt priority.

IRQn_Type line_detect_irq

 Line detect interrupt vector.

IRQn_Type underflow_1_irq

 Underflow 1 interrupt vector.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 341 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Display Interface

IRQn_Type underflow_2_irq

 Underflow 2 interrupt vector.

void(* p_callback)(display_callback_args_t *p_args)

 Pointer to callback function. More...

void const * p_context

 User defined context passed into callback function.

void const * p_extend

 Display hardware dependent configuration. More...

Field Documentation

◆ input

display_input_cfg_t display_cfg_t::input[2]

Graphics input frame setting.

Generic configuration for display devices

◆ p_callback

void(* display_cfg_t::p_callback) (display_callback_args_t *p_args)

Pointer to callback function.

Configuration for display event processing

◆ p_extend

void const* display_cfg_t::p_extend

Display hardware dependent configuration.

Pointer to display peripheral specific configuration

◆ display_runtime_cfg_t

struct display_runtime_cfg_t

Display main configuration structure

Data Fields

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 342 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Display Interface

display_input_cfg_t input Graphics input frame setting.

Generic configuration for
display devices

display_layer_t layer Graphics layer alpha blending
setting.

◆ display_clut_cfg_t

struct display_clut_cfg_t

Display CLUT configuration structure

Data Fields

uint32_t * p_base Pointer to CLUT source data.

uint16_t start Beginning of CLUT entry to be
updated.

uint16_t size Size of CLUT entry to be
updated.

◆ display_status_t

struct display_status_t

Display Status

Data Fields

display_state_t state Status of GLCDC module.

display_fade_status_t fade_status[
DISPLAY_FRAME_LAYER_2+1]

Status of fade-in/fade-out
status.

◆ display_api_t

struct display_api_t

Shared Interface definition for display peripheral

Data Fields

fsp_err_t(* open)(display_ctrl_t *const p_ctrl, display_cfg_t const *const p_cfg)

fsp_err_t(* close)(display_ctrl_t *const p_ctrl)

fsp_err_t(* start)(display_ctrl_t *const p_ctrl)

fsp_err_t(* stop)(display_ctrl_t *const p_ctrl)

fsp_err_t(* layerChange)(display_ctrl_t const *const p_ctrl,
display_runtime_cfg_t const *const p_cfg, display_frame_layer_t
frame)

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 343 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Display Interface

fsp_err_t(* bufferChange)(display_ctrl_t const *const p_ctrl, uint8_t *const
framebuffer, display_frame_layer_t frame)

fsp_err_t(* correction)(display_ctrl_t const *const p_ctrl, display_correction_t
const *const p_param)

fsp_err_t(* clut)(display_ctrl_t const *const p_ctrl, display_clut_cfg_t const
*const p_clut_cfg, display_frame_layer_t frame)

fsp_err_t(* statusGet)(display_ctrl_t const *const p_ctrl, display_status_t *const
p_status)

fsp_err_t(* versionGet)(fsp_version_t *p_version)

Field Documentation

◆ open

fsp_err_t(* display_api_t::open) (display_ctrl_t *const p_ctrl, display_cfg_t const *const p_cfg)

Open display device.

Implemented as

R_GLCDC_Open()
Parameters

[in,out] p_ctrl Pointer to display interface
control block. Must be
declared by user. Value set
here.

[in] p_cfg Pointer to display
configuration structure. All
elements of this structure
must be set by user.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 344 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Display Interface

◆ close

fsp_err_t(* display_api_t::close) (display_ctrl_t *const p_ctrl)

Close display device.

Implemented as

R_GLCDC_Close()
Parameters

[in] p_ctrl Pointer to display interface
control block.

◆ start

fsp_err_t(* display_api_t::start) (display_ctrl_t *const p_ctrl)

Display start.

Implemented as

R_GLCDC_Start()
Parameters

[in] p_ctrl Pointer to display interface
control block.

◆ stop

fsp_err_t(* display_api_t::stop) (display_ctrl_t *const p_ctrl)

Display stop.

Implemented as

R_GLCDC_Stop()
Parameters

[in] p_ctrl Pointer to display interface
control block.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 345 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Display Interface

◆ layerChange

fsp_err_t(* display_api_t::layerChange) (display_ctrl_t const *const p_ctrl, display_runtime_cfg_t
const *const p_cfg, display_frame_layer_t frame)

Change layer parameters at runtime.

Implemented as

R_GLCDC_LayerChange()
Parameters

[in] p_ctrl Pointer to display interface
control block.

[in] p_cfg Pointer to run-time layer
configuration structure.

[in] frame Number of graphic frames.

◆ bufferChange

fsp_err_t(* display_api_t::bufferChange) (display_ctrl_t const *const p_ctrl, uint8_t *const
framebuffer, display_frame_layer_t frame)

Change layer framebuffer pointer.

Implemented as

R_GLCDC_BufferChange()
Parameters

[in] p_ctrl Pointer to display interface
control block.

[in] framebuffer Pointer to desired
framebuffer.

[in] frame Number of graphic frames.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 346 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Display Interface

◆ correction

fsp_err_t(* display_api_t::correction) (display_ctrl_t const *const p_ctrl, display_correction_t const
*const p_param)

Color correction.

Implemented as

R_GLCDC_ColorCorrection()
Parameters

[in] p_ctrl Pointer to display interface
control block.

[in] param Pointer to color correction
configuration structure.

◆ clut

fsp_err_t(* display_api_t::clut) (display_ctrl_t const *const p_ctrl, display_clut_cfg_t const *const
p_clut_cfg, display_frame_layer_t frame)

Set CLUT for display device.

Implemented as

R_GLCDC_ClutUpdate()
Parameters

[in] p_ctrl Pointer to display interface
control block.

[in] p_clut_cfg Pointer to CLUT
configuration structure.

[in] frame Number of frame buffer
corresponding to the CLUT.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 347 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Display Interface

◆ statusGet

fsp_err_t(* display_api_t::statusGet) (display_ctrl_t const *const p_ctrl, display_status_t *const
p_status)

Get status for display device.

Implemented as

R_GLCDC_StatusGet()
Parameters

[in] p_ctrl Pointer to display interface
control block.

[in] status Pointer to display interface
status structure.

◆ versionGet

fsp_err_t(* display_api_t::versionGet) (fsp_version_t *p_version)

Get version.

Implemented as

R_GLCDC_VersionGet()
Parameters

[in] p_version Pointer to the memory to
store the version
information.

◆ display_instance_t

struct display_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

display_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

display_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

display_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 348 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Display Interface

◆ display_ctrl_t

typedef void display_ctrl_t

Display control block. Allocate an instance specific control block to pass into the display API calls.

Implemented as

glcdc_instance_ctrl_tDisplay control block

Enumeration Type Documentation

◆ display_frame_layer_t

enum display_frame_layer_t

Display frame number

Enumerator

DISPLAY_FRAME_LAYER_1 Frame layer 1.

DISPLAY_FRAME_LAYER_2 Frame layer 2.

◆ display_state_t

enum display_state_t

Display interface operation state

Enumerator

DISPLAY_STATE_CLOSED Display closed.

DISPLAY_STATE_OPENED Display opened.

DISPLAY_STATE_DISPLAYING Displaying.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 349 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Display Interface

◆ display_event_t

enum display_event_t

Display event codes

Enumerator

DISPLAY_EVENT_GR1_UNDERFLOW Graphics frame1 underflow occurs.

DISPLAY_EVENT_GR2_UNDERFLOW Graphics frame2 underflow occurs.

DISPLAY_EVENT_LINE_DETECTION Designated line is processed.

◆ display_in_format_t

enum display_in_format_t

Input format setting

Enumerator

DISPLAY_IN_FORMAT_32BITS_ARGB8888 ARGB8888, 32 bits.

DISPLAY_IN_FORMAT_32BITS_RGB888 RGB888, 32 bits.

DISPLAY_IN_FORMAT_16BITS_RGB565 RGB565, 16 bits.

DISPLAY_IN_FORMAT_16BITS_ARGB1555 ARGB1555, 16 bits.

DISPLAY_IN_FORMAT_16BITS_ARGB4444 ARGB4444, 16 bits.

DISPLAY_IN_FORMAT_CLUT8 CLUT8.

DISPLAY_IN_FORMAT_CLUT4 CLUT4.

DISPLAY_IN_FORMAT_CLUT1 CLUT1.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 350 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Display Interface

◆ display_out_format_t

enum display_out_format_t

Output format setting

Enumerator

DISPLAY_OUT_FORMAT_24BITS_RGB888 RGB888, 24 bits.

DISPLAY_OUT_FORMAT_18BITS_RGB666 RGB666, 18 bits.

DISPLAY_OUT_FORMAT_16BITS_RGB565 RGB565, 16 bits.

DISPLAY_OUT_FORMAT_8BITS_SERIAL SERIAL, 8 bits.

◆ display_endian_t

enum display_endian_t

Data endian select

Enumerator

DISPLAY_ENDIAN_LITTLE Little-endian.

DISPLAY_ENDIAN_BIG Big-endian.

◆ display_color_order_t

enum display_color_order_t

RGB color order select

Enumerator

DISPLAY_COLOR_ORDER_RGB Color order RGB.

DISPLAY_COLOR_ORDER_BGR Color order BGR.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 351 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Display Interface

◆ display_signal_polarity_t

enum display_signal_polarity_t

Polarity of a signal select

Enumerator

DISPLAY_SIGNAL_POLARITY_LOACTIVE Low active signal.

DISPLAY_SIGNAL_POLARITY_HIACTIVE High active signal.

◆ display_sync_edge_t

enum display_sync_edge_t

Signal synchronization edge select

Enumerator

DISPLAY_SIGNAL_SYNC_EDGE_RISING Signal is synchronized to rising edge.

DISPLAY_SIGNAL_SYNC_EDGE_FALLING Signal is synchronized to falling edge.

◆ display_fade_control_t

enum display_fade_control_t

Fading control

Enumerator

DISPLAY_FADE_CONTROL_NONE Applying no fading control.

DISPLAY_FADE_CONTROL_FADEIN Applying fade-in control.

DISPLAY_FADE_CONTROL_FADEOUT Applying fade-out control.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 352 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Display Interface

◆ display_fade_status_t

enum display_fade_status_t

Fading status

Enumerator

DISPLAY_FADE_STATUS_NOT_UNDERWAY Fade-in/fade-out is not in progress.

DISPLAY_FADE_STATUS_FADING_UNDERWAY Fade-in or fade-out is in progress.

DISPLAY_FADE_STATUS_PENDING Fade-in/fade-out is configured but not yet
started.

4.3.9 DOC Interface
Interfaces

Detailed Description

Interface for the Data Operation Circuit.

Defines the API and data structures for the DOC implementation of the Data Operation Circuit (DOC)
interface.

Summary
This module implements the DOC_API using the Data Operation Circuit (DOC).

Implemented by: Data Operation Circuit (r_doc)

Data Structures

struct doc_status_t

struct doc_callback_args_t

struct doc_cfg_t

struct doc_api_t

struct doc_instance_t

Macros

#define DOC_API_VERSION_MAJOR

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 353 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > DOC Interface

Typedefs

typedef void doc_ctrl_t

Enumerations

enum doc_event_t

Data Structure Documentation

◆ doc_status_t

struct doc_status_t

DOC status

◆ doc_callback_args_t

struct doc_callback_args_t

Callback function parameter data.

Data Fields

void const * p_context Set in doc_api_t::open function
in doc_cfg_t.

Placeholder for user data.

◆ doc_cfg_t

struct doc_cfg_t

User configuration structure, used in the open function.

Data Fields

doc_event_t event

 Select enumerated value from doc_event_t.

uint16_t doc_data

 initial/reference value for DODSR register.

uint8_t ipl

 DOC interrupt priority.

IRQn_Type irq

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 354 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > DOC Interface

 NVIC interrupt number assigned to this instance.

void(* p_callback)(doc_callback_args_t *p_args)

void const * p_context

Field Documentation

◆ p_callback

void(* doc_cfg_t::p_callback) (doc_callback_args_t *p_args)

Callback provided when a DOC ISR occurs.

◆ p_context

void const* doc_cfg_t::p_context

Placeholder for user data. Passed to the user callback in doc_callback_args_t.

◆ doc_api_t

struct doc_api_t

Data Operation Circuit (DOC) API structure. DOC functions implemented at the HAL layer will follow
this API.

Data Fields

fsp_err_t(* open)(doc_ctrl_t *const p_ctrl, doc_cfg_t const *const p_cfg)

fsp_err_t(* close)(doc_ctrl_t *const p_ctrl)

fsp_err_t(* statusGet)(doc_ctrl_t *const p_ctrl, doc_status_t *p_status)

fsp_err_t(* write)(doc_ctrl_t *const p_ctrl, uint16_t data)

fsp_err_t(* versionGet)(fsp_version_t *const p_version)

Field Documentation

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 355 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > DOC Interface

◆ open

fsp_err_t(* doc_api_t::open) (doc_ctrl_t *const p_ctrl, doc_cfg_t const *const p_cfg)

Initial configuration.

Implemented as

R_DOC_Open()
Parameters

[in] p_ctrl Pointer to control block.
Must be declared by user.
Elements set here.

[in] p_cfg Pointer to configuration
structure. All elements of
this structure must be set by
user.

◆ close

fsp_err_t(* doc_api_t::close) (doc_ctrl_t *const p_ctrl)

Allow the driver to be reconfigured. Will reduce power consumption.

Implemented as

R_DOC_Close()
Parameters

[in] p_ctrl Control block set in
doc_api_t::open call.

◆ statusGet

fsp_err_t(* doc_api_t::statusGet) (doc_ctrl_t *const p_ctrl, doc_status_t *p_status)

Gets the result of addition/subtraction and stores it in the provided pointer p_data.

Implemented as

R_DOC_StatusGet()
Parameters

[in] p_ctrl Control block set in
doc_api_t::open call.

[out] p_data Provides the 16 bit result of
the addition/subtraction
operation at the user defined
location.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 356 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > DOC Interface

◆ write

fsp_err_t(* doc_api_t::write) (doc_ctrl_t *const p_ctrl, uint16_t data)

Write to the DODIR register.

Implemented as

R_DOC_Write()
Parameters

[in] p_ctrl Control block set in
doc_api_t::open call.

[in] data data to be written to DOC
DODIR register.

◆ versionGet

fsp_err_t(* doc_api_t::versionGet) (fsp_version_t *const p_version)

Get version and stores it in provided pointer p_version.

Implemented as

R_DOC_VersionGet()
Parameters

[out] p_version Code and API version used.

◆ doc_instance_t

struct doc_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

doc_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

doc_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

doc_api_t const * p_api Pointer to the API structure for
this instance.

Macro Definition Documentation

◆ DOC_API_VERSION_MAJOR

#define DOC_API_VERSION_MAJOR

Register definitions, common services and error codes.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 357 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > DOC Interface

Typedef Documentation

◆ doc_ctrl_t

typedef void doc_ctrl_t

DOC control block. Allocate an instance specific control block to pass into the DOC API calls.

Implemented as

doc_instance_ctrl_t

Enumeration Type Documentation

◆ doc_event_t

enum doc_event_t

Event that can trigger a callback function.

Enumerator

DOC_EVENT_COMPARISON_MISMATCH Comparison of data has resulted in a
mismatch.

DOC_EVENT_ADDITION Addition of data has resulted in a value greater
than H'FFFF.

DOC_EVENT_SUBTRACTION Subtraction of data has resulted in a value less
than H'0000.

DOC_EVENT_COMPARISON_MATCH Comparison of data has resulted in a match.

4.3.10 ELC Interface
Interfaces

Detailed Description

Interface for the Event Link Controller.

Data Structures

struct elc_cfg_t

struct elc_api_t

struct elc_instance_t

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 358 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > ELC Interface

Typedefs

typedef void elc_ctrl_t

Enumerations

enum elc_peripheral_t

enum elc_software_event_t

Data Structure Documentation

◆ elc_cfg_t

struct elc_cfg_t

Main configuration structure for the Event Link Controller

Data Fields

elc_event_t const link[ELC_PERIPHERAL_NUM] Event link register (ELSR)
settings.

◆ elc_api_t

struct elc_api_t

ELC driver structure. General ELC functions implemented at the HAL layer follow this API.

Data Fields

fsp_err_t(* open)(elc_ctrl_t *const p_ctrl, elc_cfg_t const *const p_cfg)

fsp_err_t(* close)(elc_ctrl_t *const p_ctrl)

fsp_err_t(* softwareEventGenerate)(elc_ctrl_t *const p_ctrl,
elc_software_event_t event_num)

fsp_err_t(* linkSet)(elc_ctrl_t *const p_ctrl, elc_peripheral_t peripheral,
elc_event_t signal)

fsp_err_t(* linkBreak)(elc_ctrl_t *const p_ctrl, elc_peripheral_t peripheral)

fsp_err_t(* enable)(elc_ctrl_t *const p_ctrl)

fsp_err_t(* disable)(elc_ctrl_t *const p_ctrl)

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 359 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > ELC Interface

fsp_err_t(* versionGet)(fsp_version_t *const p_version)

Field Documentation

◆ open

fsp_err_t(* elc_api_t::open) (elc_ctrl_t *const p_ctrl, elc_cfg_t const *const p_cfg)

Initialize all links in the Event Link Controller.

Implemented as

R_ELC_Open()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure.

◆ close

fsp_err_t(* elc_api_t::close) (elc_ctrl_t *const p_ctrl)

Disable all links in the Event Link Controller and close the API.

Implemented as

R_ELC_Close()
Parameters

[in] p_ctrl Pointer to control structure.

◆ softwareEventGenerate

fsp_err_t(* elc_api_t::softwareEventGenerate) (elc_ctrl_t *const p_ctrl, elc_software_event_t
event_num)

Generate a software event in the Event Link Controller.

Implemented as

R_ELC_SoftwareEventGenerate()
Parameters

[in] p_ctrl Pointer to control structure.

[in] eventNum Software event number to
be generated.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 360 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > ELC Interface

◆ linkSet

fsp_err_t(* elc_api_t::linkSet) (elc_ctrl_t *const p_ctrl, elc_peripheral_t peripheral, elc_event_t signal)

Create a single event link.

Implemented as

R_ELC_LinkSet()
Parameters

[in] p_ctrl Pointer to control structure.

[in] peripheral The peripheral block that will
receive the event signal.

[in] signal The event signal.

◆ linkBreak

fsp_err_t(* elc_api_t::linkBreak) (elc_ctrl_t *const p_ctrl, elc_peripheral_t peripheral)

Break an event link.

Implemented as

R_ELC_LinkBreak()
Parameters

[in] p_ctrl Pointer to control structure.

[in] peripheral The peripheral that should
no longer be linked.

◆ enable

fsp_err_t(* elc_api_t::enable) (elc_ctrl_t *const p_ctrl)

Enable the operation of the Event Link Controller.

Implemented as

R_ELC_Enable()
Parameters

[in] p_ctrl Pointer to control structure.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 361 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > ELC Interface

◆ disable

fsp_err_t(* elc_api_t::disable) (elc_ctrl_t *const p_ctrl)

Disable the operation of the Event Link Controller.

Implemented as

R_ELC_Disable()
Parameters

[in] p_ctrl Pointer to control structure.

◆ versionGet

fsp_err_t(* elc_api_t::versionGet) (fsp_version_t *const p_version)

Get the driver version based on compile time macros.

Implemented as

R_ELC_VersionGet()
Parameters

[in] p_ctrl Pointer to control structure.

[out] p_version is value returned.

◆ elc_instance_t

struct elc_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

elc_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

elc_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

elc_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ elc_ctrl_t

typedef void elc_ctrl_t

ELC control block. Allocate an instance specific control block to pass into the ELC API calls.

Implemented as

elc_instance_ctrl_t

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 362 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > ELC Interface

Enumeration Type Documentation

◆ elc_peripheral_t

enum elc_peripheral_t

Possible peripherals to be linked to event signals (not all available on all MCUs)

◆ elc_software_event_t

enum elc_software_event_t

Software event number

Enumerator

ELC_SOFTWARE_EVENT_0 Software event 0.

ELC_SOFTWARE_EVENT_1 Software event 1.

4.3.11 Ethernet Interface
Interfaces

Detailed Description

Interface for Ethernet functions.

Summary
The Ethernet interface provides Ethernet functionality. The Ethernet interface supports the following
features:

Transmit/receive processing(Blocking and Non-Bloking)
Callback function with returned event code
Magic packet detection mode support
Auto negotiation support
Flow control support
Multicast filtering support

Implemented by:

Ethernet (r_ether)

Data Structures

struct ether_instance_descriptor_t

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 363 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Ethernet Interface

struct ether_callback_args_t

struct ether_cfg_t

struct ether_api_t

struct ether_instance_t

Typedefs

typedef void ether_ctrl_t

Enumerations

enum ether_wake_on_lan_t

enum ether_flow_control_t

enum ether_multicast_t

enum ether_promiscuous_t

enum ether_zerocopy_t

enum ether_event_t

Data Structure Documentation

◆ ether_instance_descriptor_t

struct ether_instance_descriptor_t

EDMAC descriptor as defined in the hardware manual. Structure must be packed at 1 byte.

◆ ether_callback_args_t

struct ether_callback_args_t

Callback function parameter data

Data Fields

uint32_t channel Device channel number.

ether_event_t event Event code.

uint32_t status_ecsr ETHERC status register for
interrupt handler.

uint32_t status_eesr ETHERC/EDMAC status register
for interrupt handler.

void const * p_context Placeholder for user data. Set in
ether_api_t::open function in

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 364 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Ethernet Interface

ether_cfg_t.

◆ ether_cfg_t

struct ether_cfg_t

Configuration parameters.

Data Fields

uint8_t channel

 Channel.

ether_zerocopy_t zerocopy

 Zero copy enable or disable in Read/Write function.

ether_multicast_t multicast

 Multicast enable or disable.

ether_promiscuous_t promiscuous

 Promiscuous mode enable or disable.

ether_flow_control_t flow_control

 Flow control functionally enable or disable.

uint32_t broadcast_filter

 Limit of the number of broadcast frames received continuously.

uint8_t * p_mac_address

 Pointer of MAC address.

ether_instance_descriptor_t
*

p_rx_descriptors

 Transmission descriptor.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 365 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Ethernet Interface

ether_instance_descriptor_t
*

p_tx_descriptors

 Receive descriptor.

uint8_t num_tx_descriptors

 Number of transmission descriptor.

uint8_t num_rx_descriptors

 Number of receive descriptor.

uint8_t ** pp_ether_buffers

 Transmit and receive buffer.

uint32_t ether_buffer_size

 Size of transmit and receive buffer.

IRQn_Type irq

 NVIC interrupt number.

uint32_t interrupt_priority

 NVIC interrupt priority.

void(* p_callback)(ether_callback_args_t *p_args)

 Callback provided when an ISR occurs.

ether_phy_instance_t const
*

p_ether_phy_instance

 Pointer to ETHER_PHY instance.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 366 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Ethernet Interface

void const * p_context

void const * p_extend

 Placeholder for user extension.

Field Documentation

◆ p_context

void const* ether_cfg_t::p_context

Placeholder for user data. Passed to the user callback in ether_callback_args_t.

◆ ether_api_t

struct ether_api_t

Functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(ether_ctrl_t *const p_api_ctrl, ether_cfg_t const *const p_cfg)

fsp_err_t(* close)(ether_ctrl_t *const p_api_ctrl)

fsp_err_t(* read)(ether_ctrl_t *const p_api_ctrl, void **const pp_buffer, uint32_t
*const length_bytes)

fsp_err_t(* bufferRelease)(ether_ctrl_t *const p_api_ctrl)

fsp_err_t(* write)(ether_ctrl_t *const p_api_ctrl, void *const p_buffer, uint32_t
const frame_length)

fsp_err_t(* linkProcess)(ether_ctrl_t *const p_api_ctrl)

fsp_err_t(* wakeOnLANEnable)(ether_ctrl_t *const p_api_ctrl)

fsp_err_t(* versionGet)(fsp_version_t *const p_data)

Field Documentation

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 367 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Ethernet Interface

◆ open

fsp_err_t(* ether_api_t::open) (ether_ctrl_t *const p_api_ctrl, ether_cfg_t const *const p_cfg)

Open driver.

Implemented as

R_ETHER_Open()
Parameters

[in] p_api_ctrl Pointer to control structure.

[in] p_cfg Pointer to pin configuration
structure.

◆ close

fsp_err_t(* ether_api_t::close) (ether_ctrl_t *const p_api_ctrl)

Close driver.

Implemented as

R_ETHER_Close()
Parameters

[in] p_api_ctrl Pointer to control structure.

◆ read

fsp_err_t(* ether_api_t::read) (ether_ctrl_t *const p_api_ctrl, void **const pp_buffer, uint32_t *const
length_bytes)

Read packet.

Implemented as

R_ETHER_Read()
Parameters

[in] p_api_ctrl Pointer to control structure.

[in] p_buffer Pointer to where to store
read data.

[in] length_bytes Number of bytes in buffer

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 368 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Ethernet Interface

◆ bufferRelease

fsp_err_t(* ether_api_t::bufferRelease) (ether_ctrl_t *const p_api_ctrl)

Release rx buffer from buffer pool process in zero copy read operation.

Implemented as

R_ETHER_BufferRelease()
Parameters

[in] p_api_ctrl Pointer to control structure.

◆ write

fsp_err_t(* ether_api_t::write) (ether_ctrl_t *const p_api_ctrl, void *const p_buffer, uint32_t const
frame_length)

Write packet.

Implemented as

R_ETHER_Write()
Parameters

[in] p_api_ctrl Pointer to control structure.

[in] p_buffer Pointer to where to load
write data.

[in] frame_length Send ethernet frame
size(without 4 bytes of CRC
data size).

◆ linkProcess

fsp_err_t(* ether_api_t::linkProcess) (ether_ctrl_t *const p_api_ctrl)

Process link.

Implemented as

R_ETHER_LinkProcess()
Parameters

[in] p_api_ctrl Pointer to control structure.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 369 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Ethernet Interface

◆ wakeOnLANEnable

fsp_err_t(* ether_api_t::wakeOnLANEnable) (ether_ctrl_t *const p_api_ctrl)

Enable magic packet detection.

Implemented as

R_ETHER_WakeOnLANEnable()
Parameters

[in] p_api_ctrl Pointer to control structure.

◆ versionGet

fsp_err_t(* ether_api_t::versionGet) (fsp_version_t *const p_data)

Return the version of the driver.

Implemented as

R_ETHER_VersionGet()
Parameters

[in] p_api_ctrl Pointer to control structure.

[out] p_data Memory address to return
version information to.

◆ ether_instance_t

struct ether_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

ether_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

ether_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

ether_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 370 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Ethernet Interface

◆ ether_ctrl_t

typedef void ether_ctrl_t

Control block. Allocate an instance specific control block to pass into the API calls.

Implemented as

ether_instance_ctrl_t

Enumeration Type Documentation

◆ ether_wake_on_lan_t

enum ether_wake_on_lan_t

Wake on Lan

Enumerator

ETHER_WAKE_ON_LAN_DISABLE Disable Wake on Lan.

ETHER_WAKE_ON_LAN_ENABLE Enable Wake on Lan.

◆ ether_flow_control_t

enum ether_flow_control_t

Flow control functionality

Enumerator

ETHER_FLOW_CONTROL_DISABLE Disable flow control functionality.

ETHER_FLOW_CONTROL_ENABLE Enable flow control functionality with pause
frames.

◆ ether_multicast_t

enum ether_multicast_t

Multicast Filter

Enumerator

ETHER_MULTICAST_DISABLE Disable reception of multicast frames.

ETHER_MULTICAST_ENABLE Enable reception of multicast frames.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 371 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Ethernet Interface

◆ ether_promiscuous_t

enum ether_promiscuous_t

Promiscuous Mode

Enumerator

ETHER_PROMISCUOUS_DISABLE Only receive packets with current MAC
address, multicast, and broadcast.

ETHER_PROMISCUOUS_ENABLE Receive all packets.

◆ ether_zerocopy_t

enum ether_zerocopy_t

Zero copy

Enumerator

ETHER_ZEROCOPY_DISABLE Disable zero copy in Read/Write function.

ETHER_ZEROCOPY_ENABLE Enable zero copy in Read/Write function.

◆ ether_event_t

enum ether_event_t

Event code of callback function

Enumerator

ETHER_EVENT_WAKEON_LAN Magic packet detection event.

ETHER_EVENT_LINK_ON Link up detection event.

ETHER_EVENT_LINK_OFF Link down detection event.

ETHER_EVENT_INTERRUPT Interrupt event.

4.3.12 Ethernet PHY Interface
Interfaces

Detailed Description

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 372 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Ethernet PHY Interface

Interface for Ethernet phy functions.

Summary
The Ethernet PHY interface provides Ethernet phy functionality. The Ethernet PHY interface supports
the following features:

Auto negotiation support
Flow control support
Link status check support

Implemented by:

Ethernet PHY (r_ether_phy)

Data Structures

struct ether_phy_cfg_t

struct ether_phy_api_t

struct ether_phy_instance_t

Typedefs

typedef void ether_phy_ctrl_t

Enumerations

enum ether_phy_flow_control_t

enum ether_phy_link_speed_t

enum ether_phy_mii_type_t

Data Structure Documentation

◆ ether_phy_cfg_t

struct ether_phy_cfg_t

Configuration parameters.

Data Fields

uint8_t channel Channel.

uint8_t phy_lsi_address Address of Phy-LSI.

uint32_t phy_reset_wait_time Wait time for Phy-LSI reboot.

int32_t mii_bit_access_wait_time Wait time for MII/RMII access.

ether_phy_flow_control_t flow_control Flow control functionally enable
or disable.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 373 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Ethernet PHY Interface

ether_phy_mii_type_t mii_type Interface type is MII or RMII.

void const * p_context Placeholder for user data.
Passed to the user callback in
ether_phy_callback_args_t.

void const * p_extend Placeholder for user extension.

◆ ether_phy_api_t

struct ether_phy_api_t

Functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(ether_phy_ctrl_t *const p_api_ctrl, ether_phy_cfg_t const
*const p_cfg)

fsp_err_t(* close)(ether_phy_ctrl_t *const p_api_ctrl)

fsp_err_t(* startAutoNegotiate)(ether_phy_ctrl_t *const p_api_ctrl)

fsp_err_t(* linkPartnerAbilityGet)(ether_phy_ctrl_t *const p_api_ctrl, uint32_t
*const p_line_speed_duplex, uint32_t *const p_local_pause, uint32_t
*const p_partner_pause)

fsp_err_t(* linkStatusGet)(ether_phy_ctrl_t *const p_api_ctrl)

fsp_err_t(* versionGet)(fsp_version_t *const p_data)

Field Documentation

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 374 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Ethernet PHY Interface

◆ open

fsp_err_t(* ether_phy_api_t::open) (ether_phy_ctrl_t *const p_api_ctrl, ether_phy_cfg_t const *const
p_cfg)

Open driver.

Implemented as

R_ETHER_PHY_Open()
Parameters

[in] p_api_ctrl Pointer to control structure.

[in] p_cfg Pointer to pin configuration
structure.

◆ close

fsp_err_t(* ether_phy_api_t::close) (ether_phy_ctrl_t *const p_api_ctrl)

Close driver.

Implemented as

R_ETHER_PHY_Close()
Parameters

[in] p_api_ctrl Pointer to control structure.

◆ startAutoNegotiate

fsp_err_t(* ether_phy_api_t::startAutoNegotiate) (ether_phy_ctrl_t *const p_api_ctrl)

Start auto negotiation.

Implemented as

R_ETHER_PHY_StartAutoNegotiate()
Parameters

[in] p_api_ctrl Pointer to control structure.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 375 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Ethernet PHY Interface

◆ linkPartnerAbilityGet

fsp_err_t(* ether_phy_api_t::linkPartnerAbilityGet) (ether_phy_ctrl_t *const p_api_ctrl, uint32_t
*const p_line_speed_duplex, uint32_t *const p_local_pause, uint32_t *const p_partner_pause)

Get the partner ability.

Implemented as

R_ETHER_PHY_LinkPartnerAbilityGet()
Parameters

[in] p_api_ctrl Pointer to control structure.

[out] p_line_speed_duplex Pointer to the location of
both the line speed and the
duplex.

[out] p_local_pause Pointer to the location to
store the local pause bits..

[out] p_partner_pause Pointer to the location to
store the partner pause bits.

◆ linkStatusGet

fsp_err_t(* ether_phy_api_t::linkStatusGet) (ether_phy_ctrl_t *const p_api_ctrl)

Get Link status from phy-LSI interface.

Implemented as

R_ETHER_PHY_LinkStatusGet()
Parameters

[in] p_api_ctrl Pointer to control structure.

◆ versionGet

fsp_err_t(* ether_phy_api_t::versionGet) (fsp_version_t *const p_data)

Return the version of the driver.

Implemented as

R_ETHER_PHY_VersionGet()
Parameters

[out] p_data Memory address to return
version information to.

◆ ether_phy_instance_t

struct ether_phy_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 376 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Ethernet PHY Interface

Data Fields

ether_phy_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

ether_phy_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

ether_phy_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ ether_phy_ctrl_t

typedef void ether_phy_ctrl_t

Control block. Allocate an instance specific control block to pass into the API calls.

Implemented as

ether_phy_instance_ctrl_t

Enumeration Type Documentation

◆ ether_phy_flow_control_t

enum ether_phy_flow_control_t

Flow control functionality

Enumerator

ETHER_PHY_FLOW_CONTROL_DISABLE Disable flow control functionality.

ETHER_PHY_FLOW_CONTROL_ENABLE Enable flow control functionality with pause
frames.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 377 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Ethernet PHY Interface

◆ ether_phy_link_speed_t

enum ether_phy_link_speed_t

Link speed

Enumerator

ETHER_PHY_LINK_SPEED_NO_LINK Link is not established.

ETHER_PHY_LINK_SPEED_10H Link status is 10Mbit/s and half duplex.

ETHER_PHY_LINK_SPEED_10F Link status is 10Mbit/s and full duplex.

ETHER_PHY_LINK_SPEED_100H Link status is 100Mbit/s and half duplex.

ETHER_PHY_LINK_SPEED_100F Link status is 100Mbit/s and full duplex.

◆ ether_phy_mii_type_t

enum ether_phy_mii_type_t

Media-independent interface

Enumerator

ETHER_PHY_MII_TYPE_MII MII.

ETHER_PHY_MII_TYPE_RMII RMII.

4.3.13 External IRQ Interface
Interfaces

Detailed Description

Interface for detecting external interrupts.

Summary
The External IRQ Interface is for configuring interrupts to fire when a trigger condition is detected on
an external IRQ pin.

The External IRQ Interface can be implemented by:

Interrupt Controller Unit (r_icu)

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 378 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > External IRQ Interface

Data Structures

struct external_irq_callback_args_t

struct external_irq_cfg_t

struct external_irq_api_t

struct external_irq_instance_t

Macros

#define EXTERNAL_IRQ_API_VERSION_MAJOR

 EXTERNAL IRQ API version number (Major)

#define EXTERNAL_IRQ_API_VERSION_MINOR

 EXTERNAL IRQ API version number (Minor)

Typedefs

typedef void external_irq_ctrl_t

Enumerations

enum external_irq_trigger_t

enum external_irq_pclk_div_t

Data Structure Documentation

◆ external_irq_callback_args_t

struct external_irq_callback_args_t

Callback function parameter data

Data Fields

void const * p_context Placeholder for user data. Set in
external_irq_api_t::open
function in external_irq_cfg_t.

uint32_t channel The physical hardware channel
that caused the interrupt.

◆ external_irq_cfg_t

struct external_irq_cfg_t

User configuration structure, used in open function

Data Fields

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 379 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > External IRQ Interface

uint8_t channel

 Hardware channel used.

uint8_t ipl

 Interrupt priority.

IRQn_Type irq

 NVIC interrupt number assigned to this instance.

external_irq_trigger_t trigger

 Trigger setting.

external_irq_pclk_div_t pclk_div

 Digital filter clock divisor setting.

bool filter_enable

 Digital filter enable/disable setting.

void(* p_callback)(external_irq_callback_args_t *p_args)

void const * p_context

void const * p_extend

 External IRQ hardware dependent configuration.

Field Documentation

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 380 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > External IRQ Interface

◆ p_callback

void(* external_irq_cfg_t::p_callback) (external_irq_callback_args_t *p_args)

Callback provided external input trigger occurs.

◆ p_context

void const* external_irq_cfg_t::p_context

Placeholder for user data. Passed to the user callback in external_irq_callback_args_t.

◆ external_irq_api_t

struct external_irq_api_t

External interrupt driver structure. External interrupt functions implemented at the HAL layer will
follow this API.

Data Fields

fsp_err_t(* open)(external_irq_ctrl_t *const p_ctrl, external_irq_cfg_t const
*const p_cfg)

fsp_err_t(* enable)(external_irq_ctrl_t *const p_ctrl)

fsp_err_t(* disable)(external_irq_ctrl_t *const p_ctrl)

fsp_err_t(* close)(external_irq_ctrl_t *const p_ctrl)

fsp_err_t(* versionGet)(fsp_version_t *const p_version)

Field Documentation

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 381 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > External IRQ Interface

◆ open

fsp_err_t(* external_irq_api_t::open) (external_irq_ctrl_t *const p_ctrl, external_irq_cfg_t const
*const p_cfg)

Initial configuration.

Implemented as

R_ICU_ExternalIrqOpen()
Parameters

[out] p_ctrl Pointer to control block.
Must be declared by user.
Value set here.

[in] p_cfg Pointer to configuration
structure. All elements of the
structure must be set by
user.

◆ enable

fsp_err_t(* external_irq_api_t::enable) (external_irq_ctrl_t *const p_ctrl)

Enable callback when an external trigger condition occurs.

Implemented as

R_ICU_ExternalIrqEnable()
Parameters

[in] p_ctrl Control block set in Open
call for this external
interrupt.

◆ disable

fsp_err_t(* external_irq_api_t::disable) (external_irq_ctrl_t *const p_ctrl)

Disable callback when external trigger condition occurs.

Implemented as

R_ICU_ExternalIrqDisable()
Parameters

[in] p_ctrl Control block set in Open
call for this external
interrupt.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 382 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > External IRQ Interface

◆ close

fsp_err_t(* external_irq_api_t::close) (external_irq_ctrl_t *const p_ctrl)

Allow driver to be reconfigured. May reduce power consumption.

Implemented as

R_ICU_ExternalIrqClose()
Parameters

[in] p_ctrl Control block set in Open
call for this external
interrupt.

◆ versionGet

fsp_err_t(* external_irq_api_t::versionGet) (fsp_version_t *const p_version)

Get version and store it in provided pointer p_version.

Implemented as

R_ICU_ExternalIrqVersionGet()
Parameters

[out] p_version Code and API version used.

◆ external_irq_instance_t

struct external_irq_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

external_irq_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

external_irq_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

external_irq_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 383 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > External IRQ Interface

◆ external_irq_ctrl_t

typedef void external_irq_ctrl_t

External IRQ control block. Allocate an instance specific control block to pass into the external IRQ
API calls.

Implemented as

icu_instance_ctrl_t

Enumeration Type Documentation

◆ external_irq_trigger_t

enum external_irq_trigger_t

Condition that will trigger an interrupt when detected.

Enumerator

EXTERNAL_IRQ_TRIG_FALLING Falling edge trigger.

EXTERNAL_IRQ_TRIG_RISING Rising edge trigger.

EXTERNAL_IRQ_TRIG_BOTH_EDGE Both edges trigger.

EXTERNAL_IRQ_TRIG_LEVEL_LOW Low level trigger.

◆ external_irq_pclk_div_t

enum external_irq_pclk_div_t

External IRQ input pin digital filtering sample clock divisor settings. The digital filter rejects trigger
conditions that are shorter than 3 periods of the filter clock.

Enumerator

EXTERNAL_IRQ_PCLK_DIV_BY_1 Filter using PCLK divided by 1.

EXTERNAL_IRQ_PCLK_DIV_BY_8 Filter using PCLK divided by 8.

EXTERNAL_IRQ_PCLK_DIV_BY_32 Filter using PCLK divided by 32.

EXTERNAL_IRQ_PCLK_DIV_BY_64 Filter using PCLK divided by 64.

4.3.14 Flash Interface

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 384 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Flash Interface

Interfaces

Detailed Description

Interface for the Flash Memory.

Summary
The Flash interface provides the ability to read, write, erase, and blank check the code flash and data
flash regions.

The Flash interface is implemented by:

Low-Power Flash Driver (r_flash_lp)

Data Structures

struct flash_block_info_t

struct flash_regions_t

struct flash_info_t

struct flash_callback_args_t

struct flash_cfg_t

struct flash_api_t

struct flash_instance_t

Typedefs

typedef void flash_ctrl_t

Enumerations

enum flash_result_t

enum flash_startup_area_swap_t

enum flash_event_t

enum flash_id_code_mode_t

enum flash_status_t

Data Structure Documentation

◆ flash_block_info_t

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 385 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Flash Interface

struct flash_block_info_t

Flash block details stored in factory flash.

Data Fields

uint32_t block_section_st_addr Starting address for this block
section (blocks of this size)

uint32_t block_section_end_addr Ending address for this block
section (blocks of this size)

uint32_t block_size Flash erase block size.

uint32_t block_size_write Flash write block size.

◆ flash_regions_t

struct flash_regions_t

Flash block details

Data Fields

uint32_t num_regions Length of block info array.

flash_block_info_t const * p_block_array Block info array base address.

◆ flash_info_t

struct flash_info_t

Information about the flash blocks

Data Fields

flash_regions_t code_flash Information about the code
flash regions.

flash_regions_t data_flash Information about the code
flash regions.

◆ flash_callback_args_t

struct flash_callback_args_t

Callback function parameter data

Data Fields

flash_event_t event Event can be used to identify
what caused the callback (flash
ready or error).

void const * p_context Placeholder for user data. Set in
flash_api_t::open function
in::flash_cfg_t.

◆ flash_cfg_t

struct flash_cfg_t

FLASH Configuration

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 386 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Flash Interface

Data Fields

bool data_flash_bgo

 True if BGO (Background Operation) is enabled for Data Flash.

void(* p_callback)(flash_callback_args_t *p_args)

 Callback provided when a Flash interrupt ISR occurs.

void const * p_extend

 FLASH hardware dependent configuration.

void const * p_context

 Placeholder for user data. Passed to user callback in
flash_callback_args_t.

uint8_t ipl

 Flash ready interrupt priority.

IRQn_Type irq

 Flash ready interrupt number.

uint8_t err_ipl

 Flash error interrupt priority (unused in r_flash_lp)

IRQn_Type err_irq

 Flash error interrupt number (unused in r_flash_lp)

◆ flash_api_t

struct flash_api_t

Shared Interface definition for FLASH

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 387 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Flash Interface

Data Fields

fsp_err_t(* open)(flash_ctrl_t *const p_ctrl, flash_cfg_t const *const p_cfg)

fsp_err_t(* write)(flash_ctrl_t *const p_ctrl, uint32_t const src_address, uint32_t
const flash_address, uint32_t const num_bytes)

fsp_err_t(* erase)(flash_ctrl_t *const p_ctrl, uint32_t const address, uint32_t
const num_blocks)

fsp_err_t(* blankCheck)(flash_ctrl_t *const p_ctrl, uint32_t const address,
uint32_t const num_bytes, flash_result_t *const
p_blank_check_result)

fsp_err_t(* infoGet)(flash_ctrl_t *const p_ctrl, flash_info_t *const p_info)

fsp_err_t(* close)(flash_ctrl_t *const p_ctrl)

fsp_err_t(* statusGet)(flash_ctrl_t *const p_ctrl, flash_status_t *const p_status)

fsp_err_t(* accessWindowSet)(flash_ctrl_t *const p_ctrl, uint32_t const
start_addr, uint32_t const end_addr)

fsp_err_t(* accessWindowClear)(flash_ctrl_t *const p_ctrl)

fsp_err_t(* idCodeSet)(flash_ctrl_t *const p_ctrl, uint8_t const *const p_id_bytes,
flash_id_code_mode_t mode)

fsp_err_t(* reset)(flash_ctrl_t *const p_ctrl)

fsp_err_t(* updateFlashClockFreq)(flash_ctrl_t *const p_ctrl)

fsp_err_t(* startupAreaSelect)(flash_ctrl_t *const p_ctrl,
flash_startup_area_swap_t swap_type, bool is_temporary)

fsp_err_t(* versionGet)(fsp_version_t *p_version)

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 388 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Flash Interface

Field Documentation

◆ open

fsp_err_t(* flash_api_t::open) (flash_ctrl_t *const p_ctrl, flash_cfg_t const *const p_cfg)

Open FLASH device.

Implemented as

R_FLASH_LP_Open()
R_FLASH_HP_Open()

Parameters
[out] p_ctrl Pointer to FLASH device

control. Must be declared by
user. Value set here.

[in] flash_cfg_t Pointer to FLASH
configuration structure. All
elements of this structure
must be set by the user.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 389 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Flash Interface

◆ write

fsp_err_t(* flash_api_t::write) (flash_ctrl_t *const p_ctrl, uint32_t const src_address, uint32_t const
flash_address, uint32_t const num_bytes)

Write FLASH device.

Implemented as

R_FLASH_LP_Write()
R_FLASH_HP_Write()

Parameters
[in] p_ctrl Control for the FLASH device

context.

[in] src_address Address of the buffer
containing the data to write
to Flash.

[in] flash_address Code Flash or Data Flash
address to write. The
address must be on a
programming line boundary.

[in] num_bytes The number of bytes to
write. This number must be
a multiple of the
programming size. For Code
Flash this is
FLASH_MIN_PGM_SIZE_CF.
For Data Flash this is
FLASH_MIN_PGM_SIZE_DF.

Warning
Specifying a number that is not a multiple of the programming size will result in
SF_FLASH_ERR_BYTES being returned and no data written.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 390 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Flash Interface

◆ erase

fsp_err_t(* flash_api_t::erase) (flash_ctrl_t *const p_ctrl, uint32_t const address, uint32_t const
num_blocks)

Erase FLASH device.

Implemented as
R_FLASH_LP_Erase() R_FLASH_HP_Erase()

Parameters
[in] p_ctrl Control for the FLASH

device.

[in] address The block containing this
address is the first block
erased.

[in] num_blocks Specifies the number of
blocks to be erased, the
starting block determined by
the block_erase_address.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 391 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Flash Interface

◆ blankCheck

fsp_err_t(* flash_api_t::blankCheck) (flash_ctrl_t *const p_ctrl, uint32_t const address, uint32_t
const num_bytes, flash_result_t *const p_blank_check_result)

Blank check FLASH device.

Implemented as

R_FLASH_LP_BlankCheck()
R_FLASH_HP_BlankCheck()

Parameters
[in] p_ctrl Control for the FLASH device

context.

[in] address The starting address of the
Flash area to blank check.

[in] num_bytes Specifies the number of
bytes that need to be
checked. See the specific
handler for details.

[out] p_blank_check_result Pointer that will be
populated by the API with
the results of the blank
check operation in non-BGO
(blocking) mode. In this case
the blank check operation
completes here and the
result is returned. In Data
Flash BGO mode the blank
check operation is only
started here and the result
obtained later when the
supplied callback routine is
called. In this case
FLASH_RESULT_BGO_ACTIVE
will be returned in
p_blank_check_result.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 392 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Flash Interface

◆ infoGet

fsp_err_t(* flash_api_t::infoGet) (flash_ctrl_t *const p_ctrl, flash_info_t *const p_info)

Close FLASH device.

Implemented as

R_FLASH_LP_InfoGet()
R_FLASH_HP_InfoGet()

Parameters
[in] p_ctrl Pointer to FLASH device

control.

[out] p_info Pointer to FLASH info
structure.

◆ close

fsp_err_t(* flash_api_t::close) (flash_ctrl_t *const p_ctrl)

Close FLASH device.

Implemented as

R_FLASH_LP_Close()
R_FLASH_HP_Close()

Parameters
[in] p_ctrl Pointer to FLASH device

control.

◆ statusGet

fsp_err_t(* flash_api_t::statusGet) (flash_ctrl_t *const p_ctrl, flash_status_t *const p_status)

Get Status for FLASH device.

Implemented as

R_FLASH_LP_StatusGet()
R_FLASH_HP_StatusGet()

Parameters
[in] p_ctrl Pointer to FLASH device

control.

[out] p_ctrl Pointer to the current flash
status.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 393 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Flash Interface

◆ accessWindowSet

fsp_err_t(* flash_api_t::accessWindowSet) (flash_ctrl_t *const p_ctrl, uint32_t const start_addr,
uint32_t const end_addr)

Set Access Window for FLASH device.

Implemented as

R_FLASH_LP_AccessWindowSet()
R_FLASH_HP_AccessWindowSet()

Parameters
[in] p_ctrl Pointer to FLASH device

control.

[in] start_addr Determines the Starting
block for the Code Flash
access window.

[in] end_addr Determines the Ending block
for the Code Flash access
window. This address will not
be within the access window.

◆ accessWindowClear

fsp_err_t(* flash_api_t::accessWindowClear) (flash_ctrl_t *const p_ctrl)

Clear any existing Code Flash access window for FLASH device.

Implemented as

R_FLASH_LP_AccessWindowClear()
R_FLASH_HP_AccessWindowClear()

Parameters
[in] p_ctrl Pointer to FLASH device

control.

[in] start_addr Determines the Starting
block for the Code Flash
access window.

[in] end_addr Determines the Ending block
for the Code Flash access
window.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 394 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Flash Interface

◆ idCodeSet

fsp_err_t(* flash_api_t::idCodeSet) (flash_ctrl_t *const p_ctrl, uint8_t const *const p_id_bytes,
flash_id_code_mode_t mode)

Set ID Code for FLASH device. Setting the ID code can restrict access to the device. The ID code will
be required to connect to the device. Bits 126 and 127 are set based on the mode.

For example, uint8_t id_bytes[] = {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99,
0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0x00}; with mode
FLASH_ID_CODE_MODE_LOCKED_WITH_ALL_ERASE_SUPPORT will result in an ID code of
00112233445566778899aabbccddeec0

With mode FLASH_ID_CODE_MODE_LOCKED, it will result in an ID code of
00112233445566778899aabbccddee80

Implemented as

R_FLASH_LP_IdCodeSet()
R_FLASH_HP_IdCodeSet()

Parameters
[in] p_ctrl Pointer to FLASH device

control.

[in] p_id_bytes Ponter to the ID Code to be
written.

[in] mode Mode used for checking the
ID code.

◆ reset

fsp_err_t(* flash_api_t::reset) (flash_ctrl_t *const p_ctrl)

Reset function for FLASH device.

Implemented as

R_FLASH_LP_Reset()
R_FLASH_HP_Reset()

Parameters
[in] p_ctrl Pointer to FLASH device

control.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 395 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Flash Interface

◆ updateFlashClockFreq

fsp_err_t(* flash_api_t::updateFlashClockFreq) (flash_ctrl_t *const p_ctrl)

Update Flash clock frequency (FCLK) and recalculate timeout values

Implemented as

R_FLASH_LP_UpdateFlashClockFreq()
R_FLASH_HP_UpdateFlashClockFreq()

Parameters
[in] p_ctrl Pointer to FLASH device

control.

◆ startupAreaSelect

fsp_err_t(* flash_api_t::startupAreaSelect) (flash_ctrl_t *const p_ctrl, flash_startup_area_swap_t
swap_type, bool is_temporary)

Select which block - Default (Block 0) or Alternate (Block 1) is used as the start-up area block.

Implemented as

R_FLASH_LP_StartUpAreaSelect()
R_FLASH_HP_StartUpAreaSelect()

Parameters
[in] p_ctrl Pointer to FLASH device

control.

[in] swap_type FLASH_STARTUP_AREA_BLO
CK0, FLASH_STARTUP_AREA_
BLOCK1 or FLASH_STARTUP_
AREA_BTFLG.

[in] is_temporary True or false. See table
below.

swap_type is_temporary Operation

FLASH_STARTUP_AREA_BLOCK0 false On next reset Startup area will
be Block 0.

FLASH_STARTUP_AREA_BLOCK1 true Startup area is immediately,
but temporarily switched to
Block 1.

FLASH_STARTUP_AREA_BTFLG true Startup area is immediately,
but temporarily switched to the
Block determined by the
Configuration BTFLG.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 396 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Flash Interface

◆ versionGet

fsp_err_t(* flash_api_t::versionGet) (fsp_version_t *p_version)

Get Flash driver version.

Implemented as

R_FLASH_LP_VersionGet()
R_FLASH_HP_VersionGet()

Parameters
[out] p_version Returns version.

◆ flash_instance_t

struct flash_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

flash_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

flash_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

flash_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ flash_ctrl_t

typedef void flash_ctrl_t

Flash control block. Allocate an instance specific control block to pass into the flash API calls.

Implemented as

flash_lp_instance_ctrl_t
flash_hp_instance_ctrl_t

Enumeration Type Documentation

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 397 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Flash Interface

◆ flash_result_t

enum flash_result_t

Result type for certain operations

Enumerator

FLASH_RESULT_BLANK Return status for Blank Check Function.

FLASH_RESULT_NOT_BLANK Return status for Blank Check Function.

FLASH_RESULT_BGO_ACTIVE Flash is configured for BGO mode. Result is
returned in callback.

◆ flash_startup_area_swap_t

enum flash_startup_area_swap_t

Parameter for specifying the startup area swap being requested by startupAreaSelect()

Enumerator

FLASH_STARTUP_AREA_BTFLG Startup area will be set based on the value of
the BTFLG.

FLASH_STARTUP_AREA_BLOCK0 Startup area will be set to Block 0.

FLASH_STARTUP_AREA_BLOCK1 Startup area will be set to Block 1.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 398 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Flash Interface

◆ flash_event_t

enum flash_event_t

Event types returned by the ISR callback when used in Data Flash BGO mode

Enumerator

FLASH_EVENT_ERASE_COMPLETE Erase operation successfully completed.

FLASH_EVENT_WRITE_COMPLETE Write operation successfully completed.

FLASH_EVENT_BLANK Blank check operation successfully completed.
Specified area is blank.

FLASH_EVENT_NOT_BLANK Blank check operation successfully completed.
Specified area is NOT blank.

FLASH_EVENT_ERR_DF_ACCESS Data Flash operation failed. Can occur when
writing an unerased section.

FLASH_EVENT_ERR_CF_ACCESS Code Flash operation failed. Can occur when
writing an unerased section.

FLASH_EVENT_ERR_CMD_LOCKED Operation failed, FCU is in Locked state (often
result of an illegal command)

FLASH_EVENT_ERR_FAILURE Erase or Program Operation failed.

FLASH_EVENT_ERR_ONE_BIT A 1-bit error has been corrected when reading
the flash memory area by the sequencer.

◆ flash_id_code_mode_t

enum flash_id_code_mode_t

ID Code Modes for writing to ID code registers

Enumerator

FLASH_ID_CODE_MODE_UNLOCKED ID code is ignored.

FLASH_ID_CODE_MODE_LOCKED_WITH_ALL_ERA
SE_SUPPORT

ID code is checked. All erase is available.

FLASH_ID_CODE_MODE_LOCKED ID code is checked.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 399 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Flash Interface

◆ flash_status_t

enum flash_status_t

Flash status

Enumerator

FLASH_STATUS_IDLE The flash is idle.

FLASH_STATUS_BUSY The flash is currently processing a command.

4.3.15 I2C Master Interface
Interfaces

Detailed Description

Interface for I2C master communication.

Summary
The I2C master interface provides a common API for I2C HAL drivers. The I2C master interface
supports:

Interrupt driven transmit/receive processing
Callback function support which can return an event code

Implemented by:

I2C Master on IIC (r_iic_master)

Data Structures

struct i2c_master_callback_args_t

struct i2c_master_cfg_t

struct i2c_master_api_t

struct i2c_master_instance_t

Typedefs

typedef void i2c_master_ctrl_t

Enumerations

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 400 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2C Master Interface

enum i2c_master_rate_t

enum i2c_master_addr_mode_t

enum i2c_master_event_t

Data Structure Documentation

◆ i2c_master_callback_args_t

struct i2c_master_callback_args_t

I2C callback parameter definition

Data Fields

void const *const p_context Pointer to user-provided
context.

i2c_master_event_t const event Event code.

◆ i2c_master_cfg_t

struct i2c_master_cfg_t

I2C configuration block

Data Fields

uint8_t channel

 Identifier recognizable by implementation. More...

i2c_master_rate_t rate

 Device's maximum clock rate from enum i2c_rate_t.

uint32_t slave

 The address of the slave device.

i2c_master_addr_mode_t addr_mode

 Indicates how slave fields should be interpreted.

uint8_t ipl

 Interrupt priority level. Same for RXI, TXI, TEI and ERI.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 401 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2C Master Interface

IRQn_Type rxi_irq

 Receive IRQ number.

IRQn_Type txi_irq

 Transmit IRQ number.

IRQn_Type tei_irq

 Transmit end IRQ number.

IRQn_Type eri_irq

 Error IRQ number.

transfer_instance_t const * p_transfer_tx

 DTC instance for I2C transmit.Set to NULL if unused. More...

transfer_instance_t const * p_transfer_rx

 DTC instance for I2C receive. Set to NULL if unused.

void(* p_callback)(i2c_master_callback_args_t *p_args)

 Pointer to callback function. More...

void const * p_context

 Pointer to the user-provided context.

void const * p_extend

 Any configuration data needed by the hardware. More...

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 402 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2C Master Interface

Field Documentation

◆ channel

uint8_t i2c_master_cfg_t::channel

Identifier recognizable by implementation.

Generic configuration

◆ p_transfer_tx

transfer_instance_t const* i2c_master_cfg_t::p_transfer_tx

DTC instance for I2C transmit.Set to NULL if unused.

DTC support

◆ p_callback

void(* i2c_master_cfg_t::p_callback) (i2c_master_callback_args_t *p_args)

Pointer to callback function.

Parameters to control software behavior

◆ p_extend

void const* i2c_master_cfg_t::p_extend

Any configuration data needed by the hardware.

Implementation-specific configuration

◆ i2c_master_api_t

struct i2c_master_api_t

Interface definition for I2C access as master

Data Fields

fsp_err_t(* open)(i2c_master_ctrl_t *const p_ctrl, i2c_master_cfg_t const *const
p_cfg)

fsp_err_t(* read)(i2c_master_ctrl_t *const p_ctrl, uint8_t *const p_dest, uint32_t
const bytes, bool const restart)

fsp_err_t(* write)(i2c_master_ctrl_t *const p_ctrl, uint8_t *const p_src, uint32_t
const bytes, bool const restart)

fsp_err_t(* abort)(i2c_master_ctrl_t *const p_ctrl)

fsp_err_t(* slaveAddressSet)(i2c_master_ctrl_t *const p_ctrl, uint32_t const

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 403 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2C Master Interface

slave, i2c_master_addr_mode_t const addr_mode)

fsp_err_t(* close)(i2c_master_ctrl_t *const p_ctrl)

fsp_err_t(* versionGet)(fsp_version_t *const p_version)

Field Documentation

◆ open

fsp_err_t(* i2c_master_api_t::open) (i2c_master_ctrl_t *const p_ctrl, i2c_master_cfg_t const *const
p_cfg)

Opens the I2C Master driver and initializes the hardware.

Implemented as

R_IIC_MASTER_Open()
Parameters

[in] p_ctrl Pointer to control block.
Must be declared by user.
Elements are set here.

[in] p_cfg Pointer to configuration
structure.

◆ read

fsp_err_t(* i2c_master_api_t::read) (i2c_master_ctrl_t *const p_ctrl, uint8_t *const p_dest, uint32_t
const bytes, bool const restart)

Performs a read operation on an I2C Master device.

Implemented as

R_IIC_MASTER_Read()
Parameters

[in] p_ctrl Pointer to control block set
in i2c_api_master_t::open
call.

[in] p_dest Pointer to the location to
store read data.

[in] bytes Number of bytes to read.

[in] restart Specify if the restart
condition should be issued
after reading.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 404 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2C Master Interface

◆ write

fsp_err_t(* i2c_master_api_t::write) (i2c_master_ctrl_t *const p_ctrl, uint8_t *const p_src, uint32_t
const bytes, bool const restart)

Performs a write operation on an I2C Master device.

Implemented as

R_IIC_MASTER_Write()
Parameters

[in] p_ctrl Pointer to control block set
in i2c_api_master_t::open
call.

[in] p_src Pointer to the location to get
write data from.

[in] bytes Number of bytes to write.

[in] restart Specify if the restart
condition should be issued
after writing.

◆ abort

fsp_err_t(* i2c_master_api_t::abort) (i2c_master_ctrl_t *const p_ctrl)

Performs a reset of the peripheral.

Implemented as

R_IIC_MASTER_Abort()
Parameters

[in] p_ctrl Pointer to control block set
in i2c_api_master_t::open
call.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 405 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2C Master Interface

◆ slaveAddressSet

fsp_err_t(* i2c_master_api_t::slaveAddressSet) (i2c_master_ctrl_t *const p_ctrl, uint32_t const slave,
i2c_master_addr_mode_t const addr_mode)

Sets address of the slave device without reconfiguring the bus.

Implemented as

R_IIC_MASTER_SlaveAddressSet()
Parameters

[in] p_ctrl Pointer to control block set
in i2c_api_master_t::open
call.

[in] slave_address Address of the slave device.

[in] address_mode Addressing mode.

◆ close

fsp_err_t(* i2c_master_api_t::close) (i2c_master_ctrl_t *const p_ctrl)

Closes the driver and releases the I2C Master device.

Implemented as

R_IIC_MASTER_Close()
Parameters

[in] p_ctrl Pointer to control block set
in i2c_api_master_t::open
call.

◆ versionGet

fsp_err_t(* i2c_master_api_t::versionGet) (fsp_version_t *const p_version)

Gets version information and stores it in the provided version struct.

Implemented as

R_IIC_MASTER_VersionGet()
Parameters

[out] p_version Code and API version used.

◆ i2c_master_instance_t

struct i2c_master_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 406 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2C Master Interface

i2c_master_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

i2c_master_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

i2c_master_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ i2c_master_ctrl_t

typedef void i2c_master_ctrl_t

I2C control block. Allocate an instance specific control block to pass into the I2C API calls.

Implemented as

iic_master_instance_ctrl_t

Enumeration Type Documentation

◆ i2c_master_rate_t

enum i2c_master_rate_t

Communication speed options

Enumerator

I2C_MASTER_RATE_STANDARD 100 kHz

I2C_MASTER_RATE_FAST 400 kHz

I2C_MASTER_RATE_FASTPLUS 1 MHz

◆ i2c_master_addr_mode_t

enum i2c_master_addr_mode_t

Addressing mode options

Enumerator

I2C_MASTER_ADDR_MODE_7BIT Use 7-bit addressing mode.

I2C_MASTER_ADDR_MODE_10BIT Use 10-bit addressing mode.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 407 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2C Master Interface

◆ i2c_master_event_t

enum i2c_master_event_t

Callback events

Enumerator

I2C_MASTER_EVENT_ABORTED A transfer was aborted.

I2C_MASTER_EVENT_RX_COMPLETE A receive operation was completed
successfully.

I2C_MASTER_EVENT_TX_COMPLETE A transmit operation was completed
successfully.

4.3.16 I2C Slave Interface
Interfaces

Detailed Description

Interface for I2C slave communication.

Summary
The I2C slave interface provides a common API for I2C HAL drivers. The I2C slave interface supports:

Interrupt driven transmit/receive processing
Callback function support which returns a event codes

Implemented by:

I2C Slave on IIC (r_iic_slave)

Data Structures

struct i2c_slave_callback_args_t

struct i2c_slave_cfg_t

struct i2c_slave_api_t

struct i2c_slave_instance_t

Typedefs

typedef void i2c_slave_ctrl_t

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 408 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2C Slave Interface

Enumerations

enum i2c_slave_rate_t

enum i2c_slave_addr_mode_t

enum i2c_slave_event_t

Data Structure Documentation

◆ i2c_slave_callback_args_t

struct i2c_slave_callback_args_t

I2C callback parameter definition

Data Fields

void const *const p_context Pointer to user-provided
context.

uint32_t const bytes Number of received/transmitted
bytes in buffer.

i2c_slave_event_t const event Event code.

◆ i2c_slave_cfg_t

struct i2c_slave_cfg_t

I2C configuration block

Data Fields

uint8_t channel

 Identifier recognizable by implementation. More...

i2c_slave_rate_t rate

 Device's maximum clock rate from enum i2c_rate_t.

uint16_t slave

 The address of the slave device.

i2c_slave_addr_mode_t addr_mode

 Indicates how slave fields should be interpreted.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 409 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2C Slave Interface

IRQn_Type rxi_irq

 Receive IRQ number.

IRQn_Type txi_irq

 Transmit IRQ number.

IRQn_Type tei_irq

 Transmit end IRQ number.

IRQn_Type eri_irq

 Error IRQ number.

uint8_t ipl

 Interrupt priority level.

void(* p_callback)(i2c_slave_callback_args_t *p_args)

 Pointer to callback function. More...

void const * p_context

 Pointer to the user-provided context.

void const * p_extend

 Any configuration data needed by the hardware. More...

Field Documentation

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 410 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2C Slave Interface

◆ channel

uint8_t i2c_slave_cfg_t::channel

Identifier recognizable by implementation.

Generic configuration

◆ p_callback

void(* i2c_slave_cfg_t::p_callback) (i2c_slave_callback_args_t *p_args)

Pointer to callback function.

Parameters to control software behavior

◆ p_extend

void const* i2c_slave_cfg_t::p_extend

Any configuration data needed by the hardware.

Implementation-specific configuration

◆ i2c_slave_api_t

struct i2c_slave_api_t

Interface definition for I2C access as slave

Data Fields

fsp_err_t(* open)(i2c_slave_ctrl_t *const p_ctrl, i2c_slave_cfg_t const *const
p_cfg)

fsp_err_t(* read)(i2c_slave_ctrl_t *const p_ctrl, uint8_t *const p_dest, uint32_t
const bytes)

fsp_err_t(* write)(i2c_slave_ctrl_t *const p_ctrl, uint8_t *const p_src, uint32_t
const bytes)

fsp_err_t(* close)(i2c_slave_ctrl_t *const p_ctrl)

fsp_err_t(* versionGet)(fsp_version_t *const p_version)

Field Documentation

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 411 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2C Slave Interface

◆ open

fsp_err_t(* i2c_slave_api_t::open) (i2c_slave_ctrl_t *const p_ctrl, i2c_slave_cfg_t const *const p_cfg)

Opens the I2C Slave driver and initializes the hardware.

Implemented as

R_IIC_SLAVE_Open()
Parameters

[in] p_ctrl Pointer to control block.
Must be declared by user.
Elements are set here.

[in] p_cfg Pointer to configuration
structure.

◆ read

fsp_err_t(* i2c_slave_api_t::read) (i2c_slave_ctrl_t *const p_ctrl, uint8_t *const p_dest, uint32_t
const bytes)

Performs a read operation on an I2C Slave device.

Implemented as

R_IIC_SLAVE_Read()
Parameters

[in] p_ctrl Pointer to control block set
in i2c_slave_api_t::open call.

[in] p_dest Pointer to the location to
store read data.

[in] bytes Number of bytes to read.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 412 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2C Slave Interface

◆ write

fsp_err_t(* i2c_slave_api_t::write) (i2c_slave_ctrl_t *const p_ctrl, uint8_t *const p_src, uint32_t const
bytes)

Performs a write operation on an I2C Slave device.

Implemented as

R_IIC_SLAVE_Write()
Parameters

[in] p_ctrl Pointer to control block set
in i2c_slave_api_t::open call.

[in] p_src Pointer to the location to get
write data from.

[in] bytes Number of bytes to write.

◆ close

fsp_err_t(* i2c_slave_api_t::close) (i2c_slave_ctrl_t *const p_ctrl)

Closes the driver and releases the I2C Slave device.

Implemented as

R_IIC_SLAVE_Close()
Parameters

[in] p_ctrl Pointer to control block set
in i2c_slave_api_t::open call.

◆ versionGet

fsp_err_t(* i2c_slave_api_t::versionGet) (fsp_version_t *const p_version)

Gets version information and stores it in the provided version struct.

Implemented as

R_IIC_SLAVE_VersionGet()
Parameters

[out] p_version Code and API version used.

◆ i2c_slave_instance_t

struct i2c_slave_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

i2c_slave_ctrl_t * p_ctrl Pointer to the control structure

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 413 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2C Slave Interface

for this instance.

i2c_slave_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

i2c_slave_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ i2c_slave_ctrl_t

typedef void i2c_slave_ctrl_t

I2C control block. Allocate an instance specific control block to pass into the I2C API calls.

Implemented as

iic_slave_instance_ctrl_t

Enumeration Type Documentation

◆ i2c_slave_rate_t

enum i2c_slave_rate_t

Communication speed options

Enumerator

I2C_SLAVE_RATE_STANDARD 100 kHz

I2C_SLAVE_RATE_FAST 400 kHz

I2C_SLAVE_RATE_FASTPLUS 1 MHz

◆ i2c_slave_addr_mode_t

enum i2c_slave_addr_mode_t

Addressing mode options

Enumerator

I2C_SLAVE_ADDR_MODE_7BIT Use 7-bit addressing mode.

I2C_SLAVE_ADDR_MODE_10BIT Use 10-bit addressing mode.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 414 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2C Slave Interface

◆ i2c_slave_event_t

enum i2c_slave_event_t

Callback events

Enumerator

I2C_SLAVE_EVENT_ABORTED A transfer was aborted.

I2C_SLAVE_EVENT_RX_COMPLETE A receive operation was completed
successfully.

I2C_SLAVE_EVENT_TX_COMPLETE A transmit operation was completed
successfully.

I2C_SLAVE_EVENT_RX_REQUEST A read operation expected from slave.
Detected a write from master.

I2C_SLAVE_EVENT_TX_REQUEST A write operation expected from slave.
Detected a read from master.

I2C_SLAVE_EVENT_RX_MORE_REQUEST configured to be read in slave.

A read operation expected from slave. Master
sends out more data than

I2C_SLAVE_EVENT_TX_MORE_REQUEST configured to be written by slave.

A write operation expected from slave. Master
requests more data than

4.3.17 I2S Interface
Interfaces

Detailed Description

Interface for I2S audio communication.

Summary
The I2S (Inter-IC Sound) interface provides APIs and definitions for I2S audio communication.

Known Implementations
Serial Sound Interface (r_ssi)

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 415 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2S Interface

Data Structures

struct i2s_callback_args_t

struct i2s_status_t

struct i2s_cfg_t

struct i2s_api_t

struct i2s_instance_t

Macros

#define I2S_API_VERSION_MAJOR

Typedefs

typedef void i2s_ctrl_t

Enumerations

enum i2s_pcm_width_t

enum i2s_word_length_t

enum i2s_event_t

enum i2s_mode_t

enum i2s_mute_t

enum i2s_ws_continue_t

enum i2s_state_t

Data Structure Documentation

◆ i2s_callback_args_t

struct i2s_callback_args_t

Callback function parameter data

Data Fields

void const * p_context Placeholder for user data. Set in
i2s_api_t::open function in
i2s_cfg_t.

i2s_event_t event The event can be used to
identify what caused the
callback (overflow or error).

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 416 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2S Interface

◆ i2s_status_t

struct i2s_status_t

I2S status.

◆ i2s_cfg_t

struct i2s_cfg_t

User configuration structure, used in open function

Data Fields

uint32_t channel

i2s_pcm_width_t pcm_width

 Audio PCM data width.

i2s_word_length_t word_length

 Audio word length, bits must be >= i2s_cfg_t::pcm_width bits.

i2s_ws_continue_t ws_continue

 Whether to continue WS transmission during idle state.

i2s_mode_t operating_mode

 Master or slave mode.

transfer_instance_t const * p_transfer_tx

transfer_instance_t const * p_transfer_rx

void(* p_callback)(i2s_callback_args_t *p_args)

void const * p_context

void const * p_extend

 Extension parameter for hardware specific settings.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 417 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2S Interface

uint8_t rxi_ipl

 Receive interrupt priority.

uint8_t txi_ipl

 Transmit interrupt priority.

uint8_t idle_err_ipl

 Idle/Error interrupt priority.

IRQn_Type txi_irq

 Transmit IRQ number.

IRQn_Type rxi_irq

 Receive IRQ number.

IRQn_Type int_irq

 Idle/Error IRQ number.

Field Documentation

◆ channel

uint32_t i2s_cfg_t::channel

Select a channel corresponding to the channel number of the hardware.

◆ p_transfer_tx

transfer_instance_t const* i2s_cfg_t::p_transfer_tx

To use DTC during write, link a DTC instance here. Set to NULL if unused.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 418 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2S Interface

◆ p_transfer_rx

transfer_instance_t const* i2s_cfg_t::p_transfer_rx

To use DTC during read, link a DTC instance here. Set to NULL if unused.

◆ p_callback

void(* i2s_cfg_t::p_callback) (i2s_callback_args_t *p_args)

Callback provided when an I2S ISR occurs. Set to NULL for no CPU interrupt.

◆ p_context

void const* i2s_cfg_t::p_context

Placeholder for user data. Passed to the user callback in i2s_callback_args_t.

◆ i2s_api_t

struct i2s_api_t

I2S functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(i2s_ctrl_t *const p_ctrl, i2s_cfg_t const *const p_cfg)

fsp_err_t(* stop)(i2s_ctrl_t *const p_ctrl)

fsp_err_t(* mute)(i2s_ctrl_t *const p_ctrl, i2s_mute_t const mute_enable)

fsp_err_t(* write)(i2s_ctrl_t *const p_ctrl, void const *const p_src, uint32_t const
bytes)

fsp_err_t(* read)(i2s_ctrl_t *const p_ctrl, void *const p_dest, uint32_t const
bytes)

fsp_err_t(* writeRead)(i2s_ctrl_t *const p_ctrl, void const *const p_src, void
*const p_dest, uint32_t const bytes)

fsp_err_t(* statusGet)(i2s_ctrl_t *const p_ctrl, i2s_status_t *const p_status)

fsp_err_t(* close)(i2s_ctrl_t *const p_ctrl)

fsp_err_t(* versionGet)(fsp_version_t *const p_version)

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 419 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2S Interface

Field Documentation

◆ open

fsp_err_t(* i2s_api_t::open) (i2s_ctrl_t *const p_ctrl, i2s_cfg_t const *const p_cfg)

Initial configuration.

Implemented as

R_SSI_Open()
Precondition

Peripheral clocks and any required output pins should be configured prior to calling this
function.

Note
To reconfigure after calling this function, call i2s_api_t::close first.

Parameters
[in] p_ctrl Pointer to control block.

Must be declared by user.
Elements set here.

[in] p_cfg Pointer to configuration
structure. All elements of
this structure must be set by
user.

◆ stop

fsp_err_t(* i2s_api_t::stop) (i2s_ctrl_t *const p_ctrl)

Stop communication. Communication is stopped when callback is called with I2S_EVENT_IDLE.

Implemented as

R_SSI_Stop()
Parameters

[in] p_ctrl Control block set in
i2s_api_t::open call for this
instance.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 420 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2S Interface

◆ mute

fsp_err_t(* i2s_api_t::mute) (i2s_ctrl_t *const p_ctrl, i2s_mute_t const mute_enable)

Enable or disable mute.

Implemented as

R_SSI_Mute()
Parameters

[in] p_ctrl Control block set in
i2s_api_t::open call for this
instance.

[in] mute_enable Whether to enable or disable
mute.

◆ write

fsp_err_t(* i2s_api_t::write) (i2s_ctrl_t *const p_ctrl, void const *const p_src, uint32_t const bytes)

Write I2S data. All transmit data is queued when callback is called with I2S_EVENT_TX_EMPTY.
Transmission is complete when callback is called with I2S_EVENT_IDLE.

Implemented as

R_SSI_Write()
Parameters

[in] p_ctrl Control block set in
i2s_api_t::open call for this
instance.

[in] p_src Buffer of PCM samples. Must
be 4 byte aligned.

[in] bytes Number of bytes in the
buffer. Recommended
requesting a multiple of 8
bytes. If not a multiple of 8,
padding 0s will be added to
transmission to make it a
multiple of 8.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 421 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2S Interface

◆ read

fsp_err_t(* i2s_api_t::read) (i2s_ctrl_t *const p_ctrl, void *const p_dest, uint32_t const bytes)

Read I2S data. Reception is complete when callback is called with I2S_EVENT_RX_EMPTY.

Implemented as

R_SSI_Read()
Parameters

[in] p_ctrl Control block set in
i2s_api_t::open call for this
instance.

[in] p_dest Buffer to store PCM samples.
Must be 4 byte aligned.

[in] bytes Number of bytes in the
buffer. Recommended
requesting a multiple of 8
bytes. If not a multiple of 8,
receive will stop at the
multiple of 8 below
requested bytes.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 422 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2S Interface

◆ writeRead

fsp_err_t(* i2s_api_t::writeRead) (i2s_ctrl_t *const p_ctrl, void const *const p_src, void *const
p_dest, uint32_t const bytes)

Simultaneously write and read I2S data. Transmission and reception are complete when callback is
called with I2S_EVENT_IDLE.

Implemented as

R_SSI_WriteRead()
Parameters

[in] p_ctrl Control block set in
i2s_api_t::open call for this
instance.

[in] p_src Buffer of PCM samples. Must
be 4 byte aligned.

[in] p_dest Buffer to store PCM samples.
Must be 4 byte aligned.

[in] bytes Number of bytes in the
buffers. Recommended
requesting a multiple of 8
bytes. If not a multiple of 8,
padding 0s will be added to
transmission to make it a
multiple of 8, and receive
will stop at the multiple of 8
below requested bytes.

◆ statusGet

fsp_err_t(* i2s_api_t::statusGet) (i2s_ctrl_t *const p_ctrl, i2s_status_t *const p_status)

Get current status and store it in provided pointer p_status.

Implemented as

R_SSI_StatusGet()
Parameters

[in] p_ctrl Control block set in
i2s_api_t::open call for this
instance.

[out] p_status Current status of the driver.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 423 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2S Interface

◆ close

fsp_err_t(* i2s_api_t::close) (i2s_ctrl_t *const p_ctrl)

Allows driver to be reconfigured and may reduce power consumption.

Implemented as

R_SSI_Close()
Parameters

[in] p_ctrl Control block set in
i2s_api_t::open call for this
instance.

◆ versionGet

fsp_err_t(* i2s_api_t::versionGet) (fsp_version_t *const p_version)

Get version and store it in provided pointer p_version.

Implemented as

R_SSI_VersionGet()
Parameters

[out] p_version Code and API version used.

◆ i2s_instance_t

struct i2s_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

i2s_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

i2s_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

i2s_api_t const * p_api Pointer to the API structure for
this instance.

Macro Definition Documentation

◆ I2S_API_VERSION_MAJOR

#define I2S_API_VERSION_MAJOR

Register definitions, common services and error codes.

Typedef Documentation

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 424 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2S Interface

◆ i2s_ctrl_t

typedef void i2s_ctrl_t

I2S control block. Allocate an instance specific control block to pass into the I2S API calls.

Implemented as

ssi_instance_ctrl_t

Enumeration Type Documentation

◆ i2s_pcm_width_t

enum i2s_pcm_width_t

Audio PCM width

Enumerator

I2S_PCM_WIDTH_8_BITS Using 8-bit PCM.

I2S_PCM_WIDTH_16_BITS Using 16-bit PCM.

I2S_PCM_WIDTH_18_BITS Using 18-bit PCM.

I2S_PCM_WIDTH_20_BITS Using 20-bit PCM.

I2S_PCM_WIDTH_22_BITS Using 22-bit PCM.

I2S_PCM_WIDTH_24_BITS Using 24-bit PCM.

I2S_PCM_WIDTH_32_BITS Using 24-bit PCM.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 425 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2S Interface

◆ i2s_word_length_t

enum i2s_word_length_t

Audio system word length.

Enumerator

I2S_WORD_LENGTH_8_BITS Using 8-bit system word length.

I2S_WORD_LENGTH_16_BITS Using 16-bit system word length.

I2S_WORD_LENGTH_24_BITS Using 24-bit system word length.

I2S_WORD_LENGTH_32_BITS Using 32-bit system word length.

I2S_WORD_LENGTH_48_BITS Using 48-bit system word length.

I2S_WORD_LENGTH_64_BITS Using 64-bit system word length.

I2S_WORD_LENGTH_128_BITS Using 128-bit system word length.

I2S_WORD_LENGTH_256_BITS Using 256-bit system word length.

◆ i2s_event_t

enum i2s_event_t

Events that can trigger a callback function

Enumerator

I2S_EVENT_IDLE Communication is idle.

I2S_EVENT_TX_EMPTY Transmit buffer is below FIFO trigger level.

I2S_EVENT_RX_FULL Receive buffer is above FIFO trigger level.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 426 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2S Interface

◆ i2s_mode_t

enum i2s_mode_t

I2S communication mode

Enumerator

I2S_MODE_SLAVE Slave mode.

I2S_MODE_MASTER Master mode.

◆ i2s_mute_t

enum i2s_mute_t

Mute audio samples.

Enumerator

I2S_MUTE_OFF Disable mute.

I2S_MUTE_ON Enable mute.

◆ i2s_ws_continue_t

enum i2s_ws_continue_t

Whether to continue WS (word select line) transmission during idle state.

Enumerator

I2S_WS_CONTINUE_ON Enable WS continue mode.

I2S_WS_CONTINUE_OFF Disable WS continue mode.

◆ i2s_state_t

enum i2s_state_t

Possible status values returned by i2s_api_t::statusGet.

Enumerator

I2S_STATE_IN_USE I2S is in use.

I2S_STATE_STOPPED I2S is stopped.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 427 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > I/O Port Interface

4.3.18 I/O Port Interface
Interfaces

Detailed Description

Interface for accessing I/O ports and configuring I/O functionality.

Summary
The IOPort shared interface provides the ability to access the IOPorts of a device at both bit and port
level. Port and pin direction can be changed.

IOPORT Interface description: I/O Ports (r_ioport)

Data Structures

struct ioport_pin_cfg_t

struct ioport_cfg_t

struct ioport_api_t

struct ioport_instance_t

Typedefs

typedef uint16_t ioport_size_t

 IO port size on this device. More...

typedef void ioport_ctrl_t

Enumerations

enum ioport_peripheral_t

enum ioport_ethernet_channel_t

enum ioport_ethernet_mode_t

enum ioport_cfg_options_t

enum ioport_pwpr_t

Data Structure Documentation

◆ ioport_pin_cfg_t

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 428 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > I/O Port Interface

struct ioport_pin_cfg_t

Pin identifier and pin PFS pin configuration value

Data Fields

uint32_t pin_cfg Pin PFS configuration - Use
ioport_cfg_options_t parameters
to configure.

bsp_io_port_pin_t pin Pin identifier.

◆ ioport_cfg_t

struct ioport_cfg_t

Multiple pin configuration data for loading into PFS registers by R_IOPORT_Init()

Data Fields

uint16_t number_of_pins Number of pins for which there
is configuration data.

ioport_pin_cfg_t const * p_pin_cfg_data Pin configuration data.

◆ ioport_api_t

struct ioport_api_t

IOPort driver structure. IOPort functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(ioport_ctrl_t *const p_ctrl, const ioport_cfg_t *p_cfg)

fsp_err_t(* close)(ioport_ctrl_t *const p_ctrl)

fsp_err_t(* pinsCfg)(ioport_ctrl_t *const p_ctrl, const ioport_cfg_t *p_cfg)

fsp_err_t(* pinCfg)(ioport_ctrl_t *const p_ctrl, bsp_io_port_pin_t pin, uint32_t
cfg)

fsp_err_t(* pinEventInputRead)(ioport_ctrl_t *const p_ctrl, bsp_io_port_pin_t pin,
bsp_io_level_t *p_pin_event)

fsp_err_t(* pinEventOutputWrite)(ioport_ctrl_t *const p_ctrl, bsp_io_port_pin_t
pin, bsp_io_level_t pin_value)

fsp_err_t(* pinEthernetModeCfg)(ioport_ctrl_t *const p_ctrl,
ioport_ethernet_channel_t channel, ioport_ethernet_mode_t mode)

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 429 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > I/O Port Interface

fsp_err_t(* pinRead)(ioport_ctrl_t *const p_ctrl, bsp_io_port_pin_t pin,
bsp_io_level_t *p_pin_value)

fsp_err_t(* pinWrite)(ioport_ctrl_t *const p_ctrl, bsp_io_port_pin_t pin,
bsp_io_level_t level)

fsp_err_t(* portDirectionSet)(ioport_ctrl_t *const p_ctrl, bsp_io_port_t port,
ioport_size_t direction_values, ioport_size_t mask)

fsp_err_t(* portEventInputRead)(ioport_ctrl_t *const p_ctrl, bsp_io_port_t port,
ioport_size_t *p_event_data)

fsp_err_t(* portEventOutputWrite)(ioport_ctrl_t *const p_ctrl, bsp_io_port_t port,
ioport_size_t event_data, ioport_size_t mask_value)

fsp_err_t(* portRead)(ioport_ctrl_t *const p_ctrl, bsp_io_port_t port, ioport_size_t
*p_port_value)

fsp_err_t(* portWrite)(ioport_ctrl_t *const p_ctrl, bsp_io_port_t port,
ioport_size_t value, ioport_size_t mask)

fsp_err_t(* versionGet)(fsp_version_t *p_data)

Field Documentation

◆ open

fsp_err_t(* ioport_api_t::open) (ioport_ctrl_t *const p_ctrl, const ioport_cfg_t *p_cfg)

Initialize internal driver data and initial pin configurations. Called during startup. Do not call this API
during runtime. Use ioport_api_t::pinsCfg for runtime reconfiguration of multiple pins.

Implemented as

R_IOPORT_Open()
Parameters

[in] p_cfg Pointer to pin configuration
data array.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 430 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > I/O Port Interface

◆ close

fsp_err_t(* ioport_api_t::close) (ioport_ctrl_t *const p_ctrl)

Close the API.

Implemented as

R_IOPORT_Close()
Parameters

[in] p_ctrl Pointer to control structure.

◆ pinsCfg

fsp_err_t(* ioport_api_t::pinsCfg) (ioport_ctrl_t *const p_ctrl, const ioport_cfg_t *p_cfg)

Configure multiple pins.

Implemented as

R_IOPORT_PinsCfg()
Parameters

[in] p_cfg Pointer to pin configuration
data array.

◆ pinCfg

fsp_err_t(* ioport_api_t::pinCfg) (ioport_ctrl_t *const p_ctrl, bsp_io_port_pin_t pin, uint32_t cfg)

Configure settings for an individual pin.

Implemented as

R_IOPORT_PinCfg()
Parameters

[in] pin Pin to be read.

[in] cfg Configuration options for the
pin.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 431 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > I/O Port Interface

◆ pinEventInputRead

fsp_err_t(* ioport_api_t::pinEventInputRead) (ioport_ctrl_t *const p_ctrl, bsp_io_port_pin_t pin,
bsp_io_level_t *p_pin_event)

Read the event input data of the specified pin and return the level.

Implemented as

R_IOPORT_PinEventInputRead()
Parameters

[in] pin Pin to be read.

[in] p_pin_event Pointer to return the event
data.

◆ pinEventOutputWrite

fsp_err_t(* ioport_api_t::pinEventOutputWrite) (ioport_ctrl_t *const p_ctrl, bsp_io_port_pin_t pin,
bsp_io_level_t pin_value)

Write pin event data.

Implemented as

R_IOPORT_PinEventOutputWrite()
Parameters

[in] pin Pin event data is to be
written to.

[in] pin_value Level to be written to pin
output event.

◆ pinEthernetModeCfg

fsp_err_t(* ioport_api_t::pinEthernetModeCfg) (ioport_ctrl_t *const p_ctrl, ioport_ethernet_channel_t
channel, ioport_ethernet_mode_t mode)

Configure the PHY mode of the Ethernet channels.

Implemented as

R_IOPORT_EthernetModeCfg()
Parameters

[in] channel Channel configuration will be
set for.

[in] mode PHY mode to set the channel
to.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 432 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > I/O Port Interface

◆ pinRead

fsp_err_t(* ioport_api_t::pinRead) (ioport_ctrl_t *const p_ctrl, bsp_io_port_pin_t pin, bsp_io_level_t
*p_pin_value)

Read level of a pin.

Implemented as

R_IOPORT_PinRead()
Parameters

[in] pin Pin to be read.

[in] p_pin_value Pointer to return the pin
level.

◆ pinWrite

fsp_err_t(* ioport_api_t::pinWrite) (ioport_ctrl_t *const p_ctrl, bsp_io_port_pin_t pin, bsp_io_level_t
level)

Write specified level to a pin.

Implemented as

R_IOPORT_PinWrite()
Parameters

[in] pin Pin to be written to.

[in] level State to be written to the
pin.

◆ portDirectionSet

fsp_err_t(* ioport_api_t::portDirectionSet) (ioport_ctrl_t *const p_ctrl, bsp_io_port_t port,
ioport_size_t direction_values, ioport_size_t mask)

Set the direction of one or more pins on a port.

Implemented as

R_IOPORT_PortDirectionSet()
Parameters

[in] port Port being configured.

[in] direction_values Value controlling direction of
pins on port (1 - output, 0 -
input).

[in] mask Mask controlling which pins
on the port are to be
configured.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 433 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > I/O Port Interface

◆ portEventInputRead

fsp_err_t(* ioport_api_t::portEventInputRead) (ioport_ctrl_t *const p_ctrl, bsp_io_port_t port,
ioport_size_t *p_event_data)

Read captured event data for a port.

Implemented as

R_IOPORT_PortEventInputRead()
Parameters

[in] port Port to be read.

[in] p_event_data Pointer to return the event
data.

◆ portEventOutputWrite

fsp_err_t(* ioport_api_t::portEventOutputWrite) (ioport_ctrl_t *const p_ctrl, bsp_io_port_t port,
ioport_size_t event_data, ioport_size_t mask_value)

Write event output data for a port.

Implemented as

R_IOPORT_PortEventOutputWrite()
Parameters

[in] port Port event data will be
written to.

[in] event_data Data to be written as event
data to specified port.

[in] mask_value Each bit set to 1 in the mask
corresponds to that bit's
value in event data. being
written to port.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 434 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > I/O Port Interface

◆ portRead

fsp_err_t(* ioport_api_t::portRead) (ioport_ctrl_t *const p_ctrl, bsp_io_port_t port, ioport_size_t
*p_port_value)

Read states of pins on the specified port.

Implemented as

R_IOPORT_PortRead()
Parameters

[in] port Port to be read.

[in] p_port_value Pointer to return the port
value.

◆ portWrite

fsp_err_t(* ioport_api_t::portWrite) (ioport_ctrl_t *const p_ctrl, bsp_io_port_t port, ioport_size_t
value, ioport_size_t mask)

Write to multiple pins on a port.

Implemented as

R_IOPORT_PortWrite()
Parameters

[in] port Port to be written to.

[in] value Value to be written to the
port.

[in] mask Mask controlling which pins
on the port are written to.

◆ versionGet

fsp_err_t(* ioport_api_t::versionGet) (fsp_version_t *p_data)

Return the version of the IOPort driver.

Implemented as

R_IOPORT_VersionGet()
Parameters

[out] p_data Memory address to return
version information to.

◆ ioport_instance_t

struct ioport_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 435 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > I/O Port Interface

Data Fields

ioport_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

ioport_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

ioport_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ ioport_size_t

typedef uint16_t ioport_size_t

IO port size on this device.

IO port type used with ports

◆ ioport_ctrl_t

typedef void ioport_ctrl_t

IOPORT control block. Allocate an instance specific control block to pass into the IOPORT API calls.

Implemented as

ioport_instance_ctrl_t

Enumeration Type Documentation

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 436 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > I/O Port Interface

◆ ioport_peripheral_t

enum ioport_peripheral_t

Superset of all peripheral functions.

Enumerator

IOPORT_PERIPHERAL_IO Pin will functions as an IO pin

IOPORT_PERIPHERAL_DEBUG Pin will function as a DEBUG pin

IOPORT_PERIPHERAL_AGT Pin will function as an AGT peripheral pin

IOPORT_PERIPHERAL_GPT0 Pin will function as a GPT peripheral pin

IOPORT_PERIPHERAL_GPT1 Pin will function as a GPT peripheral pin

IOPORT_PERIPHERAL_SCI0_2_4_6_8 Pin will function as an SCI peripheral pin

IOPORT_PERIPHERAL_SCI1_3_5_7_9 Pin will function as an SCI peripheral pin

IOPORT_PERIPHERAL_SPI Pin will function as a SPI peripheral pin

IOPORT_PERIPHERAL_IIC Pin will function as a IIC peripheral pin

IOPORT_PERIPHERAL_KEY Pin will function as a KEY peripheral pin

IOPORT_PERIPHERAL_CLKOUT_COMP_RTC Pin will function as a clock/comparator/RTC
peripheral pin

IOPORT_PERIPHERAL_CAC_AD Pin will function as a CAC/ADC peripheral pin

IOPORT_PERIPHERAL_BUS Pin will function as a BUS peripheral pin

IOPORT_PERIPHERAL_CTSU Pin will function as a CTSU peripheral pin

IOPORT_PERIPHERAL_LCDC Pin will function as a segment LCD peripheral
pin

IOPORT_PERIPHERAL_DALI Pin will function as a DALI peripheral pin

IOPORT_PERIPHERAL_CAN Pin will function as a CAN peripheral pin

IOPORT_PERIPHERAL_QSPI Pin will function as a QSPI peripheral pin

IOPORT_PERIPHERAL_SSI Pin will function as an SSI peripheral pin

IOPORT_PERIPHERAL_USB_FS Pin will function as a USB full speed peripheral
pin

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 437 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > I/O Port Interface

IOPORT_PERIPHERAL_USB_HS Pin will function as a USB high speed
peripheral pin

IOPORT_PERIPHERAL_SDHI_MMC Pin will function as an SD/MMC peripheral pin

IOPORT_PERIPHERAL_ETHER_MII Pin will function as an Ethernet MMI peripheral
pin

IOPORT_PERIPHERAL_ETHER_RMII Pin will function as an Ethernet RMMI
peripheral pin

IOPORT_PERIPHERAL_PDC Pin will function as a PDC peripheral pin

IOPORT_PERIPHERAL_LCD_GRAPHICS Pin will function as a graphics LCD peripheral
pin

IOPORT_PERIPHERAL_TRACE Pin will function as a debug trace peripheral
pin

IOPORT_PERIPHERAL_END Marks end of enum - used by parameter
checking

◆ ioport_ethernet_channel_t

enum ioport_ethernet_channel_t

Superset of Ethernet channels.

Enumerator

IOPORT_ETHERNET_CHANNEL_0 Used to select Ethernet channel 0.

IOPORT_ETHERNET_CHANNEL_1 Used to select Ethernet channel 1.

IOPORT_ETHERNET_CHANNEL_END Marks end of enum - used by parameter
checking.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 438 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > I/O Port Interface

◆ ioport_ethernet_mode_t

enum ioport_ethernet_mode_t

Superset of Ethernet PHY modes.

Enumerator

IOPORT_ETHERNET_MODE_RMII Ethernet PHY mode set to MII.

IOPORT_ETHERNET_MODE_MII Ethernet PHY mode set to RMII.

IOPORT_ETHERNET_MODE_END Marks end of enum - used by parameter
checking.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 439 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > I/O Port Interface

◆ ioport_cfg_options_t

enum ioport_cfg_options_t

Options to configure pin functions

Enumerator

IOPORT_CFG_PORT_DIRECTION_INPUT Sets the pin direction to input (default)

IOPORT_CFG_PORT_DIRECTION_OUTPUT Sets the pin direction to output.

IOPORT_CFG_PORT_OUTPUT_LOW Sets the pin level to low.

IOPORT_CFG_PORT_OUTPUT_HIGH Sets the pin level to high.

IOPORT_CFG_PULLUP_ENABLE Enables the pin's internal pull-up.

IOPORT_CFG_PIM_TTL Enables the pin's input mode.

IOPORT_CFG_NMOS_ENABLE Enables the pin's NMOS open-drain output.

IOPORT_CFG_PMOS_ENABLE Enables the pin's PMOS open-drain ouput.

IOPORT_CFG_DRIVE_MID Sets pin drive output to medium.

IOPORT_CFG_DRIVE_MID_IIC Sets pin to drive output needed for IIC on a
20mA port.

IOPORT_CFG_DRIVE_HIGH Sets pin drive output to high.

IOPORT_CFG_EVENT_RISING_EDGE Sets pin event trigger to rising edge.

IOPORT_CFG_EVENT_FALLING_EDGE Sets pin event trigger to falling edge.

IOPORT_CFG_EVENT_BOTH_EDGES Sets pin event trigger to both edges.

IOPORT_CFG_IRQ_ENABLE Sets pin as an IRQ pin.

IOPORT_CFG_ANALOG_ENABLE Enables pin to operate as an analog pin.

IOPORT_CFG_PERIPHERAL_PIN Enables pin to operate as a peripheral pin.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 440 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > I/O Port Interface

◆ ioport_pwpr_t

enum ioport_pwpr_t

Enumerator

IOPORT_PFS_WRITE_DISABLE Disable PFS write access.

IOPORT_PFS_WRITE_ENABLE Enable PFS write access.

4.3.19 JPEG Codec Interface
Interfaces

Detailed Description

Interface for JPEG functions.

Data Structures

struct jpeg_decode_callback_args_t

struct jpeg_decode_cfg_t

struct jpeg_decode_api_t

struct jpeg_decode_instance_t

Macros

#define JPEG_DECODE_API_VERSION_MAJOR

Typedefs

typedef void jpeg_decode_ctrl_t

Enumerations

enum jpeg_decode_color_space_t

enum jpeg_data_order_t

enum jpeg_decode_pixel_format_t

enum jpeg_decode_status_t

enum jpeg_decode_subsample_t

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 441 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > JPEG Codec Interface

enum jpeg_decode_count_enable_t

enum jpeg_decode_resume_mode_t

Data Structure Documentation

◆ jpeg_decode_callback_args_t

struct jpeg_decode_callback_args_t

Callback status structure

Data Fields

jpeg_decode_status_t status JPEG status.

void const * p_context Pointer to user-provided
context.

◆ jpeg_decode_cfg_t

struct jpeg_decode_cfg_t

User configuration structure, used in open function.

Data Fields

jpeg_decode_color_space_t color_space

 Color space.

jpeg_data_order_t input_data_order

 Input data stream byte order.

jpeg_data_order_t output_data_order

 Output data stream byte order.

jpeg_decode_pixel_format_t pixel_format

 Pixel format.

uint8_t alpha_value

 Alpha value to be applied to decoded pixel data. Only valid for
ARGB888 format.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 442 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > JPEG Codec Interface

IRQn_Type jedi_irq

 Data transfer interrupt IRQ number.

IRQn_Type jdti_irq

 Decompression interrupt IRQ number.

uint8_t jdti_ipl

 Data transfer interrupt priority.

uint8_t jedi_ipl

 Decompression interrupt priority.

void(* p_callback)(jpeg_decode_callback_args_t *p_args)

 User-supplied callback functions.

void const * p_context

 Placeholder for user data. Passed to user callback in
jpeg_decode_callback_args_t.

◆ jpeg_decode_api_t

struct jpeg_decode_api_t

JPEG functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(jpeg_decode_ctrl_t *const p_ctrl, jpeg_decode_cfg_t const
*const p_cfg)

fsp_err_t(* outputBufferSet)(jpeg_decode_ctrl_t *const p_ctrl, void *p_buffer,
uint32_t buffer_size)

fsp_err_t(* horizontalStrideSet)(jpeg_decode_ctrl_t *const p_ctrl, uint32_t

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 443 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > JPEG Codec Interface

horizontal_stride)

fsp_err_t(* imageSubsampleSet)(jpeg_decode_ctrl_t *const p_ctrl,
jpeg_decode_subsample_t horizontal_subsample,
jpeg_decode_subsample_t vertical_subsample)

fsp_err_t(* inputBufferSet)(jpeg_decode_ctrl_t *const p_ctrl, void *p_buffer,
uint32_t buffer_size)

fsp_err_t(* linesDecodedGet)(jpeg_decode_ctrl_t *const p_ctrl, uint32_t *const
p_lines)

fsp_err_t(* imageSizeGet)(jpeg_decode_ctrl_t *const p_ctrl, uint16_t
*p_horizontal_size, uint16_t *p_vertical_size)

fsp_err_t(* statusGet)(jpeg_decode_ctrl_t *const p_ctrl, jpeg_decode_status_t
*const p_status)

fsp_err_t(* close)(jpeg_decode_ctrl_t *const p_ctrl)

fsp_err_t(* versionGet)(fsp_version_t *p_version)

fsp_err_t(* pixelFormatGet)(jpeg_decode_ctrl_t *const p_ctrl,
jpeg_decode_color_space_t *const p_color_space)

Field Documentation

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 444 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > JPEG Codec Interface

◆ open

fsp_err_t(* jpeg_decode_api_t::open) (jpeg_decode_ctrl_t *const p_ctrl, jpeg_decode_cfg_t const
*const p_cfg)

Initial configuration

Implemented as

R_JPEG_Decode_Open()
Precondition

none
Parameters

[in,out] p_ctrl Pointer to control block.
Must be declared by user.
Elements set here.

[in] p_cfg Pointer to configuration
structure. All elements of
this structure must be set by
user.

◆ outputBufferSet

fsp_err_t(* jpeg_decode_api_t::outputBufferSet) (jpeg_decode_ctrl_t *const p_ctrl, void *p_buffer,
uint32_t buffer_size)

Assign output buffer to JPEG codec for storing output data.

Implemented as

R_JPEG_Decode_OutputBufferSet()
Precondition

The JPEG codec module must have been opened properly.
Note

The buffer starting address must be 8-byte aligned. For the decoding process, the HLD driver automatically
computes the number of lines of the image to decoded so the output data fits into the given space. If the supplied
output buffer is not able to hold the entire frame, the application should call the Output Full Callback function so it
can be notified when additional buffer space is needed.

Parameters
[in] p_ctrl Control block set in

jpeg_decode_api_t::open
call.

[in] p_buffer Pointer to the output buffer
space

[in] buffer_size Size of the output buffer

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 445 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > JPEG Codec Interface

◆ horizontalStrideSet

fsp_err_t(* jpeg_decode_api_t::horizontalStrideSet) (jpeg_decode_ctrl_t *const p_ctrl, uint32_t
horizontal_stride)

Configure the horizontal stride value.

Implemented as

R_JPEG_Decode_HorizontalStrideSet()
Precondition

The JPEG codec module must have been opened properly.
Parameters

[in] p_ctrl Control block set in
jpeg_decode_api_t::open
call.

[in] horizontal_stride Horizontal stride value to be
used for the decoded image
data.

[in] buffer_size Size of the output buffer

◆ imageSubsampleSet

fsp_err_t(* jpeg_decode_api_t::imageSubsampleSet) (jpeg_decode_ctrl_t *const p_ctrl,
jpeg_decode_subsample_t horizontal_subsample, jpeg_decode_subsample_t vertical_subsample)

Configure the horizontal and vertical subsample settings.

Implemented as

R_JPEG_Decode_ImageSubsampleSet()
Precondition

The JPEG codec module must have been opened properly.
Parameters

[in] p_ctrl Control block set in
jpeg_decode_api_t::open
call.

[in] horizontal_subsample Horizontal subsample value

[in] vertical_subsample Vertical subsample value

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 446 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > JPEG Codec Interface

◆ inputBufferSet

fsp_err_t(* jpeg_decode_api_t::inputBufferSet) (jpeg_decode_ctrl_t *const p_ctrl, void *p_buffer,
uint32_t buffer_size)

Assign input data buffer to JPEG codec.

Implemented as

R_JPEG_Decode_InputBufferSet()
Precondition

the JPEG codec module must have been opened properly.
Note

The buffer starting address must be 8-byte aligned.
Parameters

[in] p_ctrl Control block set in
jpeg_decode_api_t::open
call.

[in] p_buffer Pointer to the input buffer
space

[in] buffer_size Size of the input buffer

◆ linesDecodedGet

fsp_err_t(* jpeg_decode_api_t::linesDecodedGet) (jpeg_decode_ctrl_t *const p_ctrl, uint32_t *const
p_lines)

Return the number of lines decoded into the output buffer.

Implemented as

R_JPEG_Decode_LinesDecodedGet()
Precondition

the JPEG codec module must have been opened properly.
Parameters

[in] p_ctrl Control block set in
jpeg_decode_api_t::open
call.

[out] p_lines Number of lines decoded

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 447 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > JPEG Codec Interface

◆ imageSizeGet

fsp_err_t(* jpeg_decode_api_t::imageSizeGet) (jpeg_decode_ctrl_t *const p_ctrl, uint16_t
*p_horizontal_size, uint16_t *p_vertical_size)

Retrieve image size during decoding operation.

Implemented as

R_JPEG_Decode_ImageSizeGet()
Precondition

the JPEG codec module must have been opened properly.
Note

If the encoding or the decoding operation is finished without errors, the HLD driver automatically closes the
device. In this case, application does not need to explicitly close the JPEG device.

Parameters
[in] p_ctrl Control block set in

jpeg_decode_api_t::open
call.

[out] p_horizontal_size Image horizontal size, in
number of pixels.

[out] p_vertical_size Image vertical size, in
number of pixels.

◆ statusGet

fsp_err_t(* jpeg_decode_api_t::statusGet) (jpeg_decode_ctrl_t *const p_ctrl, jpeg_decode_status_t
*const p_status)

Retrieve current status of the JPEG codec module.

Implemented as

R_JPEG_Decode_StatusGet()
Precondition

the JPEG codec module must have been opened properly.
Parameters

[in] p_ctrl Control block set in
jpeg_decode_api_t::open
call.

[out] p_status JPEG module status

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 448 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > JPEG Codec Interface

◆ close

fsp_err_t(* jpeg_decode_api_t::close) (jpeg_decode_ctrl_t *const p_ctrl)

Cancel an outstanding operation.

Implemented as

R_JPEG_Decode_Close()
Precondition

the JPEG codec module must have been opened properly.
Note

If the encoding or the decoding operation is finished without errors, the HLD driver automatically closes the
device. In this case, application does not need to explicitly close the JPEG device.

Parameters
[in] p_ctrl Control block set in

jpeg_decode_api_t::open
call.

◆ versionGet

fsp_err_t(* jpeg_decode_api_t::versionGet) (fsp_version_t *p_version)

Get version and store it in provided pointer p_version.

Implemented as

R_JPEG_Decode_VersionGet()
Parameters

[out] p_version Code and API version used.

◆ pixelFormatGet

fsp_err_t(* jpeg_decode_api_t::pixelFormatGet) (jpeg_decode_ctrl_t *const p_ctrl,
jpeg_decode_color_space_t *const p_color_space)

Get the input pixel format.

Implemented as

R_JPEG_Decode_PixelFormatGet()
Precondition

the JPEG codec module must have been opened properly.
Parameters

[in] p_ctrl Control block set in
jpeg_decode_api_t::open
call.

[out] p_color_space JPEG input format.

◆ jpeg_decode_instance_t

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 449 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > JPEG Codec Interface

struct jpeg_decode_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

jpeg_decode_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

jpeg_decode_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

jpeg_decode_api_t const * p_api Pointer to the API structure for
this instance.

Macro Definition Documentation

◆ JPEG_DECODE_API_VERSION_MAJOR

#define JPEG_DECODE_API_VERSION_MAJOR

Register definitions, common services and error codes. Configuration for this module

Typedef Documentation

◆ jpeg_decode_ctrl_t

typedef void jpeg_decode_ctrl_t

JPEG decode control block. Allocate an instance specific control block to pass into the JPEG decode
API calls.

Implemented as

jpeg_decode_instance_ctrl_t

Enumeration Type Documentation

◆ jpeg_decode_color_space_t

enum jpeg_decode_color_space_t

Image color space definitions

Enumerator

JPEG_DECODE_COLOR_SPACE_YCBCR444 Color Space YCbCr 444.

JPEG_DECODE_COLOR_SPACE_YCBCR422 Color Space YCbCr 422.

JPEG_DECODE_COLOR_SPACE_YCBCR420 Color Space YCbCr 420.

JPEG_DECODE_COLOR_SPACE_YCBCR411 Color Space YCbCr 411.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 450 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > JPEG Codec Interface

◆ jpeg_data_order_t

enum jpeg_data_order_t

Multi-byte Data Format

Enumerator

JPEG_DATA_ORDER_NORMAL (1)(2)(3)(4)(5)(6)(7)(8) Normal byte order

JPEG_DATA_ORDER_BYTE_SWAP (2)(1)(4)(3)(6)(5)(8)(7) Byte Swap

JPEG_DATA_ORDER_WORD_SWAP (3)(4)(1)(2)(7)(8)(5)(6) Word Swap

JPEG_DATA_ORDER_WORD_BYTE_SWAP (4)(3)(2)(1)(8)(7)(6)(5) Word-Byte Swap

JPEG_DATA_ORDER_LONGWORD_SWAP (5)(6)(7)(8)(1)(2)(3)(4) Longword Swap

JPEG_DATA_ORDER_LONGWORD_BYTE_SWAP (6)(5)(8)(7)(2)(1)(4)(3) Longword Byte Swap

JPEG_DATA_ORDER_LONGWORD_WORD_SWAP (7)(8)(5)(6)(3)(4)(1)(2) Longword Word Swap

JPEG_DATA_ORDER_LONGWORD_WORD_BYTE_S
WAP

(8)(7)(6)(5)(4)(3)(2)(1) Longword Word Byte
Swap

◆ jpeg_decode_pixel_format_t

enum jpeg_decode_pixel_format_t

Pixel Data Format

Enumerator

JPEG_DECODE_PIXEL_FORMAT_ARGB8888 Pixel Data ARGB8888 format.

JPEG_DECODE_PIXEL_FORMAT_RGB565 Pixel Data RGB565 format.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 451 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > JPEG Codec Interface

◆ jpeg_decode_status_t

enum jpeg_decode_status_t

JPEG HLD driver internal status information. The driver can simultaneously be in more than any one
status at the same time. Parse the status bit-fields using the definitions in this enum to determine
driver status

Enumerator

JPEG_DECODE_STATUS_NOT_OPEN JPEG codec module is not yet open.

JPEG_DECODE_STATUS_OPEN JPEG Codec module is open, and is not
operational.

JPEG_DECODE_STATUS_RUNNING JPEG Codec is running.

JPEG_DECODE_STATUS_DONE JPEG Codec has successfully finished the
operation.

JPEG_DECODE_STATUS_INPUT_PAUSE JPEG Codec paused waiting for more input
data.

JPEG_DECODE_STATUS_OUTPUT_PAUSE JPEG Codec paused after decoded the number
of lines specified by user.

JPEG_DECODE_STATUS_IMAGE_SIZE_READY JPEG decoding operation obtained image size,
and paused.

JPEG_DECODE_STATUS_ERROR JPEG Codec module encountered an error.

JPEG_DECODE_STATUS_HEADER_PROCESSING JPEG Codec module is reading the JPEG header
information.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 452 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > JPEG Codec Interface

◆ jpeg_decode_subsample_t

enum jpeg_decode_subsample_t

Data type for horizontal and vertical subsample settings. This setting applies only to the decoding
operation.

Enumerator

JPEG_DECODE_OUTPUT_NO_SUBSAMPLE No subsample. The image is decoded with no
reduction in size.

JPEG_DECODE_OUTPUT_SUBSAMPLE_HALF The output image size is reduced by half.

JPEG_DECODE_OUTPUT_SUBSAMPLE_ONE_QUAR
TER

The output image size is reduced to one-
quarter.

JPEG_DECODE_OUTPUT_SUBSAMPLE_ONE_EIGHT
H

The output image size is reduced to one-
eighth.

◆ jpeg_decode_count_enable_t

enum jpeg_decode_count_enable_t

Data type for decoding count mode enable.

Enumerator

JPEG_DECODE_COUNT_DISABLE Count mode disable.

JPEG_DECODE_COUNT_ENABLE Count mode enable.

◆ jpeg_decode_resume_mode_t

enum jpeg_decode_resume_mode_t

Data type for decoding count mode enable.

Enumerator

JPEG_DECODE_COUNT_MODE_ADDRESS_CONTIN
UE

The data buffer address will not be initialized
when resuming image data lines.

JPEG_DECODE_COUNT_MODE_ADDRESS_REINITI
ALIZE

The data buffer address will be initialized when
resuming image data lines.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 453 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Key Matrix Interface

4.3.20 Key Matrix Interface
Interfaces

Detailed Description

Interface for key matrix functions.

Summary
The KEYMATRIX interface provides standard KeyMatrix functionality including event generation on a
rising or falling edge for one or more channels at the same time. The generated event indicates all
channels that are active in that instant via a bit mask. This allows the interface to be used with a
matrix configuration or a one-to-one hardware implementation that is triggered on either a rising or
a falling edge.

Implemented by:

Key Interrupt (r_kint)

Data Structures

struct keymatrix_callback_args_t

struct keymatrix_cfg_t

struct keymatrix_api_t

struct keymatrix_instance_t

Macros

#define KEYMATRIX_API_VERSION_MAJOR

 KEY MATRIX API version number (Major)

#define KEYMATRIX_API_VERSION_MINOR

 KEY MATRIX API version number (Minor)

Typedefs

typedef void keymatrix_ctrl_t

Enumerations

enum keymatrix_trigger_t

Data Structure Documentation

◆ keymatrix_callback_args_t

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 454 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Key Matrix Interface

struct keymatrix_callback_args_t

Callback function parameter data

Data Fields

void const * p_context Holder for user data. Set in
keymatrix_api_t::open function
in keymatrix_cfg_t.

uint32_t channel_mask Bit vector representing the
physical hardware channel(s)
that caused the interrupt.

◆ keymatrix_cfg_t

struct keymatrix_cfg_t

User configuration structure, used in open function

Data Fields

uint32_t channel_mask

 Key Input channel(s). Bit mask of channels to open.

keymatrix_trigger_t trigger

 Key Input trigger setting.

uint8_t ipl

 Interrupt priority level.

IRQn_Type irq

 NVIC IRQ number.

void(* p_callback)(keymatrix_callback_args_t *p_args)

 Callback for key interrupt ISR.

void const * p_context

 Holder for user data. Passed to callback in keymatrix_user_cb_data_t.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 455 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Key Matrix Interface

void const * p_extend

 Extension parameter for hardware specific settings.

◆ keymatrix_api_t

struct keymatrix_api_t

Key Matrix driver structure. Key Matrix functions implemented at the HAL layer will use this API.

Data Fields

fsp_err_t(* open)(keymatrix_ctrl_t *const p_ctrl, keymatrix_cfg_t const *const
p_cfg)

fsp_err_t(* enable)(keymatrix_ctrl_t *const p_ctrl)

fsp_err_t(* disable)(keymatrix_ctrl_t *const p_ctrl)

fsp_err_t(* close)(keymatrix_ctrl_t *const p_ctrl)

fsp_err_t(* versionGet)(fsp_version_t *const p_version)

Field Documentation

◆ open

fsp_err_t(* keymatrix_api_t::open) (keymatrix_ctrl_t *const p_ctrl, keymatrix_cfg_t const *const
p_cfg)

Initial configuration.

Implemented as

R_KINT_KEYMATRIX_Open()
Parameters

[out] p_ctrl Pointer to control block.
Must be declared by user.
Value set in this function.

[in] p_cfg Pointer to configuration
structure. All elements of the
structure must be set by
user.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 456 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Key Matrix Interface

◆ enable

fsp_err_t(* keymatrix_api_t::enable) (keymatrix_ctrl_t *const p_ctrl)

Enable Key interrupt

Implemented as

R_KINT_KEYMATRIX_Enable()
Parameters

[in] p_ctrl Control block pointer set in
Open call for this Key
interrupt.

◆ disable

fsp_err_t(* keymatrix_api_t::disable) (keymatrix_ctrl_t *const p_ctrl)

Disable Key interrupt.

Implemented as

R_KINT_KEYMATRIX_Disable()
Parameters

[in] p_ctrl Control block pointer set in
Open call for this Key
interrupt.

◆ close

fsp_err_t(* keymatrix_api_t::close) (keymatrix_ctrl_t *const p_ctrl)

Allow driver to be reconfigured. May reduce power consumption.

Implemented as

R_KINT_KEYMATRIX_Close()
Parameters

[in] p_ctrl Control block pointer set in
Open call for this Key
interrupt.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 457 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Key Matrix Interface

◆ versionGet

fsp_err_t(* keymatrix_api_t::versionGet) (fsp_version_t *const p_version)

Get version and store it in provided pointer p_version.

Implemented as

R_KINT_VersionGet()
Parameters

[out] p_version Code and API version used.

◆ keymatrix_instance_t

struct keymatrix_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

keymatrix_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

keymatrix_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

keymatrix_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ keymatrix_ctrl_t

typedef void keymatrix_ctrl_t

Key matrix control block. Allocate an instance specific control block to pass into the key matrix API
calls.

Implemented as

kint_instance_ctrl_t

Enumeration Type Documentation

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 458 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Key Matrix Interface

◆ keymatrix_trigger_t

enum keymatrix_trigger_t

Trigger type: rising edge, falling edge

Enumerator

KEYMATRIX_TRIG_FALLING Falling edge trigger.

KEYMATRIX_TRIG_RISING Rising edge trigger.

4.3.21 Low Power Modes Interface
Interfaces

Detailed Description

Interface for accessing low power modes.

Summary
This section defines the API for the LPM (Low Power Mode) Driver. The LPM Driver provides functions
for controlling power consumption by configuring and transitioning to a low power mode. The LPM
driver supports configuration of MCU low power modes using the LPM hardware peripheral. The LPM
driver supports low power modes deep standby, standby, sleep, and snooze.

Note
Not all low power modes are available on all MCUs.

The LPM interface is implemented by:

Low Power Modes (r_lpm)

Data Structures

struct lpm_cfg_t

struct lpm_api_t

struct lpm_instance_t

Macros

#define LPM_API_VERSION_MAJOR

Typedefs

typedef void lpm_ctrl_t

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 459 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Low Power Modes Interface

Enumerations

enum lpm_mode_t

enum lpm_snooze_request_t

enum lpm_snooze_end_t

enum lpm_snooze_cancel_t

enum lpm_snooze_dtc_t

enum lpm_standby_wake_source_t

enum lpm_io_port_t

enum lpm_power_supply_t

enum lpm_deep_standby_cancel_edge_t

enum lpm_deep_standby_cancel_source_t

enum lpm_output_port_enable_t

Data Structure Documentation

◆ lpm_cfg_t

struct lpm_cfg_t

User configuration structure, used in open function

Data Fields

lpm_mode_t low_power_mode Low Power Mode

lpm_standby_wake_source_bits_
t

standby_wake_sources Bitwise list of sources to wake
from standby

lpm_snooze_request_t snooze_request_source Snooze request source

lpm_snooze_end_bits_t snooze_end_sources Bitwise list of snooze end
sources

lpm_snooze_cancel_t snooze_cancel_sources list of snooze cancel sources

lpm_snooze_dtc_t dtc_state_in_snooze State of DTC in snooze mode,
enabled or disabled

void const * p_extend Placeholder for extension.

◆ lpm_api_t

struct lpm_api_t

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 460 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Low Power Modes Interface

lpm driver structure. General lpm functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(lpm_ctrl_t *const p_api_ctrl, lpm_cfg_t const *const p_cfg)

fsp_err_t(* close)(lpm_ctrl_t *const p_api_ctrl)

fsp_err_t(* lowPowerReconfigure)(lpm_ctrl_t *const p_api_ctrl, lpm_cfg_t const
*const p_cfg)

fsp_err_t(* lowPowerModeEnter)(lpm_ctrl_t *const p_api_ctrl)

fsp_err_t(* ioKeepClear)(lpm_ctrl_t *const p_api_ctrl)

fsp_err_t(* versionGet)(fsp_version_t *const p_version)

Field Documentation

◆ open

fsp_err_t(* lpm_api_t::open) (lpm_ctrl_t *const p_api_ctrl, lpm_cfg_t const *const p_cfg)

Initialization function

Implemented as

R_LPM_Init()

◆ close

fsp_err_t(* lpm_api_t::close) (lpm_ctrl_t *const p_api_ctrl)

Initialization function

Implemented as

R_LPM_Close()

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 461 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Low Power Modes Interface

◆ lowPowerReconfigure

fsp_err_t(* lpm_api_t::lowPowerReconfigure) (lpm_ctrl_t *const p_api_ctrl, lpm_cfg_t const *const
p_cfg)

Configure a low power mode.

Implemented as

R_LPM_LowPowerConfigure()
Parameters

[in] p_cfg Pointer to configuration
structure. All elements of
this structure must be set by
user.

◆ lowPowerModeEnter

fsp_err_t(* lpm_api_t::lowPowerModeEnter) (lpm_ctrl_t *const p_api_ctrl)

Enter low power mode (sleep/standby/deep standby) using WFI macro. Function will return after
waking from low power mode.

Implemented as

R_LPM_LowPowerModeEnter()

◆ ioKeepClear

fsp_err_t(* lpm_api_t::ioKeepClear) (lpm_ctrl_t *const p_api_ctrl)

Clear the IOKEEP bit after deep software standby.

Implemented as

R_LPM_IoKeepClear()

◆ versionGet

fsp_err_t(* lpm_api_t::versionGet) (fsp_version_t *const p_version)

Get the driver version based on compile time macros.

Implemented as

R_LPM_VersionGet()
Parameters

[out] p_version Code and API version used.

◆ lpm_instance_t

struct lpm_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 462 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Low Power Modes Interface

Data Fields

lpm_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

lpm_cfg_t const *const p_cfg Pointer to the configuration
structure for this instance.

lpm_api_t const *const p_api Pointer to the API structure for
this instance.

Macro Definition Documentation

◆ LPM_API_VERSION_MAJOR

#define LPM_API_VERSION_MAJOR

Register definitions, common services and error codes.

Typedef Documentation

◆ lpm_ctrl_t

typedef void lpm_ctrl_t

LPM control block. Allocate an instance specific control block to pass into the LPM API calls.

Implemented as

lpm_instance_ctrl_t

Enumeration Type Documentation

◆ lpm_mode_t

enum lpm_mode_t

Low power modes

Enumerator

LPM_MODE_SLEEP Sleep mode.

LPM_MODE_STANDBY Software Standby mode.

LPM_MODE_STANDBY_SNOOZE Software Standby mode with Snooze mode
enabled.

LPM_MODE_DEEP Deep Software Standby mode.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 463 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Low Power Modes Interface

◆ lpm_snooze_request_t

enum lpm_snooze_request_t

Snooze request sources

Enumerator

LPM_SNOOZE_REQUEST_RXD0_FALLING Enable RXD0 falling edge snooze request.

LPM_SNOOZE_REQUEST_IRQ0 Enable IRQ0 pin snooze request.

LPM_SNOOZE_REQUEST_IRQ1 Enable IRQ1 pin snooze request.

LPM_SNOOZE_REQUEST_IRQ2 Enable IRQ2 pin snooze request.

LPM_SNOOZE_REQUEST_IRQ3 Enable IRQ3 pin snooze request.

LPM_SNOOZE_REQUEST_IRQ4 Enable IRQ4 pin snooze request.

LPM_SNOOZE_REQUEST_IRQ5 Enable IRQ5 pin snooze request.

LPM_SNOOZE_REQUEST_IRQ6 Enable IRQ6 pin snooze request.

LPM_SNOOZE_REQUEST_IRQ7 Enable IRQ7 pin snooze request.

LPM_SNOOZE_REQUEST_IRQ8 Enable IRQ8 pin snooze request.

LPM_SNOOZE_REQUEST_IRQ9 Enable IRQ9 pin snooze request.

LPM_SNOOZE_REQUEST_IRQ10 Enable IRQ10 pin snooze request.

LPM_SNOOZE_REQUEST_IRQ11 Enable IRQ11 pin snooze request.

LPM_SNOOZE_REQUEST_IRQ12 Enable IRQ12 pin snooze request.

LPM_SNOOZE_REQUEST_IRQ13 Enable IRQ13 pin snooze request.

LPM_SNOOZE_REQUEST_IRQ14 Enable IRQ14 pin snooze request.

LPM_SNOOZE_REQUEST_IRQ15 Enable IRQ15 pin snooze request.

LPM_SNOOZE_REQUEST_KEY Enable KR snooze request.

LPM_SNOOZE_REQUEST_ACMPHS0 Enable High-speed analog comparator 0
snooze request.

LPM_SNOOZE_REQUEST_RTC_ALARM Enable RTC alarm snooze request.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 464 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Low Power Modes Interface

LPM_SNOOZE_REQUEST_RTC_PERIOD Enable RTC period snooze request.

LPM_SNOOZE_REQUEST_AGT1_UNDERFLOW Enable AGT1 underflow snooze request.

LPM_SNOOZE_REQUEST_AGT1_COMPARE_A Enable AGT1 compare match A snooze
request.

LPM_SNOOZE_REQUEST_AGT1_COMPARE_B Enable AGT1 compare match B snooze
request.

◆ lpm_snooze_end_t

enum lpm_snooze_end_t

Snooze end control

Enumerator

LPM_SNOOZE_END_STANDBY_WAKE_SOURCES Transition from Snooze to Normal mode
directly.

LPM_SNOOZE_END_AGT1_UNDERFLOW AGT1 underflow.

LPM_SNOOZE_END_DTC_TRANS_COMPLETE Last DTC transmission completion.

LPM_SNOOZE_END_DTC_TRANS_COMPLETE_NEG
ATED

Not Last DTC transmission completion.

LPM_SNOOZE_END_ADC0_COMPARE_MATCH ADC Channel 0 compare match.

LPM_SNOOZE_END_ADC0_COMPARE_MISMATCH ADC Channel 0 compare mismatch.

LPM_SNOOZE_END_ADC1_COMPARE_MATCH ADC 1 compare match.

LPM_SNOOZE_END_ADC1_COMPARE_MISMATCH ADC 1 compare mismatch.

LPM_SNOOZE_END_SCI0_ADDRESS_MATCH SCI0 address mismatch.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 465 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Low Power Modes Interface

◆ lpm_snooze_cancel_t

enum lpm_snooze_cancel_t

Snooze cancel control

Enumerator

LPM_SNOOZE_CANCEL_SOURCE_ADC0_WCMPM ADC Channel 0 window compare match.

LPM_SNOOZE_CANCEL_SOURCE_ADC0_WCMPUM

ADC Channel 0 window compare mismatch.

LPM_SNOOZE_CANCEL_SOURCE_ADC1_WCMPM ADC Channel 1 window compare match.

LPM_SNOOZE_CANCEL_SOURCE_ADC1_WCMPUM

ADC Channel 1 window compare mismatch.

LPM_SNOOZE_CANCEL_SOURCE_SCI0_AM SCI0 address match event.

LPM_SNOOZE_CANCEL_SOURCE_SCI0_RXI_OR_E
RI

SCI0 receive error.

LPM_SNOOZE_CANCEL_SOURCE_DTC_COMPLETE

DTC transfer completion.

LPM_SNOOZE_CANCEL_SOURCE_DOC_DOPCI Data operation circuit interrupt.

LPM_SNOOZE_CANCEL_SOURCE_CTSU_CTSUFN CTSU measurement end interrupt.

◆ lpm_snooze_dtc_t

enum lpm_snooze_dtc_t

DTC Enable in Snooze Mode

Enumerator

LPM_SNOOZE_DTC_DISABLE Disable DTC operation.

LPM_SNOOZE_DTC_ENABLE Enable DTC operation.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 466 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Low Power Modes Interface

◆ lpm_standby_wake_source_t

enum lpm_standby_wake_source_t

Wake from standby mode sources, does not apply to sleep or deep standby modes

Enumerator

LPM_STANDBY_WAKE_SOURCE_IRQ0 IRQ0.

LPM_STANDBY_WAKE_SOURCE_IRQ1 IRQ1.

LPM_STANDBY_WAKE_SOURCE_IRQ2 IRQ2.

LPM_STANDBY_WAKE_SOURCE_IRQ3 IRQ3.

LPM_STANDBY_WAKE_SOURCE_IRQ4 IRQ4.

LPM_STANDBY_WAKE_SOURCE_IRQ5 IRQ5.

LPM_STANDBY_WAKE_SOURCE_IRQ6 IRQ6.

LPM_STANDBY_WAKE_SOURCE_IRQ7 IRQ7.

LPM_STANDBY_WAKE_SOURCE_IRQ8 IRQ8.

LPM_STANDBY_WAKE_SOURCE_IRQ9 IRQ9.

LPM_STANDBY_WAKE_SOURCE_IRQ10 IRQ10.

LPM_STANDBY_WAKE_SOURCE_IRQ11 IRQ11.

LPM_STANDBY_WAKE_SOURCE_IRQ12 IRQ12.

LPM_STANDBY_WAKE_SOURCE_IRQ13 IRQ13.

LPM_STANDBY_WAKE_SOURCE_IRQ14 IRQ14.

LPM_STANDBY_WAKE_SOURCE_IRQ15 IRQ15.

LPM_STANDBY_WAKE_SOURCE_IWDT Independent watchdog interrupt.

LPM_STANDBY_WAKE_SOURCE_KEY Key interrupt.

LPM_STANDBY_WAKE_SOURCE_LVD1 Low Voltage Detection 1 interrupt.

LPM_STANDBY_WAKE_SOURCE_LVD2 Low Voltage Detection 2 interrupt.

LPM_STANDBY_WAKE_SOURCE_VBATT VBATT Monitor interrupt.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 467 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Low Power Modes Interface

LPM_STANDBY_WAKE_SOURCE_ACMPHS0 Analog Comparator High-speed 0 interrupt.

LPM_STANDBY_WAKE_SOURCE_ACMPLP0 Analog Comparator Low-speed 0 interrupt.

LPM_STANDBY_WAKE_SOURCE_RTCALM RTC Alarm interrupt.

LPM_STANDBY_WAKE_SOURCE_RTCPRD RTC Period interrupt.

LPM_STANDBY_WAKE_SOURCE_USBHS USB High-speed interrupt.

LPM_STANDBY_WAKE_SOURCE_USBFS USB Full-speed interrupt.

LPM_STANDBY_WAKE_SOURCE_AGT1UD AGT1 underflow interrupt.

LPM_STANDBY_WAKE_SOURCE_AGT1CA AGT1 compare match A interrupt.

LPM_STANDBY_WAKE_SOURCE_AGT1CB AGT1 compare match B interrupt.

LPM_STANDBY_WAKE_SOURCE_IIC0 I2C 0 interrupt.

◆ lpm_io_port_t

enum lpm_io_port_t

I/O port state after Deep Software Standby mode

Enumerator

LPM_IO_PORT_RESET When the Deep Software Standby mode is
canceled, the I/O ports are in the reset state

LPM_IO_PORT_NO_CHANGE When the Deep Software Standby mode is
canceled, the I/O ports are in the same state as
in the Deep Software Standby mode

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 468 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Low Power Modes Interface

◆ lpm_power_supply_t

enum lpm_power_supply_t

Power supply control

Enumerator

LPM_POWER_SUPPLY_DEEPCUT0 Power to the standby RAM, Low-speed on-chip
oscillator, AGTn, and USBFS/HS resume
detecting unit is supplied in deep software
standby mode

LPM_POWER_SUPPLY_DEEPCUT1 Power to the standby RAM, Low-speed on-chip
oscillator, AGTn, and USBFS/HS resume
detecting unit is not supplied in deep software
standby mode

LPM_POWER_SUPPLY_DEEPCUT3 Power to the standby RAM, Low-speed on-chip
oscillator, AGTn, and USBFS/HS resume
detecting unit is not supplied in deep software
standby mode. In addition, LVD is disabled and
the low power function in a poweron reset
circuit is enabled

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 469 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Low Power Modes Interface

◆ lpm_deep_standby_cancel_edge_t

enum lpm_deep_standby_cancel_edge_t

Deep Standby Interrupt Edge

Enumerator

LPM_DEEP_STANDBY_CANCEL_SOURCE_EDGE_N
ONE

No options for a deep standby cancel source.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ0_RIS
ING

IRQ0-DS Pin Rising Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ0_FA
LLING

IRQ0-DS Pin Falling Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ1_RIS
ING

IRQ1-DS Pin Rising Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ1_FA
LLING

IRQ1-DS Pin Falling Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ2_RIS
ING

IRQ2-DS Pin Rising Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ2_FA
LLING

IRQ2-DS Pin Falling Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ3_RIS
ING

IRQ3-DS Pin Rising Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ3_FA
LLING

IRQ3-DS Pin Falling Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ4_RIS
ING

IRQ4-DS Pin Rising Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ4_FA
LLING

IRQ4-DS Pin Falling Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ5_RIS
ING

IRQ5-DS Pin Rising Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ5_FA
LLING

IRQ5-DS Pin Falling Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ6_RIS
ING

IRQ6-DS Pin Rising Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ6_FA
LLING

IRQ6-DS Pin Falling Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ7_RIS
ING

IRQ7-DS Pin Rising Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ7_FA
LLING

IRQ7-DS Pin Falling Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ8_RIS
ING

IRQ8-DS Pin Rising Edge.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 470 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Low Power Modes Interface

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ8_FA
LLING

IRQ8-DS Pin Falling Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ9_RIS
ING

IRQ9-DS Pin Rising Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ9_FA
LLING

IRQ9-DS Pin Falling Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ10_RI
SING

IRQ10-DS Pin Rising Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ10_F
ALLING

IRQ10-DS Pin Falling Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ11_RI
SING

IRQ11-DS Pin Rising Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ11_F
ALLING

IRQ11-DS Pin Falling Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ12_RI
SING

IRQ12-DS Pin Rising Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ12_F
ALLING

IRQ12-DS Pin Falling Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ13_RI
SING

IRQ13-DS Pin Rising Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ13_F
ALLING

IRQ13-DS Pin Falling Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ14_RI
SING

IRQ14-DS Pin Rising Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ14_F
ALLING

IRQ14-DS Pin Falling Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_LVD1_RI
SING

LVD1 Rising Slope.

LPM_DEEP_STANDBY_CANCEL_SOURCE_LVD1_FA
LLING

LVD1 Falling Slope.

LPM_DEEP_STANDBY_CANCEL_SOURCE_LVD2_RI
SING

LVD2 Rising Slope.

LPM_DEEP_STANDBY_CANCEL_SOURCE_LVD2_FA
LLING

LVD2 Falling Slope.

LPM_DEEP_STANDBY_CANCEL_SOURCE_NMI_RISI
NG

NMI Pin Rising Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_NMI_FAL
LING

NMI Pin Falling Edge.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 471 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Low Power Modes Interface

◆ lpm_deep_standby_cancel_source_t

enum lpm_deep_standby_cancel_source_t

Deep Standby cancel sources

Enumerator

LPM_DEEP_STANDBY_CANCEL_SOURCE_RESET_O
NLY

Cancel deep standby only by reset.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ0 IRQ0.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ1 IRQ1.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ2 IRQ2.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ3 IRQ3.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ4 IRQ4.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ5 IRQ5.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ6 IRQ6.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ7 IRQ7.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ8 IRQ8.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ9 IRQ9.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ10 IRQ10.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ11 IRQ11.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ12 IRQ12.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ13 IRQ13.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ14 IRQ14.

LPM_DEEP_STANDBY_CANCEL_SOURCE_LVD1 LVD1.

LPM_DEEP_STANDBY_CANCEL_SOURCE_LVD2 LVD2.

LPM_DEEP_STANDBY_CANCEL_SOURCE_RTC_INT
ERVAL

RTC Interval Interrupt.

LPM_DEEP_STANDBY_CANCEL_SOURCE_RTC_ALA
RM

RTC Alarm Interrupt.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 472 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Low Power Modes Interface

LPM_DEEP_STANDBY_CANCEL_SOURCE_NMI NMI.

LPM_DEEP_STANDBY_CANCEL_SOURCE_USBFS USBFS Suspend/Resume.

LPM_DEEP_STANDBY_CANCEL_SOURCE_USBHS USBHS Suspend/Resume.

LPM_DEEP_STANDBY_CANCEL_SOURCE_AGT1 AGT1 Underflow.

◆ lpm_output_port_enable_t

enum lpm_output_port_enable_t

Output port enable

Enumerator

LPM_OUTPUT_PORT_ENABLE_HIGH_IMPEDANCE 0: In Software Standby Mode or Deep Software
Standby Mode, the address output pins, data
output pins, and other bus control signal
output pins are set to the high-impedance
state. In Snooze, the status of the address bus
and bus control signals are same as before
entering Software Standby Mode.

LPM_OUTPUT_PORT_ENABLE_RETAIN 1: In Software Standby Mode, the address
output pins, data output pins, and other bus
control signal output pins retain the output
state.

4.3.22 Low Voltage Detection Interface
Interfaces

Detailed Description

Interface for Low Voltage Detection.

Summary
The LVD driver provides functions for configuring the LVD voltage monitors and detectors.

Implemented by:

Low Voltage Detection (r_lvd)

Data Structures

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 473 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Low Voltage Detection Interface

struct lvd_status_t

struct lvd_callback_args_t

struct lvd_cfg_t

struct lvd_api_t

struct lvd_instance_t

Macros

#define LVD_API_VERSION_MAJOR

Typedefs

typedef void lvd_ctrl_t

Enumerations

enum lvd_threshold_t

enum lvd_response_t

enum lvd_voltage_slope_t

enum lvd_sample_clock_t

enum lvd_negation_delay_t

enum lvd_threshold_crossing_t

enum lvd_current_state_t

Data Structure Documentation

◆ lvd_status_t

struct lvd_status_t

Current state of a voltage monitor.

Data Fields

lvd_threshold_crossing_t crossing_detected Threshold crossing detection
(latched)

lvd_current_state_t current_state Instantaneous status of
monitored voltage (above or
below threshold)

◆ lvd_callback_args_t

struct lvd_callback_args_t

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 474 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Low Voltage Detection Interface

LVD callback parameter definition

Data Fields

uint32_t monitor_number Monitor number.

lvd_current_state_t current_state Current state of the voltage
monitor.

void const * p_context Placeholder for user data.

◆ lvd_cfg_t

struct lvd_cfg_t

LVD configuration structure

Data Fields

uint32_t monitor_number

lvd_threshold_t voltage_threshold

lvd_response_t detection_response

lvd_voltage_slope_t voltage_slope

lvd_negation_delay_t negation_delay

lvd_sample_clock_t sample_clock_divisor

IRQn_Type irq

uint8_t monitor_ipl

void(* p_callback)(lvd_callback_args_t *p_args)

void const * p_context

void const * p_extend

Field Documentation

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 475 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Low Voltage Detection Interface

◆ monitor_number

uint32_t lvd_cfg_t::monitor_number

Monitor number, 1, 2, ...

◆ voltage_threshold

lvd_threshold_t lvd_cfg_t::voltage_threshold

Threshold for out of range voltage detection

◆ detection_response

lvd_response_t lvd_cfg_t::detection_response

Response on detecting a threshold crossing

◆ voltage_slope

lvd_voltage_slope_t lvd_cfg_t::voltage_slope

Direction of voltage crossing that will trigger a detection (Rising Edge, Falling Edge, Both).

◆ negation_delay

lvd_negation_delay_t lvd_cfg_t::negation_delay

Negation of LVD signal follows reset or voltage in range

◆ sample_clock_divisor

lvd_sample_clock_t lvd_cfg_t::sample_clock_divisor

Sample clock divider, use LVD_SAMPLE_CLOCK_DISABLED to disable digital filtering

◆ irq

IRQn_Type lvd_cfg_t::irq

Interrupt number.

◆ monitor_ipl

uint8_t lvd_cfg_t::monitor_ipl

Interrupt priority level.

◆ p_callback

void(* lvd_cfg_t::p_callback) (lvd_callback_args_t *p_args)

User function to be called from interrupt

◆ p_context

void const* lvd_cfg_t::p_context

Placeholder for user data. Passed to the user callback in

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 476 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Low Voltage Detection Interface

◆ p_extend

void const* lvd_cfg_t::p_extend

Extension parameter for hardware specific settings

◆ lvd_api_t

struct lvd_api_t

LVD driver API structure. LVD driver functions implemented at the HAL layer will adhere to this API.

Data Fields

fsp_err_t(* open)(lvd_ctrl_t *const p_ctrl, lvd_cfg_t const *const p_cfg)

fsp_err_t(* statusGet)(lvd_ctrl_t *const p_ctrl, lvd_status_t *p_lvd_status)

fsp_err_t(* statusClear)(lvd_ctrl_t *const p_ctrl)

fsp_err_t(* close)(lvd_ctrl_t *const p_ctrl)

fsp_err_t(* versionGet)(fsp_version_t *const p_version)

Field Documentation

◆ open

fsp_err_t(* lvd_api_t::open) (lvd_ctrl_t *const p_ctrl, lvd_cfg_t const *const p_cfg)

Initializes a low voltage detection driver according to the passed-in configuration structure.

Implemented as

R_LVD_Open()
Parameters

[in] p_ctrl Pointer to control structure
for the driver instance

[in] p_cfg Pointer to the configuration
structure for the driver
instance

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 477 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Low Voltage Detection Interface

◆ statusGet

fsp_err_t(* lvd_api_t::statusGet) (lvd_ctrl_t *const p_ctrl, lvd_status_t *p_lvd_status)

Get the current state of the monitor, (threshold crossing detected, voltage currently above or
below threshold). Must be used if the peripheral was initialized with lvd_response_t set to
LVD_RESPONSE_NONE.

Implemented as

R_LVD_StatusGet()
Parameters

[in] p_ctrl Pointer to the control
structure for the driver
instance

[in,out] p_lvd_status Pointer to a lvd_status_t
structure

◆ statusClear

fsp_err_t(* lvd_api_t::statusClear) (lvd_ctrl_t *const p_ctrl)

Clears the latched status of the monitor. Must be used if the peripheral was initialized with
lvd_response_t set to LVD_RESPONSE_NONE.

Implemented as

R_LVD_StatusClear()
Parameters

[in] p_ctrl Pointer to the control
structure for the driver
instance

◆ close

fsp_err_t(* lvd_api_t::close) (lvd_ctrl_t *const p_ctrl)

Disables the LVD peripheral. Closes the driver instance.

Implemented as

R_LVD_Close()
Parameters

[in] p_ctrl Pointer to the control
structure for the driver
instance

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 478 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Low Voltage Detection Interface

◆ versionGet

fsp_err_t(* lvd_api_t::versionGet) (fsp_version_t *const p_version)

Returns the LVD driver version based on compile time macros.

Implemented as

R_LVD_VersionGet()
Parameters

[in,out] p_version Pointer to version structure

◆ lvd_instance_t

struct lvd_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

lvd_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

lvd_cfg_t const * p_cfg Pointer to the configuration
structure for this interface
instance.

lvd_api_t const * p_api Pointer to the API structure for
this interface instance.

Macro Definition Documentation

◆ LVD_API_VERSION_MAJOR

#define LVD_API_VERSION_MAJOR

Register definitions, common services, and error codes.

Typedef Documentation

◆ lvd_ctrl_t

typedef void lvd_ctrl_t

LVD control block. Allocate an instance specific control block to pass into the LVD API calls.

Implemented as

lvd_instance_ctrl_t

Enumeration Type Documentation

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 479 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Low Voltage Detection Interface

◆ lvd_threshold_t

enum lvd_threshold_t

Voltage detection level The thresholds supported by each MCU are in the MCU User's Manual as
well as in the r_lvd module description on the stack tab of the RA project.

Enumerator

LVD_THRESHOLD_MONITOR_1_LEVEL_4_29V 4.29V

LVD_THRESHOLD_MONITOR_1_LEVEL_4_14V 4.14V

LVD_THRESHOLD_MONITOR_1_LEVEL_4_02V 4.02V

LVD_THRESHOLD_MONITOR_1_LEVEL_3_84V 3.84V

LVD_THRESHOLD_MONITOR_1_LEVEL_3_10V 3.10V

LVD_THRESHOLD_MONITOR_1_LEVEL_3_00V 3.00V

LVD_THRESHOLD_MONITOR_1_LEVEL_2_90V 2.90V

LVD_THRESHOLD_MONITOR_1_LEVEL_2_79V 2.79V

LVD_THRESHOLD_MONITOR_1_LEVEL_2_68V 2.68V

LVD_THRESHOLD_MONITOR_1_LEVEL_2_58V 2.58V

LVD_THRESHOLD_MONITOR_1_LEVEL_2_48V 2.48V

LVD_THRESHOLD_MONITOR_1_LEVEL_2_20V 2.20V

LVD_THRESHOLD_MONITOR_1_LEVEL_1_96V 1.96V

LVD_THRESHOLD_MONITOR_1_LEVEL_1_86V 1.86V

LVD_THRESHOLD_MONITOR_1_LEVEL_1_75V 1.75V

LVD_THRESHOLD_MONITOR_1_LEVEL_1_65V 1.65V

LVD_THRESHOLD_MONITOR_1_LEVEL_2_99V 2.99V

LVD_THRESHOLD_MONITOR_1_LEVEL_2_92V 2.92V

LVD_THRESHOLD_MONITOR_1_LEVEL_2_85V 2.85V

LVD_THRESHOLD_MONITOR_2_LEVEL_4_29V 4.29V

LVD_THRESHOLD_MONITOR_2_LEVEL_4_14V 4.14V

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 480 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Low Voltage Detection Interface

LVD_THRESHOLD_MONITOR_2_LEVEL_4_02V 4.02V

LVD_THRESHOLD_MONITOR_2_LEVEL_3_84V 3.84V

LVD_THRESHOLD_MONITOR_2_LEVEL_2_99V 2.99V

LVD_THRESHOLD_MONITOR_2_LEVEL_2_92V 2.92V

LVD_THRESHOLD_MONITOR_2_LEVEL_2_85V 2.85V

◆ lvd_response_t

enum lvd_response_t

Response types for handling threshold crossing event.

Enumerator

LVD_RESPONSE_NMI Non-maskable interrupt.

LVD_RESPONSE_INTERRUPT Maskable interrupt.

LVD_RESPONSE_RESET Reset.

LVD_RESPONSE_NONE No response, status must be requested via
statusGet function.

◆ lvd_voltage_slope_t

enum lvd_voltage_slope_t

The direction from which Vcc must cross the threshold to trigger a detection (rising, falling, or
both).

Enumerator

LVD_VOLTAGE_SLOPE_RISING When VCC >= Vdet2 (rise) is detected.

LVD_VOLTAGE_SLOPE_FALLING When VCC < Vdet2 (drop) is detected.

LVD_VOLTAGE_SLOPE_BOTH When drop and rise are detected.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 481 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Low Voltage Detection Interface

◆ lvd_sample_clock_t

enum lvd_sample_clock_t

Sample clock divider, use LVD_SAMPLE_CLOCK_DISABLED to disable digital filtering

Enumerator

LVD_SAMPLE_CLOCK_LOCO_DIV_2 Digital filter sample clock is LOCO divided by 2.

LVD_SAMPLE_CLOCK_LOCO_DIV_4 Digital filter sample clock is LOCO divided by 4.

LVD_SAMPLE_CLOCK_LOCO_DIV_8 Digital filter sample clock is LOCO divided by 8.

LVD_SAMPLE_CLOCK_LOCO_DIV_16 Digital filter sample clock is LOCO divided by
16.

LVD_SAMPLE_CLOCK_DISABLED Digital filter is disabled.

◆ lvd_negation_delay_t

enum lvd_negation_delay_t

Negation delay of LVD reset signal follows reset or voltage in range

Enumerator

LVD_NEGATION_DELAY_FROM_VOLTAGE Negation follows a stabilization time (tLVDn)
after VCC > Vdet1 is detected. If a transition to
software standby or deep software standby is
to be made, the only possible value for the RN
bit is LVD_NEGATION_DELAY_FROM_VOLTAGE

LVD_NEGATION_DELAY_FROM_RESET Negation follows a stabilization time (tLVDn)
after assertion of the LVDn reset. If a transition
to software standby or deep software standby
is to be made, the only possible value for the
RN bit is
LVD_NEGATION_DELAY_FROM_VOLTAGE

◆ lvd_threshold_crossing_t

enum lvd_threshold_crossing_t

Threshold crossing detection (latched)

Enumerator

LVD_THRESHOLD_CROSSING_NOT_DETECTED Threshold crossing has not been detected.

LVD_THRESHOLD_CROSSING_DETECTED Threshold crossing has been detected.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 482 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Low Voltage Detection Interface

◆ lvd_current_state_t

enum lvd_current_state_t

Instantaneous status of VCC (above or below threshold)

Enumerator

LVD_CURRENT_STATE_BELOW_THRESHOLD VCC < threshold.

LVD_CURRENT_STATE_ABOVE_THRESHOLD VCC >= threshold or monitor is disabled.

4.3.23 RTC Interface
Interfaces

Detailed Description

Interface for accessing the Realtime Clock.

Summary
The RTC Interface is for configuring Real Time Clock (RTC) functionality including alarm, periodic
notiification and error adjustment.

The Real Time Clock Interface can be implemented by:

Realtime Clock (r_rtc)

Data Structures

struct rtc_callback_args_t

struct rtc_error_adjustment_cfg_t

struct rtc_alarm_time_t

struct rtc_info_t

struct rtc_cfg_t

struct rtc_api_t

struct rtc_instance_t

Macros

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 483 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > RTC Interface

#define RTC_API_VERSION_MAJOR

Typedefs

typedef struct tm rtc_time_t

typedef void rtc_ctrl_t

Enumerations

enum rtc_event_t

enum rtc_clock_source_t

enum rtc_status_t

enum rtc_error_adjustment_t

enum rtc_error_adjustment_mode_t

enum rtc_error_adjustment_period_t

enum rtc_periodic_irq_select_t

Data Structure Documentation

◆ rtc_callback_args_t

struct rtc_callback_args_t

Callback function parameter data

Data Fields

rtc_event_t event The event can be used to
identify what caused the
callback (compare match or
error).

void const * p_context Placeholder for user data.

◆ rtc_error_adjustment_cfg_t

struct rtc_error_adjustment_cfg_t

Time error adjustment value configuration

Data Fields

rtc_error_adjustment_mode_t adjustment_mode Automatic Adjustment
Enable/Disable.

rtc_error_adjustment_period_t adjustment_period Error Adjustment period.

rtc_error_adjustment_t adjustment_type Time error adjustment setting.

uint32_t adjustment_value Value of the prescaler for error

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 484 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > RTC Interface

adjustment.

◆ rtc_alarm_time_t

struct rtc_alarm_time_t

Alarm time setting structure

Data Fields

rtc_time_t time Time structure.

bool sec_match Enable the alarm based on a
match of the seconds field.

bool min_match Enable the alarm based on a
match of the minutes field.

bool hour_match Enable the alarm based on a
match of the hours field.

bool mday_match Enable the alarm based on a
match of the days field.

bool mon_match Enable the alarm based on a
match of the months field.

bool year_match Enable the alarm based on a
match of the years field.

bool dayofweek_match Enable the alarm based on a
match of the dayofweek field.

◆ rtc_info_t

struct rtc_info_t

RTC Information Structure for information returned by infoGet()

Data Fields

rtc_clock_source_t clock_source Clock source for the RTC block.

rtc_status_t status RTC run status.

◆ rtc_cfg_t

struct rtc_cfg_t

User configuration structure, used in open function

Data Fields

rtc_clock_source_t clock_source

 Clock source for the RTC block.

uint32_t freq_compare_value_loco

 The frequency comparison value for LOCO.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 485 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > RTC Interface

rtc_error_adjustment_cfg_t
const *const

p_err_cfg

 Pointer to Error Adjustment configuration.

uint8_t alarm_ipl

 Alarm interrupt priority.

IRQn_Type alarm_irq

 Alarm interrupt vector.

uint8_t periodic_ipl

 Periodic interrupt priority.

IRQn_Type periodic_irq

 Periodic interrupt vector.

uint8_t carry_ipl

 Carry interrupt priority.

IRQn_Type carry_irq

 Carry interrupt vector.

void(* p_callback)(rtc_callback_args_t *p_args)

 Called from the ISR.

void const * p_context

 User defined context passed into callback function.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 486 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > RTC Interface

void const * p_extend

 RTC hardware dependant configuration.

◆ rtc_api_t

struct rtc_api_t

RTC driver structure. General RTC functions implemented at the HAL layer follow this API.

Data Fields

fsp_err_t(* open)(rtc_ctrl_t *const p_ctrl, rtc_cfg_t const *const p_cfg)

fsp_err_t(* close)(rtc_ctrl_t *const p_ctrl)

fsp_err_t(* calendarTimeSet)(rtc_ctrl_t *const p_ctrl, rtc_time_t *const p_time)

fsp_err_t(* calendarTimeGet)(rtc_ctrl_t *const p_ctrl, rtc_time_t *const p_time)

fsp_err_t(* calendarAlarmSet)(rtc_ctrl_t *const p_ctrl, rtc_alarm_time_t *const
p_alarm)

fsp_err_t(* calendarAlarmGet)(rtc_ctrl_t *const p_ctrl, rtc_alarm_time_t *const
p_alarm)

fsp_err_t(* periodicIrqRateSet)(rtc_ctrl_t *const p_ctrl, rtc_periodic_irq_select_t
const rate)

fsp_err_t(* errorAdjustmentSet)(rtc_ctrl_t *const p_ctrl,
rtc_error_adjustment_cfg_t const *const err_adj_cfg)

fsp_err_t(* infoGet)(rtc_ctrl_t *const p_ctrl, rtc_info_t *const p_rtc_info)

fsp_err_t(* versionGet)(fsp_version_t *const version)

Field Documentation

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 487 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > RTC Interface

◆ open

fsp_err_t(* rtc_api_t::open) (rtc_ctrl_t *const p_ctrl, rtc_cfg_t const *const p_cfg)

Open the RTC driver.

Implemented as

R_RTC_Open()
Parameters

[in] p_ctrl Pointer to RTC device handle

[in] p_cfg Pointer to the configuration
structure

◆ close

fsp_err_t(* rtc_api_t::close) (rtc_ctrl_t *const p_ctrl)

Close the RTC driver.

Implemented as

R_RTC_Close()
Parameters

[in] p_ctrl Pointer to RTC device
handle.

◆ calendarTimeSet

fsp_err_t(* rtc_api_t::calendarTimeSet) (rtc_ctrl_t *const p_ctrl, rtc_time_t *const p_time)

Set the calendar time and start the calender counter

Implemented as

R_RTC_CalendarTimeSet()
Parameters

[in] p_ctrl Pointer to RTC device handle

[in] p_time Pointer to a time structure
that contains the time to set

[in] clock_start Flag that starts the clock
right after it is set

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 488 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > RTC Interface

◆ calendarTimeGet

fsp_err_t(* rtc_api_t::calendarTimeGet) (rtc_ctrl_t *const p_ctrl, rtc_time_t *const p_time)

Get the calendar time.

Implemented as

R_RTC_CalendarTimeGet()
Parameters

[in] p_ctrl Pointer to RTC device handle

[out] p_time Pointer to a time structure
that contains the time to get

◆ calendarAlarmSet

fsp_err_t(* rtc_api_t::calendarAlarmSet) (rtc_ctrl_t *const p_ctrl, rtc_alarm_time_t *const p_alarm)

Set the calendar alarm time and enable the alarm interrupt.

Implemented as

R_RTC_CalendarAlarmSet()
Parameters

[in] p_ctrl Pointer to RTC device handle

[in] p_alarm Pointer to an alarm structure
that contains the alarm time
to set

[in] irq_enable_flag Enable the ALARM irq if set

◆ calendarAlarmGet

fsp_err_t(* rtc_api_t::calendarAlarmGet) (rtc_ctrl_t *const p_ctrl, rtc_alarm_time_t *const p_alarm)

Get the calendar alarm time.

Implemented as

R_RTC_CalendarAlarmGet()
Parameters

[in] p_ctrl Pointer to RTC device handle

[out] p_alarm Pointer to an alarm structure
to fill up with the alarm time

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 489 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > RTC Interface

◆ periodicIrqRateSet

fsp_err_t(* rtc_api_t::periodicIrqRateSet) (rtc_ctrl_t *const p_ctrl, rtc_periodic_irq_select_t const
rate)

Set the periodic irq rate

Implemented as

R_RTC_PeriodicIrqRateSet()
Parameters

[in] p_ctrl Pointer to RTC device handle

[in] rate Rate of periodic interrupts

◆ errorAdjustmentSet

fsp_err_t(* rtc_api_t::errorAdjustmentSet) (rtc_ctrl_t *const p_ctrl, rtc_error_adjustment_cfg_t const
*const err_adj_cfg)

Set time error adjustment.

Implemented as
R_RTC_ErrorAdjustmentSet()

Parameters
[in] p_ctrl Pointer to control handle

structure

[in] err_adj_cfg Pointer to the Error
Adjustment Config

◆ infoGet

fsp_err_t(* rtc_api_t::infoGet) (rtc_ctrl_t *const p_ctrl, rtc_info_t *const p_rtc_info)

Return the currently configure clock source for the RTC

Implemented as

R_RTC_InfoGet()
Parameters

[in] p_ctrl Pointer to control handle
structure

[out] p_rtc_info Pointer to RTC information
structure

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 490 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > RTC Interface

◆ versionGet

fsp_err_t(* rtc_api_t::versionGet) (fsp_version_t *const version)

Gets version and stores it in provided pointer p_version.

Implemented as

R_RTC_VersionGet()
Parameters

[out] p_version Code and API version used

◆ rtc_instance_t

struct rtc_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

rtc_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

rtc_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

rtc_api_t const * p_api Pointer to the API structure for
this instance.

Macro Definition Documentation

◆ RTC_API_VERSION_MAJOR

#define RTC_API_VERSION_MAJOR

Use of time structure, tm

Typedef Documentation

◆ rtc_time_t

typedef struct tm rtc_time_t

Date and time structure defined in C standard library <time.h>

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 491 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > RTC Interface

◆ rtc_ctrl_t

typedef void rtc_ctrl_t

RTC control block. Allocate an instance specific control block to pass into the RTC API calls.

Implemented as

rtc_instance_ctrl_t

Enumeration Type Documentation

◆ rtc_event_t

enum rtc_event_t

Events that can trigger a callback function

Enumerator

RTC_EVENT_ALARM_IRQ Real Time Clock ALARM IRQ.

RTC_EVENT_PERIODIC_IRQ Real Time Clock PERIODIC IRQ.

◆ rtc_clock_source_t

enum rtc_clock_source_t

Clock source for the RTC block

Enumerator

RTC_CLOCK_SOURCE_SUBCLK Sub-clock oscillator.

RTC_CLOCK_SOURCE_LOCO Low power On Chip Oscillator.

◆ rtc_status_t

enum rtc_status_t

RTC run state

Enumerator

RTC_STATUS_STOPPED RTC counter is stopped.

RTC_STATUS_RUNNING RTC counter is running.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 492 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > RTC Interface

◆ rtc_error_adjustment_t

enum rtc_error_adjustment_t

Time error adjustment settings

Enumerator

RTC_ERROR_ADJUSTMENT_NONE Adjustment is not performed.

RTC_ERROR_ADJUSTMENT_ADD_PRESCALER Adjustment is performed by the addition to the
prescaler.

RTC_ERROR_ADJUSTMENT_SUBTRACT_PRESCALE
R

Adjustment is performed by the subtraction
from the prescaler.

◆ rtc_error_adjustment_mode_t

enum rtc_error_adjustment_mode_t

Time error adjustment mode settings

Enumerator

RTC_ERROR_ADJUSTMENT_MODE_MANUAL Adjustment mode is set to manual.

RTC_ERROR_ADJUSTMENT_MODE_AUTOMATIC Adjustment mode is set to automatic.

◆ rtc_error_adjustment_period_t

enum rtc_error_adjustment_period_t

Time error adjustment period settings

Enumerator

RTC_ERROR_ADJUSTMENT_PERIOD_1_MINUTE Adjustment period is set to every one minute.

RTC_ERROR_ADJUSTMENT_PERIOD_10_SECOND Adjustment period is set to every ten second.

RTC_ERROR_ADJUSTMENT_PERIOD_NONE Adjustment period not supported in manual
mode.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 493 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > RTC Interface

◆ rtc_periodic_irq_select_t

enum rtc_periodic_irq_select_t

Periodic Interrupt select

Enumerator

RTC_PERIODIC_IRQ_SELECT_1_DIV_BY_256_SECO
ND

A periodic irq is generated every 1/256
second.

RTC_PERIODIC_IRQ_SELECT_1_DIV_BY_128_SECO
ND

A periodic irq is generated every 1/128
second.

RTC_PERIODIC_IRQ_SELECT_1_DIV_BY_64_SECO
ND

A periodic irq is generated every 1/64 second.

RTC_PERIODIC_IRQ_SELECT_1_DIV_BY_32_SECO
ND

A periodic irq is generated every 1/32 second.

RTC_PERIODIC_IRQ_SELECT_1_DIV_BY_16_SECO
ND

A periodic irq is generated every 1/16 second.

RTC_PERIODIC_IRQ_SELECT_1_DIV_BY_8_SECON
D

A periodic irq is generated every 1/8 second.

RTC_PERIODIC_IRQ_SELECT_1_DIV_BY_4_SECON
D

A periodic irq is generated every 1/4 second.

RTC_PERIODIC_IRQ_SELECT_1_DIV_BY_2_SECON
D

A periodic irq is generated every 1/2 second.

RTC_PERIODIC_IRQ_SELECT_1_SECOND A periodic irq is generated every 1 second.

RTC_PERIODIC_IRQ_SELECT_2_SECOND A periodic irq is generated every 2 seconds.

4.3.24 SD/MMC Interface
Interfaces

Detailed Description

Interface for accessing SD, eMMC, and SDIO devices.

Summary
The r_sdhi interface provides standard SD and eMMC media functionality. This interface also
supports SDIO.

The SD/MMC interface is implemented by:

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 494 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > SD/MMC Interface

SD/MMC Host Interface (r_sdhi)

Data Structures

struct sdmmc_status_t

struct sdmmc_device_t

struct sdmmc_callback_args_t

struct sdmmc_cfg_t

struct sdmmc_api_t

struct sdmmc_instance_t

Typedefs

typedef void sdmmc_ctrl_t

Enumerations

enum sdmmc_card_type_t

enum sdmmc_bus_width_t

enum sdmmc_io_transfer_mode_t

enum sdmmc_io_address_mode_t

enum sdmmc_io_write_mode_t

enum sdmmc_event_t

enum sdmmc_card_detect_t

enum sdmmc_write_protect_t

enum sdmmc_r1_state_t

Data Structure Documentation

◆ sdmmc_status_t

struct sdmmc_status_t

Current status.

Data Fields

bool initialized False if card was removed (only
applies if MCU supports card

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 495 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > SD/MMC Interface

detection and SDnCD pin is
connected), true otherwise.

If ready is false, call
sdmmc_api_t::mediaInit to
reinitialize it

bool transfer_in_progress true = Card is busy

bool card_inserted Card detect status, true if card
detect is not used.

◆ sdmmc_device_t

struct sdmmc_device_t

Information obtained from the media device.

Data Fields

sdmmc_card_type_t card_type SD, eMMC, or SDIO.

bool write_protected true = Card is write protected

uint32_t clock_rate Current clock rate.

uint32_t sector_count Sector count.

uint32_t erase_sector_count Minimum erasable unit (in 512
byte sectors)

◆ sdmmc_callback_args_t

struct sdmmc_callback_args_t

Callback function parameter data

Data Fields

sdmmc_event_t event The event can be used to
identify what caused the
callback.

sdmmc_response_t response Response from card, only valid
if SDMMC_EVENT_RESPONSE is
set in event.

void const * p_context Placeholder for user data.

◆ sdmmc_cfg_t

struct sdmmc_cfg_t

SD/MMC Configuration

Data Fields

uint8_t channel

 Channel of SD/MMC host interface.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 496 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > SD/MMC Interface

sdmmc_bus_width_t bus_width

 Device bus width is 1, 4 or 8 bits wide.

transfer_instance_t const * p_lower_lvl_transfer

 Transfer instance used to move data with DMA or DTC.

void(* p_callback)(sdmmc_callback_args_t *p_args)

 Pointer to callback function.

void const * p_context

 User defined context passed into callback function.

void const * p_extend

 SD/MMC hardware dependent configuration.

uint32_t block_size

sdmmc_card_detect_t card_detect

sdmmc_write_protect_t write_protect

IRQn_Type access_irq

 Access IRQ number.

IRQn_Type sdio_irq

 SDIO IRQ number.

IRQn_Type card_irq

 Card IRQ number.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 497 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > SD/MMC Interface

IRQn_Type dma_req_irq

 DMA request IRQ number.

uint8_t access_ipl

 Access interrupt priority.

uint8_t sdio_ipl

 SDIO interrupt priority.

uint8_t card_ipl

 Card interrupt priority.

uint8_t dma_req_ipl

 DMA request interrupt priority.

Field Documentation

◆ block_size

uint32_t sdmmc_cfg_t::block_size

Block size in bytes. Block size must be 512 bytes for SD cards and eMMC devices. Block size can be
1-512 bytes for SDIO.

◆ card_detect

sdmmc_card_detect_t sdmmc_cfg_t::card_detect

Whether or not card detection is used.

◆ write_protect

sdmmc_write_protect_t sdmmc_cfg_t::write_protect

Select whether or not to use the write protect pin. Select Not Used if the MCU or device does not
have a write protect pin.

◆ sdmmc_api_t

struct sdmmc_api_t

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 498 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > SD/MMC Interface

SD/MMC functions implemented at the HAL layer API.

Data Fields

fsp_err_t(* open)(sdmmc_ctrl_t *const p_ctrl, sdmmc_cfg_t const *const p_cfg)

fsp_err_t(* mediaInit)(sdmmc_ctrl_t *const p_ctrl, sdmmc_device_t *const
p_device)

fsp_err_t(* read)(sdmmc_ctrl_t *const p_ctrl, uint8_t *const p_dest, uint32_t
const start_sector, uint32_t const sector_count)

fsp_err_t(* write)(sdmmc_ctrl_t *const p_ctrl, uint8_t const *const p_source,
uint32_t const start_sector, uint32_t const sector_count)

fsp_err_t(* readIo)(sdmmc_ctrl_t *const p_ctrl, uint8_t *const p_data, uint32_t
const function, uint32_t const address)

fsp_err_t(* writeIo)(sdmmc_ctrl_t *const p_ctrl, uint8_t *const p_data, uint32_t
const function, uint32_t const address, sdmmc_io_write_mode_t
const read_after_write)

fsp_err_t(* readIoExt)(sdmmc_ctrl_t *const p_ctrl, uint8_t *const p_dest,
uint32_t const function, uint32_t const address, uint32_t *const
count, sdmmc_io_transfer_mode_t transfer_mode,
sdmmc_io_address_mode_t address_mode)

fsp_err_t(* writeIoExt)(sdmmc_ctrl_t *const p_ctrl, uint8_t const *const
p_source, uint32_t const function, uint32_t const address, uint32_t
const count, sdmmc_io_transfer_mode_t transfer_mode,
sdmmc_io_address_mode_t address_mode)

fsp_err_t(* ioIntEnable)(sdmmc_ctrl_t *const p_ctrl, bool enable)

fsp_err_t(* statusGet)(sdmmc_ctrl_t *const p_ctrl, sdmmc_status_t *const
p_status)

fsp_err_t(* erase)(sdmmc_ctrl_t *const p_ctrl, uint32_t const start_sector,
uint32_t const sector_count)

fsp_err_t(* close)(sdmmc_ctrl_t *const p_ctrl)

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 499 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > SD/MMC Interface

fsp_err_t(* versionGet)(fsp_version_t *const p_version)

Field Documentation

◆ open

fsp_err_t(* sdmmc_api_t::open) (sdmmc_ctrl_t *const p_ctrl, sdmmc_cfg_t const *const p_cfg)

Open the SD/MMC driver.

Implemented as
R_SDHI_Open()

Parameters
[in] p_ctrl Pointer to SD/MMC instance

control block.

[in] p_cfg Pointer to SD/MMC instance
configuration structure.

◆ mediaInit

fsp_err_t(* sdmmc_api_t::mediaInit) (sdmmc_ctrl_t *const p_ctrl, sdmmc_device_t *const p_device)

Initializes an SD/MMC device. If the device is a card, the card must be plugged in prior to calling
this API. This API blocks until the device initialization procedure is complete.

Implemented as
R_SDHI_MediaInit()

Parameters
[in] p_ctrl Pointer to SD/MMC instance

control block.

[out] p_device Pointer to store device
information.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 500 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > SD/MMC Interface

◆ read

fsp_err_t(* sdmmc_api_t::read) (sdmmc_ctrl_t *const p_ctrl, uint8_t *const p_dest, uint32_t const
start_sector, uint32_t const sector_count)

Read data from an SD/MMC channel. This API is not supported for SDIO devices.

Implemented as
R_SDHI_Read()

Parameters
[in] p_ctrl Pointer to an open SD/MMC

instance control block.

[out] p_dest Pointer to data buffer to read
data to.

[in] start_sector First sector address to read.

[in] sector_count Number of sectors to read.
All sectors must be in the
range of
sdmmc_device_t::sector_cou
nt.

◆ write

fsp_err_t(* sdmmc_api_t::write) (sdmmc_ctrl_t *const p_ctrl, uint8_t const *const p_source, uint32_t
const start_sector, uint32_t const sector_count)

Write data to SD/MMC channel. This API is not supported for SDIO devices.

Implemented as
R_SDHI_Write()

Parameters
[in] p_ctrl Pointer to an open SD/MMC

instance control block.

[in] p_source Pointer to data buffer to
write data from.

[in] start_sector First sector address to write
to.

[in] sector_count Number of sectors to write.
All sectors must be in the
range of
sdmmc_device_t::sector_cou
nt.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 501 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > SD/MMC Interface

◆ readIo

fsp_err_t(* sdmmc_api_t::readIo) (sdmmc_ctrl_t *const p_ctrl, uint8_t *const p_data, uint32_t const
function, uint32_t const address)

Read one byte of I/O data from an SDIO device. This API is not supported for SD or eMMC memory
devices.

Implemented as
R_SDHI_ReadIo()

Parameters
[in] p_ctrl Pointer to an open SD/MMC

instance control block.

[out] p_data Pointer to location to store
data byte.

[in] function SDIO Function Number.

[in] address SDIO register address.

◆ writeIo

fsp_err_t(* sdmmc_api_t::writeIo) (sdmmc_ctrl_t *const p_ctrl, uint8_t *const p_data, uint32_t const
function, uint32_t const address, sdmmc_io_write_mode_t const read_after_write)

Write one byte of I/O data to an SDIO device. This API is not supported for SD or eMMC memory
devices.

Implemented as
R_SDHI_WriteIo()

Parameters
[in] p_ctrl Pointer to an open SD/MMC

instance control block.

[in,out] p_data Pointer to data byte to write.
Read data is also provided
here if read_after_write is
true.

[in] function SDIO Function Number.

[in] address SDIO register address.

[in] read_after_write Whether or not to read back
the same register after
writing

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 502 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > SD/MMC Interface

◆ readIoExt

fsp_err_t(* sdmmc_api_t::readIoExt) (sdmmc_ctrl_t *const p_ctrl, uint8_t *const p_dest, uint32_t
const function, uint32_t const address, uint32_t *const count, sdmmc_io_transfer_mode_t
transfer_mode, sdmmc_io_address_mode_t address_mode)

Read multiple bytes or blocks of I/O data from an SDIO device. This API is not supported for SD or
eMMC memory devices.

Implemented as
R_SDHI_ReadIoExt()

Parameters
[in] p_ctrl Pointer to an open SD/MMC

instance control block.

[out] p_dest Pointer to data buffer to read
data to.

[in] function SDIO Function Number.

[in] address SDIO register address.

[in] count Number of bytes or blocks to
read, maximum 512 bytes or
511 blocks.

[in] transfer_mode Byte or block mode

[in] address_mode Fixed or incrementing
address mode

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 503 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > SD/MMC Interface

◆ writeIoExt

fsp_err_t(* sdmmc_api_t::writeIoExt) (sdmmc_ctrl_t *const p_ctrl, uint8_t const *const p_source,
uint32_t const function, uint32_t const address, uint32_t const count, sdmmc_io_transfer_mode_t
transfer_mode, sdmmc_io_address_mode_t address_mode)

Write multiple bytes or blocks of I/O data to an SDIO device. This API is not supported for SD or
eMMC memory devices.

Implemented as
R_SDHI_WriteIoExt()

Parameters
[in] p_ctrl Pointer to an open SD/MMC

instance control block.

[in] p_source Pointer to data buffer to
write data from.

[in] function_number SDIO Function Number.

[in] address SDIO register address.

[in] count Number of bytes or blocks to
write, maximum 512 bytes
or 511 blocks.

[in] transfer_mode Byte or block mode

[in] address_mode Fixed or incrementing
address mode

◆ ioIntEnable

fsp_err_t(* sdmmc_api_t::ioIntEnable) (sdmmc_ctrl_t *const p_ctrl, bool enable)

Enables SDIO interrupt for SD/MMC instance. This API is not supported for SD or eMMC memory
devices.

Implemented as
R_SDHI_IoIntEnable

Parameters
[in] p_ctrl Pointer to an open SD/MMC

instance control block.

[in] enable Interrupt enable = true,
interrupt disable = false.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 504 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > SD/MMC Interface

◆ statusGet

fsp_err_t(* sdmmc_api_t::statusGet) (sdmmc_ctrl_t *const p_ctrl, sdmmc_status_t *const p_status)

Get SD/MMC device status.

Implemented as
R_SDHI_StatusGet()

Parameters
[in] p_ctrl Pointer to an open SD/MMC

instance control block.

[out] p_status Pointer to current driver
status.

◆ erase

fsp_err_t(* sdmmc_api_t::erase) (sdmmc_ctrl_t *const p_ctrl, uint32_t const start_sector, uint32_t
const sector_count)

Erase SD/MMC sectors. The sector size for erase is fixed at 512 bytes. This API is not supported for
SDIO devices.

Implemented as
R_SDHI_Erase

Parameters
[in] p_ctrl Pointer to an open SD/MMC

instance control block.

[in] start_sector First sector to erase. Must be
a multiple of
sdmmc_device_t::erase_sect
or_count.

[in] sector_count Number of sectors to erase.
Must be a multiple of
sdmmc_device_t::erase_sect
or_count. All sectors must be
in the range of
sdmmc_device_t::sector_cou
nt.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 505 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > SD/MMC Interface

◆ close

fsp_err_t(* sdmmc_api_t::close) (sdmmc_ctrl_t *const p_ctrl)

Close open SD/MMC device.

Implemented as
R_SDHI_Close()

Parameters
[in] p_ctrl Pointer to an open SD/MMC

instance control block.

◆ versionGet

fsp_err_t(* sdmmc_api_t::versionGet) (fsp_version_t *const p_version)

Returns the version of the SD/MMC driver.

Implemented as
R_SDHI_VersionGet()

Parameters
[out] p_version Pointer to return version

information to.

◆ sdmmc_instance_t

struct sdmmc_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

sdmmc_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

sdmmc_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

sdmmc_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ sdmmc_ctrl_t

typedef void sdmmc_ctrl_t

SD/MMC control block. Allocate an instance specific control block to pass into the SD/MMC API
calls.

Implemented as

sdmmc_instance_ctrl_t

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 506 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > SD/MMC Interface

Enumeration Type Documentation

◆ sdmmc_card_type_t

enum sdmmc_card_type_t

SD/MMC media uses SD protocol or MMC protocol.

Enumerator

SDMMC_CARD_TYPE_MMC The media is an eMMC device.

SDMMC_CARD_TYPE_SD The media is an SD card.

SDMMC_CARD_TYPE_SDIO The media is an SDIO card.

◆ sdmmc_bus_width_t

enum sdmmc_bus_width_t

SD/MMC data bus is 1, 4 or 8 bits wide.

Enumerator

SDMMC_BUS_WIDTH_1_BIT Data bus is 1 bit wide.

SDMMC_BUS_WIDTH_4_BITS Data bus is 4 bits wide.

SDMMC_BUS_WIDTH_8_BITS Data bus is 8 bits wide.

◆ sdmmc_io_transfer_mode_t

enum sdmmc_io_transfer_mode_t

SDIO transfer mode, configurable in SDIO read/write extended commands.

Enumerator

SDMMC_IO_MODE_TRANSFER_BYTE SDIO byte transfer mode.

SDMMC_IO_MODE_TRANSFER_BLOCK SDIO block transfer mode.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 507 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > SD/MMC Interface

◆ sdmmc_io_address_mode_t

enum sdmmc_io_address_mode_t

SDIO address mode, configurable in SDIO read/write extended commands.

Enumerator

SDMMC_IO_ADDRESS_MODE_FIXED Write all data to the same address.

SDMMC_IO_ADDRESS_MODE_INCREMENT Increment destination address after each
write.

◆ sdmmc_io_write_mode_t

enum sdmmc_io_write_mode_t

Controls the RAW (read after write) flag of CMD52. Used to read back the status after writing a
control register.

Enumerator

SDMMC_IO_WRITE_MODE_NO_READ Write only (do not read back)

SDMMC_IO_WRITE_READ_AFTER_WRITE Read back the register after write.

◆ sdmmc_event_t

enum sdmmc_event_t

Events that can trigger a callback function

Enumerator

SDMMC_EVENT_CARD_REMOVED Card removed event.

SDMMC_EVENT_CARD_INSERTED Card inserted event.

SDMMC_EVENT_RESPONSE Response event.

SDMMC_EVENT_SDIO IO event.

SDMMC_EVENT_TRANSFER_COMPLETE Read or write complete.

SDMMC_EVENT_TRANSFER_ERROR Read or write failed.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 508 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > SD/MMC Interface

◆ sdmmc_card_detect_t

enum sdmmc_card_detect_t

Card detection configuration options.

Enumerator

SDMMC_CARD_DETECT_NONE Card detection unused.

SDMMC_CARD_DETECT_CD Card detection using the CD pin.

◆ sdmmc_write_protect_t

enum sdmmc_write_protect_t

Write protection configuration options.

Enumerator

SDMMC_WRITE_PROTECT_NONE Write protection unused.

SDMMC_WRITE_PROTECT_WP Write protection using WP pin.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 509 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > SD/MMC Interface

◆ sdmmc_r1_state_t

enum sdmmc_r1_state_t

Card state when receiving the prior command.

Enumerator

SDMMC_R1_STATE_IDLE Idle State.

SDMMC_R1_STATE_READY Ready State.

SDMMC_R1_STATE_IDENT Identification State.

SDMMC_R1_STATE_STBY Stand-by State.

SDMMC_R1_STATE_TRAN Transfer State.

SDMMC_R1_STATE_DATA Sending-data State.

SDMMC_R1_STATE_RCV Receive-data State.

SDMMC_R1_STATE_PRG Programming State.

SDMMC_R1_STATE_DIS Disconnect State (between programming and
stand-by)

SDMMC_R1_STATE_IO This is an I/O card and memory states do not
apply.

4.3.25 SPI Interface
Interfaces

Detailed Description

Interface for SPI communications.

Summary
Provides a common interface for communication using the SPI Protocol.

Implemented by:

Serial Peripheral Interface (r_spi)
Serial Communications Interface (SCI) SPI (r_sci_spi)

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 510 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > SPI Interface

Data Structures

struct spi_callback_args_t

struct spi_cfg_t

struct spi_api_t

struct spi_instance_t

Typedefs

typedef void spi_ctrl_t

Enumerations

enum spi_bit_width_t

enum spi_mode_t

enum spi_clk_phase_t

enum spi_clk_polarity_t

enum spi_mode_fault_t

enum spi_bit_order_t

enum spi_event_t

Data Structure Documentation

◆ spi_callback_args_t

struct spi_callback_args_t

Common callback parameter definition

Data Fields

uint32_t channel Device channel number.

spi_event_t event Event code.

void const * p_context Context provided to user during
callback.

◆ spi_cfg_t

struct spi_cfg_t

SPI interface configuration

Data Fields

uint8_t channel

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 511 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > SPI Interface

 Channel number to be used.

IRQn_Type rxi_irq

 Receive Buffer Full IRQ number.

IRQn_Type txi_irq

 Transmit Buffer Empty IRQ number.

IRQn_Type tei_irq

 Transfer Complete IRQ number.

IRQn_Type eri_irq

 Error IRQ number.

uint8_t rxi_ipl

 Receive Interrupt priority.

uint8_t txi_ipl

 Transmit Interrupt priority.

uint8_t tei_ipl

 Transfer Complete Interrupt priority.

uint8_t eri_ipl

 Error Interrupt priority.

spi_mode_t operating_mode

 Select master or slave operating mode.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 512 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > SPI Interface

spi_clk_phase_t clk_phase

 Data sampling on odd or even clock edge.

spi_clk_polarity_t clk_polarity

 Clock level when idle.

spi_mode_fault_t mode_fault

 Mode fault error (master/slave conflict) flag.

spi_bit_order_t bit_order

 Select to transmit MSB/LSB first.

transfer_instance_t const * p_transfer_tx

 To use SPI DTC/DMA write transfer, link a DTC/DMA instance here.
Set to NULL if unused.

transfer_instance_t const * p_transfer_rx

 To use SPI DTC/DMA read transfer, link a DTC/DMA instance here. Set
to NULL if unused.

void(* p_callback)(spi_callback_args_t *p_args)

 Pointer to user callback function.

void const * p_context

 User defined context passed to callback function.

void const * p_extend

 Extended SPI hardware dependent configuration.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 513 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > SPI Interface

◆ spi_api_t

struct spi_api_t

Shared Interface definition for SPI

Data Fields

fsp_err_t(* open)(spi_ctrl_t *p_ctrl, spi_cfg_t const *const p_cfg)

fsp_err_t(* read)(spi_ctrl_t *const p_ctrl, void *p_dest, uint32_t const length,
spi_bit_width_t const bit_width)

fsp_err_t(* write)(spi_ctrl_t *const p_ctrl, void const *p_src, uint32_t const
length, spi_bit_width_t const bit_width)

fsp_err_t(* writeRead)(spi_ctrl_t *const p_ctrl, void const *p_src, void *p_dest,
uint32_t const length, spi_bit_width_t const bit_width)

fsp_err_t(* close)(spi_ctrl_t *const p_ctrl)

fsp_err_t(* versionGet)(fsp_version_t *p_version)

Field Documentation

◆ open

fsp_err_t(* spi_api_t::open) (spi_ctrl_t *p_ctrl, spi_cfg_t const *const p_cfg)

Initialize a channel for SPI communication mode.

Implemented as

R_SPI_Open()
R_SCI_SPI_Open()

Parameters
[in,out] p_ctrl Pointer to user-provided

storage for the control block.

[in] p_cfg Pointer to SPI configuration
structure.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 514 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > SPI Interface

◆ read

fsp_err_t(* spi_api_t::read) (spi_ctrl_t *const p_ctrl, void *p_dest, uint32_t const length,
spi_bit_width_t const bit_width)

Receive data from a SPI device.

Implemented as

R_SPI_Read()
R_SCI_SPI_Read()

Parameters
[in] p_ctrl Pointer to the control block

for the channel.

[in] length Number of units of data to
be transferred (unit size
specified by the bit_width).

[in] bit_width Data bit width to be
transferred.

[out] p_dest Pointer to destination buffer
into which data will be
copied that is received from
a SPI device. It is the
responsibility of the caller to
ensure that adequate space
is available to hold the
requested data count.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 515 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > SPI Interface

◆ write

fsp_err_t(* spi_api_t::write) (spi_ctrl_t *const p_ctrl, void const *p_src, uint32_t const length,
spi_bit_width_t const bit_width)

Transmit data to a SPI device.

Implemented as

R_SPI_Write()
R_SCI_SPI_Write()

Parameters
[in] p_ctrl Pointer to the control block

for the channel.

[in] p_src Pointer to a source data
buffer from which data will
be transmitted to a SPI
device. The argument must
not be NULL.

[in] length Number of units of data to
be transferred (unit size
specified by the bit_width).

[in] bit_width Data bit width to be
transferred.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 516 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > SPI Interface

◆ writeRead

fsp_err_t(* spi_api_t::writeRead) (spi_ctrl_t *const p_ctrl, void const *p_src, void *p_dest, uint32_t
const length, spi_bit_width_t const bit_width)

Simultaneously transmit data to a SPI device while receiving data from a SPI device (full duplex).

Implemented as

R_SPI_WriteRead()
R_SCI_SPI_WriteRead()

Parameters
[in] p_ctrl Pointer to the control block

for the channel.

[in] p_src Pointer to a source data
buffer from which data will
be transmitted to a SPI
device. The argument must
not be NULL.

[out] p_dest Pointer to destination buffer
into which data will be
copied that is received from
a SPI device. It is the
responsibility of the caller to
ensure that adequate space
is available to hold the
requested data count. The
argument must not be NULL.

[in] length Number of units of data to
be transferred (unit size
specified by the bit_width).

[in] bit_width Data bit width to be
transferred.

◆ close

fsp_err_t(* spi_api_t::close) (spi_ctrl_t *const p_ctrl)

Remove power to the SPI channel designated by the handle and disable the associated interrupts.

Implemented as

R_SPI_Close()
R_SCI_SPI_Close()

Parameters
[in] p_ctrl Pointer to the control block

for the channel.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 517 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > SPI Interface

◆ versionGet

fsp_err_t(* spi_api_t::versionGet) (fsp_version_t *p_version)

Get the version information of the underlying driver.

Implemented as

R_SPI_VersionGet()
R_SCI_SPI_VersionGet()

Parameters
[out] p_version pointer to memory location

to return version number

◆ spi_instance_t

struct spi_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

spi_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

spi_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

spi_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ spi_ctrl_t

typedef void spi_ctrl_t

SPI control block. Allocate an instance specific control block to pass into the SPI API calls.

Implemented as

sci_spi_instance_ctrl_t
spi_instance_ctrl_t

Enumeration Type Documentation

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 518 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > SPI Interface

◆ spi_bit_width_t

enum spi_bit_width_t

Data bit width

Enumerator

SPI_BIT_WIDTH_8_BITS Data bit width is 8 bits byte.

SPI_BIT_WIDTH_16_BITS Data bit width is 16 bits word.

SPI_BIT_WIDTH_32_BITS Data bit width is 32 bits long word.

◆ spi_mode_t

enum spi_mode_t

Master or slave operating mode

Enumerator

SPI_MODE_MASTER Channel operates as SPI master.

SPI_MODE_SLAVE Channel operates as SPI slave.

◆ spi_clk_phase_t

enum spi_clk_phase_t

Clock phase

Enumerator

SPI_CLK_PHASE_EDGE_ODD 0: Data sampling on odd edge, data variation
on even edge

SPI_CLK_PHASE_EDGE_EVEN 1: Data variation on odd edge, data sampling
on even edge

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 519 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > SPI Interface

◆ spi_clk_polarity_t

enum spi_clk_polarity_t

Clock polarity

Enumerator

SPI_CLK_POLARITY_LOW 0: Clock polarity is low when idle

SPI_CLK_POLARITY_HIGH 1: Clock polarity is high when idle

◆ spi_mode_fault_t

enum spi_mode_fault_t

Mode fault error flag. This error occurs when the device is setup as a master, but the SSLA line
does not seem to be controlled by the master. This usually happens when the connecting device is
also acting as master. A similar situation can also happen when configured as a slave.

Enumerator

SPI_MODE_FAULT_ERROR_ENABLE Mode fault error flag on.

SPI_MODE_FAULT_ERROR_DISABLE Mode fault error flag off.

◆ spi_bit_order_t

enum spi_bit_order_t

Bit order

Enumerator

SPI_BIT_ORDER_MSB_FIRST Send MSB first in transmission.

SPI_BIT_ORDER_LSB_FIRST Send LSB first in transmission.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 520 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > SPI Interface

◆ spi_event_t

enum spi_event_t

SPI events

Enumerator

SPI_EVENT_TRANSFER_COMPLETE The data transfer was completed.

SPI_EVENT_TRANSFER_ABORTED The data transfer was aborted.

SPI_EVENT_ERR_MODE_FAULT Mode fault error.

SPI_EVENT_ERR_READ_OVERFLOW Read overflow error.

SPI_EVENT_ERR_PARITY Parity error.

SPI_EVENT_ERR_OVERRUN Overrun error.

SPI_EVENT_ERR_FRAMING Framing error.

SPI_EVENT_ERR_MODE_UNDERRUN Underrun error.

4.3.26 Timer Interface
Interfaces

Detailed Description

Interface for timer functions.

Summary
The general timer interface provides standard timer functionality including periodic mode, one-shot
mode, PWM output, and free-running timer mode. After each timer cycle (overflow or underflow), an
interrupt can be triggered.

If an instance supports output compare mode, it is provided in the extension configuration
timer_on_<instance>_cfg_t defined in r_<instance>.h.

Implemented by:

General PWM Timer (r_gpt)
Asynchronous General Purpose Timer (r_agt)

Data Structures

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 521 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timer Interface

struct timer_callback_args_t

struct timer_info_t

struct timer_status_t

struct timer_cfg_t

struct timer_api_t

struct timer_instance_t

Typedefs

typedef void timer_ctrl_t

Enumerations

enum timer_event_t

enum timer_variant_t

enum timer_state_t

enum timer_mode_t

enum timer_direction_t

enum timer_source_div_t

Data Structure Documentation

◆ timer_callback_args_t

struct timer_callback_args_t

Callback function parameter data

Data Fields

void const * p_context Placeholder for user data. Set in
timer_api_t::open function in
timer_cfg_t.

timer_event_t event The event can be used to
identify what caused the
callback.

uint32_t capture

◆ timer_info_t

struct timer_info_t

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 522 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timer Interface

Timer information structure to store various information for a timer resource

Data Fields

timer_direction_t count_direction Clock counting direction of the
timer resource.

uint32_t clock_frequency Clock frequency of the timer
resource.

uint32_t period_counts Time in clock counts until timer
will expire.

◆ timer_status_t

struct timer_status_t

Current timer status.

Data Fields

uint32_t counter Current counter value.

timer_state_t state Current timer state (running or
stopped)

◆ timer_cfg_t

struct timer_cfg_t

User configuration structure, used in open function

Data Fields

timer_mode_t mode

 Select enumerated value from timer_mode_t.

uint32_t period_counts

 Period in raw timer counts.

timer_source_div_t source_div

 Source clock divider.

uint32_t duty_cycle_counts

 Duty cycle in counts.

uint8_t channel

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 523 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timer Interface

uint8_t cycle_end_ipl

 Cycle end interrupt priority.

IRQn_Type cycle_end_irq

 Cycle end interrupt.

void(* p_callback)(timer_callback_args_t *p_args)

void const * p_context

void const * p_extend

 Extension parameter for hardware specific settings.

Field Documentation

◆ channel

uint8_t timer_cfg_t::channel

Select a channel corresponding to the channel number of the hardware.

◆ p_callback

void(* timer_cfg_t::p_callback) (timer_callback_args_t *p_args)

Callback provided when a timer ISR occurs. Set to NULL for no CPU interrupt.

◆ p_context

void const* timer_cfg_t::p_context

Placeholder for user data. Passed to the user callback in timer_callback_args_t.

◆ timer_api_t

struct timer_api_t

Timer API structure. General timer functions implemented at the HAL layer follow this API.

Data Fields

fsp_err_t(* open)(timer_ctrl_t *const p_ctrl, timer_cfg_t const *const p_cfg)

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 524 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timer Interface

fsp_err_t(* start)(timer_ctrl_t *const p_ctrl)

fsp_err_t(* stop)(timer_ctrl_t *const p_ctrl)

fsp_err_t(* reset)(timer_ctrl_t *const p_ctrl)

fsp_err_t(* enable)(timer_ctrl_t *const p_ctrl)

fsp_err_t(* disable)(timer_ctrl_t *const p_ctrl)

fsp_err_t(* periodSet)(timer_ctrl_t *const p_ctrl, uint32_t const period)

fsp_err_t(* dutyCycleSet)(timer_ctrl_t *const p_ctrl, uint32_t const
duty_cycle_counts, uint32_t const pin)

fsp_err_t(* infoGet)(timer_ctrl_t *const p_ctrl, timer_info_t *const p_info)

fsp_err_t(* statusGet)(timer_ctrl_t *const p_ctrl, timer_status_t *const p_status)

fsp_err_t(* close)(timer_ctrl_t *const p_ctrl)

fsp_err_t(* versionGet)(fsp_version_t *const p_version)

Field Documentation

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 525 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timer Interface

◆ open

fsp_err_t(* timer_api_t::open) (timer_ctrl_t *const p_ctrl, timer_cfg_t const *const p_cfg)

Initial configuration.

Implemented as

R_GPT_Open()
R_AGT_Open()

Parameters
[in] p_ctrl Pointer to control block.

Must be declared by user.
Elements set here.

[in] p_cfg Pointer to configuration
structure. All elements of
this structure must be set by
user.

◆ start

fsp_err_t(* timer_api_t::start) (timer_ctrl_t *const p_ctrl)

Start the counter.

Implemented as

R_GPT_Start()
R_AGT_Start()

Parameters
[in] p_ctrl Control block set in

timer_api_t::open call for this
timer.

◆ stop

fsp_err_t(* timer_api_t::stop) (timer_ctrl_t *const p_ctrl)

Stop the counter.

Implemented as

R_GPT_Stop()
R_AGT_Stop()

Parameters
[in] p_ctrl Control block set in

timer_api_t::open call for this
timer.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 526 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timer Interface

◆ reset

fsp_err_t(* timer_api_t::reset) (timer_ctrl_t *const p_ctrl)

Reset the counter to the initial value.

Implemented as

R_GPT_Reset()
R_AGT_Reset()

Parameters
[in] p_ctrl Control block set in

timer_api_t::open call for this
timer.

◆ enable

fsp_err_t(* timer_api_t::enable) (timer_ctrl_t *const p_ctrl)

Enables input capture.

Implemented as

R_GPT_Enable()
R_AGT_Enable()

Parameters
[in] p_ctrl Control block set in

timer_api_t::open call for this
timer.

◆ disable

fsp_err_t(* timer_api_t::disable) (timer_ctrl_t *const p_ctrl)

Disables input capture.

Implemented as

R_GPT_Disable()
R_AGT_Disable()

Parameters
[in] p_ctrl Control block set in

timer_api_t::open call for this
timer.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 527 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timer Interface

◆ periodSet

fsp_err_t(* timer_api_t::periodSet) (timer_ctrl_t *const p_ctrl, uint32_t const period)

Set the time until the timer expires. See implementation for details of period update timing.

Implemented as

R_GPT_PeriodSet()
R_AGT_PeriodSet()

Note
Timer expiration may or may not generate a CPU interrupt based on how the timer is configured in
timer_api_t::open.

Parameters
[in] p_ctrl Control block set in

timer_api_t::open call for this
timer.

[in] p_period Time until timer should
expire.

◆ dutyCycleSet

fsp_err_t(* timer_api_t::dutyCycleSet) (timer_ctrl_t *const p_ctrl, uint32_t const duty_cycle_counts,
uint32_t const pin)

Sets the number of counts for the pin level to be high. If the timer is counting, the updated duty
cycle is reflected after the next timer expiration.

Implemented as

R_GPT_DutyCycleSet()
R_AGT_DutyCycleSet()

Parameters
[in] p_ctrl Control block set in

timer_api_t::open call for this
timer.

[in] duty_cycle_counts Time until duty cycle should
expire.

[in] pin Which output pin to update.
See implementation for
details.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 528 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timer Interface

◆ infoGet

fsp_err_t(* timer_api_t::infoGet) (timer_ctrl_t *const p_ctrl, timer_info_t *const p_info)

Stores timer information in p_info.

Implemented as

R_GPT_InfoGet()
R_AGT_InfoGet()

Parameters
[in] p_ctrl Control block set in

timer_api_t::open call for this
timer.

[out] p_info Collection of information for
this timer.

◆ statusGet

fsp_err_t(* timer_api_t::statusGet) (timer_ctrl_t *const p_ctrl, timer_status_t *const p_status)

Get the current counter value and timer state and store it in p_status.

Implemented as

R_GPT_StatusGet()
R_AGT_StatusGet()

Parameters
[in] p_ctrl Control block set in

timer_api_t::open call for this
timer.

[out] p_status Current status of this timer.

◆ close

fsp_err_t(* timer_api_t::close) (timer_ctrl_t *const p_ctrl)

Allows driver to be reconfigured and may reduce power consumption.

Implemented as

R_GPT_Close()
R_AGT_Close()

Parameters
[in] p_ctrl Control block set in

timer_api_t::open call for this
timer.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 529 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timer Interface

◆ versionGet

fsp_err_t(* timer_api_t::versionGet) (fsp_version_t *const p_version)

Get version and store it in provided pointer p_version.

Implemented as

R_GPT_VersionGet()
R_AGT_VersionGet()

Parameters
[out] p_version Code and API version used.

◆ timer_instance_t

struct timer_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

timer_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

timer_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

timer_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ timer_ctrl_t

typedef void timer_ctrl_t

Timer control block. Allocate an instance specific control block to pass into the timer API calls.

Implemented as

gpt_instance_ctrl_t
agt_instance_ctrl_t

Enumeration Type Documentation

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 530 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timer Interface

◆ timer_event_t

enum timer_event_t

Events that can trigger a callback function

Enumerator

TIMER_EVENT_CYCLE_END Requested timer delay has expired or timer
has wrapped around.

TIMER_EVENT_CAPTURE_A A capture has occurred on signal A.

TIMER_EVENT_CAPTURE_B A capture has occurred on signal B.

◆ timer_variant_t

enum timer_variant_t

Timer variant types.

Enumerator

TIMER_VARIANT_32_BIT 32-bit timer

TIMER_VARIANT_16_BIT 16-bit timer

◆ timer_state_t

enum timer_state_t

Possible status values returned by timer_api_t::statusGet.

Enumerator

TIMER_STATE_STOPPED Timer is stopped.

TIMER_STATE_COUNTING Timer is running.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 531 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timer Interface

◆ timer_mode_t

enum timer_mode_t

Timer operational modes

Enumerator

TIMER_MODE_PERIODIC Timer will restart after delay periods.

TIMER_MODE_ONE_SHOT Timer will stop after delay periods.

TIMER_MODE_PWM Timer generate PWM output.

◆ timer_direction_t

enum timer_direction_t

Direction of timer count

Enumerator

TIMER_DIRECTION_DOWN Timer count goes up.

TIMER_DIRECTION_UP Timer count goes down.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 532 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timer Interface

◆ timer_source_div_t

enum timer_source_div_t

PCLK divisors

Enumerator

TIMER_SOURCE_DIV_1 Timer clock source divided by 1.

TIMER_SOURCE_DIV_2 Timer clock source divided by 2.

TIMER_SOURCE_DIV_4 Timer clock source divided by 4.

TIMER_SOURCE_DIV_8 Timer clock source divided by 8.

TIMER_SOURCE_DIV_16 Timer clock source divided by 16.

TIMER_SOURCE_DIV_32 Timer clock source divided by 32.

TIMER_SOURCE_DIV_64 Timer clock source divided by 64.

TIMER_SOURCE_DIV_128 Timer clock source divided by 128.

TIMER_SOURCE_DIV_256 Timer clock source divided by 256.

TIMER_SOURCE_DIV_1024 Timer clock source divided by 1024.

4.3.27 Transfer Interface
Interfaces

Detailed Description

Interface for data transfer functions.

Summary
The transfer interface supports background data transfer (no CPU intervention).

Implemented by:

Data Transfer Controller (r_dtc)
Direct Memory Access Controller (r_dmac)

Data Structures

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 533 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Transfer Interface

struct transfer_properties_t

struct transfer_info_t

struct transfer_cfg_t

struct transfer_api_t

struct transfer_instance_t

Typedefs

typedef void transfer_ctrl_t

Enumerations

enum transfer_mode_t

enum transfer_size_t

enum transfer_addr_mode_t

enum transfer_repeat_area_t

enum transfer_chain_mode_t

enum transfer_irq_t

enum transfer_start_mode_t

Data Structure Documentation

◆ transfer_properties_t

struct transfer_properties_t

Driver specific information.

Data Fields

uint32_t block_count_max Maximum number of blocks.

uint32_t block_count_remaining Number of blocks remaining.

uint32_t transfer_length_max Maximum number of transfers.

uint32_t transfer_length_remaining Number of transfers remaining.

◆ transfer_info_t

struct transfer_info_t

This structure specifies the properties of the transfer.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 534 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Transfer Interface

Warning
When using DTC, this structure corresponds to the descriptor block registers required by
the DTC. The following components may be modified by the driver: p_src, p_dest,
num_blocks, and length.
When using DTC, do NOT reuse this structure to configure multiple transfers. Each transfer
must have a unique transfer_info_t.
When using DTC, this structure must not be allocated in a temporary location. Any instance
of this structure must remain in scope until the transfer it is used for is closed.

Note
When using DTC, consider placing instances of this structure in a protected section of memory.

Data Fields

union transfer_info_t __unnamed__

void const *volatile p_src Source pointer.

void *volatile p_dest Destination pointer.

volatile uint16_t num_blocks Number of blocks to transfer
when using
TRANSFER_MODE_BLOCK (both
DTC an DMAC) and
TRANSFER_MODE_REPEAT
(DMAC only), unused in other
modes.

volatile uint16_t length Length of each transfer. Range
limited for
TRANSFER_MODE_BLOCK and
TRANSFER_MODE_REPEAT, see
HAL driver for details.

◆ transfer_cfg_t

struct transfer_cfg_t

Driver configuration set in transfer_api_t::open. All elements except p_extend are required and
must be initialized.

Data Fields

transfer_info_t * p_info Pointer to transfer configuration
options. If using chain transfer
(DTC only), this can be a
pointer to an array of chained
transfers that will be completed
in order.

void const * p_extend Extension parameter for
hardware specific settings.

◆ transfer_api_t

struct transfer_api_t

Transfer functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(transfer_ctrl_t *const p_ctrl, transfer_cfg_t const *const p_cfg)

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 535 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Transfer Interface

fsp_err_t(* reconfigure)(transfer_ctrl_t *const p_ctrl, transfer_info_t *p_info)

fsp_err_t(* reset)(transfer_ctrl_t *const p_ctrl, void const *p_src, void *p_dest,
uint16_t const num_transfers)

fsp_err_t(* enable)(transfer_ctrl_t *const p_ctrl)

fsp_err_t(* disable)(transfer_ctrl_t *const p_ctrl)

fsp_err_t(* softwareStart)(transfer_ctrl_t *const p_ctrl, transfer_start_mode_t
mode)

fsp_err_t(* softwareStop)(transfer_ctrl_t *const p_ctrl)

fsp_err_t(* infoGet)(transfer_ctrl_t *const p_ctrl, transfer_properties_t *const
p_properties)

fsp_err_t(* close)(transfer_ctrl_t *const p_ctrl)

fsp_err_t(* versionGet)(fsp_version_t *const p_version)

Field Documentation

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 536 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Transfer Interface

◆ open

fsp_err_t(* transfer_api_t::open) (transfer_ctrl_t *const p_ctrl, transfer_cfg_t const *const p_cfg)

Initial configuration.

Implemented as

R_DTC_Open()
R_DMAC_Open()

Parameters
[in,out] p_ctrl Pointer to control block.

Must be declared by user.
Elements set here.

[in] p_cfg Pointer to configuration
structure. All elements of
this structure must be set by
user.

◆ reconfigure

fsp_err_t(* transfer_api_t::reconfigure) (transfer_ctrl_t *const p_ctrl, transfer_info_t *p_info)

Reconfigure the transfer. Enable the transfer if p_info is valid.

Implemented as

R_DTC_Reconfigure()
R_DMAC_Reconfigure()

Parameters
[in,out] p_ctrl Pointer to control block.

Must be declared by user.
Elements set here.

[in] p_info Pointer to a new transfer info
structure.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 537 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Transfer Interface

◆ reset

fsp_err_t(* transfer_api_t::reset) (transfer_ctrl_t *const p_ctrl, void const *p_src, void *p_dest,
uint16_t const num_transfers)

Reset source address pointer, destination address pointer, and/or length, keeping all other settings
the same. Enable the transfer if p_src, p_dest, and length are valid.

Implemented as

R_DTC_Reset()
R_DMAC_Reset()

Parameters
[in] p_ctrl Control block set in

transfer_api_t::open call for
this transfer.

[in] p_src Pointer to source. Set to
NULL if source pointer
should not change.

[in] p_dest Pointer to destination. Set to
NULL if destination pointer
should not change.

[in] num_transfers Transfer length in normal
mode or number of blocks in
block mode. In DMAC only,
resets number of repeats
(initially stored in
transfer_info_t::num_blocks)
in repeat mode. Not used in
repeat mode for DTC.

◆ enable

fsp_err_t(* transfer_api_t::enable) (transfer_ctrl_t *const p_ctrl)

Enable transfer. Transfers occur after the activation source event (or when transfer_api_t::start is
called if ELC_EVENT_ELC_NONE is chosen as activation source).

Implemented as

R_DTC_Enable()
R_DMAC_Enable()

Parameters
[in] p_ctrl Control block set in

transfer_api_t::open call for
this transfer.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 538 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Transfer Interface

◆ disable

fsp_err_t(* transfer_api_t::disable) (transfer_ctrl_t *const p_ctrl)

Disable transfer. Transfers do not occur after the activation source event (or when
transfer_api_t::start is called if ELC_EVENT_ELC_NONE is chosen as the DMAC activation source).

Note
If a transfer is in progress, it will be completed. Subsequent transfer requests do not cause a transfer.

Implemented as

R_DTC_Disable()
R_DMAC_Disable()

Parameters
[in] p_ctrl Control block set in

transfer_api_t::open call for
this transfer.

◆ softwareStart

fsp_err_t(* transfer_api_t::softwareStart) (transfer_ctrl_t *const p_ctrl, transfer_start_mode_t mode)

Start transfer in software.

Warning
Only works if ELC_EVENT_ELC_NONE is chosen as the DMAC activation source.

Note
Not supported for DTC.

Implemented as

R_DMAC_SoftwareStart()
Parameters

[in] p_ctrl Control block set in
transfer_api_t::open call for
this transfer.

[in] mode Select mode from
transfer_start_mode_t.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 539 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Transfer Interface

◆ softwareStop

fsp_err_t(* transfer_api_t::softwareStop) (transfer_ctrl_t *const p_ctrl)

Stop transfer in software. The transfer will stop after completion of the current transfer.

Note
Not supported for DTC.
Only applies for transfers started with TRANSFER_START_MODE_REPEAT.

Warning
Only works if ELC_EVENT_ELC_NONE is chosen as the DMAC activation source.

Implemented as

R_DMAC_SoftwareStop()
Parameters

[in] p_ctrl Control block set in
transfer_api_t::open call for
this transfer.

◆ infoGet

fsp_err_t(* transfer_api_t::infoGet) (transfer_ctrl_t *const p_ctrl, transfer_properties_t *const
p_properties)

Provides information about this transfer.

Implemented as

R_DTC_InfoGet()
R_DMAC_InfoGet()

Parameters
[in] p_ctrl Control block set in

transfer_api_t::open call for
this transfer.

[out] p_properties Driver specific information.

◆ close

fsp_err_t(* transfer_api_t::close) (transfer_ctrl_t *const p_ctrl)

Releases hardware lock. This allows a transfer to be reconfigured using transfer_api_t::open.

Implemented as

R_DTC_Close()
R_DMAC_Close()

Parameters
[in] p_ctrl Control block set in

transfer_api_t::open call for
this transfer.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 540 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Transfer Interface

◆ versionGet

fsp_err_t(* transfer_api_t::versionGet) (fsp_version_t *const p_version)

Gets version and stores it in provided pointer p_version.

Implemented as

R_DTC_VersionGet()
R_DMAC_VersionGet()

Parameters
[out] p_version Code and API version used.

◆ transfer_instance_t

struct transfer_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

transfer_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

transfer_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

transfer_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ transfer_ctrl_t

typedef void transfer_ctrl_t

Transfer control block. Allocate an instance specific control block to pass into the transfer API calls.

Implemented as

dtc_instance_ctrl_t
dmac_instance_ctrl_t

Enumeration Type Documentation

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 541 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Transfer Interface

◆ transfer_mode_t

enum transfer_mode_t

Transfer mode describes what will happen when a transfer request occurs.

Enumerator

TRANSFER_MODE_NORMAL In normal mode, each transfer request causes
a transfer of transfer_size_t from the source
pointer to the destination pointer. The transfer
length is decremented and the source and
address pointers are updated according to
transfer_addr_mode_t. After the transfer length
reaches 0, transfer requests will not cause any
further transfers.

TRANSFER_MODE_REPEAT Repeat mode is like normal mode, except that
when the transfer length reaches 0, the pointer
to the repeat area and the transfer length will
be reset to their initial values. If DMAC is used,
the transfer repeats only
transfer_info_t::num_blocks times. After the
transfer repeats transfer_info_t::num_blocks
times, transfer requests will not cause any
further transfers. If DTC is used, the transfer
repeats continuously (no limit to the number of
repeat transfers).

TRANSFER_MODE_BLOCK In block mode, each transfer request causes
transfer_info_t::length transfers of
transfer_size_t. After each individual transfer,
the source and destination pointers are
updated according to transfer_addr_mode_t.
After the block transfer is complete,
transfer_info_t::num_blocks is decremented.
After the transfer_info_t::num_blocks reaches
0, transfer requests will not cause any further
transfers.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 542 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Transfer Interface

◆ transfer_size_t

enum transfer_size_t

Transfer size specifies the size of each individual transfer. Total transfer length = transfer_size_t *
transfer_length_t

Enumerator

TRANSFER_SIZE_1_BYTE Each transfer transfers a 8-bit value.

TRANSFER_SIZE_2_BYTE Each transfer transfers a 16-bit value.

TRANSFER_SIZE_4_BYTE Each transfer transfers a 32-bit value.

◆ transfer_addr_mode_t

enum transfer_addr_mode_t

Address mode specifies whether to modify (increment or decrement) pointer after each transfer.

Enumerator

TRANSFER_ADDR_MODE_FIXED Address pointer remains fixed after each
transfer.

TRANSFER_ADDR_MODE_OFFSET Offset is added to the address pointer after
each transfer.

TRANSFER_ADDR_MODE_INCREMENTED Address pointer is incremented by associated
transfer_size_t after each transfer.

TRANSFER_ADDR_MODE_DECREMENTED Address pointer is decremented by associated
transfer_size_t after each transfer.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 543 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Transfer Interface

◆ transfer_repeat_area_t

enum transfer_repeat_area_t

Repeat area options (source or destination). In TRANSFER_MODE_REPEAT, the selected pointer
returns to its original value after transfer_info_t::length transfers. In TRANSFER_MODE_BLOCK, the
selected pointer returns to its original value after each transfer.

Enumerator

TRANSFER_REPEAT_AREA_DESTINATION Destination area repeated in
TRANSFER_MODE_REPEAT or
TRANSFER_MODE_BLOCK.

TRANSFER_REPEAT_AREA_SOURCE Source area repeated in
TRANSFER_MODE_REPEAT or
TRANSFER_MODE_BLOCK.

◆ transfer_chain_mode_t

enum transfer_chain_mode_t

Chain transfer mode options.

Note
Only applies for DTC.

Enumerator

TRANSFER_CHAIN_MODE_DISABLED Chain mode not used.

TRANSFER_CHAIN_MODE_EACH Switch to next transfer after a single transfer
from this transfer_info_t.

TRANSFER_CHAIN_MODE_END Complete the entire transfer defined in this
transfer_info_t before chaining to next
transfer.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 544 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Transfer Interface

◆ transfer_irq_t

enum transfer_irq_t

Interrupt options.

Enumerator

TRANSFER_IRQ_END Interrupt occurs only after last transfer. If this
transfer is chained to a subsequent transfer,
the interrupt will occur only after subsequent
chained transfer(s) are complete.

Warning
DTC triggers the interrupt of the
activation source. Choosing
TRANSFER_IRQ_END with DTC will
prevent activation source interrupts until
the transfer is complete.

TRANSFER_IRQ_EACH Interrupt occurs after each transfer.

Note
Not available in all HAL drivers. See HAL driver
for details.

◆ transfer_start_mode_t

enum transfer_start_mode_t

Select whether to start single or repeated transfer with software start.

Enumerator

TRANSFER_START_MODE_SINGLE Software start triggers single transfer.

TRANSFER_START_MODE_REPEAT Software start transfer continues until transfer
is complete.

4.3.28 UART Interface
Interfaces

Detailed Description

Interface for UART communications.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 545 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > UART Interface

Summary
The UART interface provides common APIs for UART HAL drivers. The UART interface supports the
following features:

Full-duplex UART communication
Interrupt driven transmit/receive processing
Callback function with returned event code
Runtime baud-rate change
Hardware resource locking during a transaction
CTS/RTS hardware flow control support (with an associated IOPORT pin)

Implemented by:

Serial Communications Interface (SCI) UART (r_sci_uart)

Data Structures

struct uart_info_t

struct uart_callback_args_t

struct uart_cfg_t

struct uart_api_t

struct uart_instance_t

Typedefs

typedef void uart_ctrl_t

Enumerations

enum uart_event_t

enum uart_data_bits_t

enum uart_parity_t

enum uart_stop_bits_t

enum uart_dir_t

Data Structure Documentation

◆ uart_info_t

struct uart_info_t

UART driver specific information

Data Fields

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 546 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > UART Interface

uint32_t write_bytes_max Maximum bytes that can be
written at this time. Only
applies if
uart_cfg_t::p_transfer_tx is not
NULL.

uint32_t read_bytes_max Maximum bytes that are
available to read at one time.
Only applies if
uart_cfg_t::p_transfer_rx is not
NULL.

◆ uart_callback_args_t

struct uart_callback_args_t

UART Callback parameter definition

Data Fields

uint32_t channel Device channel number.

uart_event_t event Event code.

uint32_t data Contains the next character
received for the events
UART_EVENT_RX_CHAR,
UART_EVENT_ERR_PARITY,
UART_EVENT_ERR_FRAMING, or
UART_EVENT_ERR_OVERFLOW.
Otherwise unused.

void const * p_context Context provided to user during
callback.

◆ uart_cfg_t

struct uart_cfg_t

UART Configuration

Data Fields

uint8_t channel

 Select a channel corresponding to the channel number of the
hardware.

uart_data_bits_t data_bits

 Data bit length (8 or 7 or 9)

uart_parity_t parity

 Parity type (none or odd or even)

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 547 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > UART Interface

uart_stop_bits_t stop_bits

 Stop bit length (1 or 2)

uint8_t rxi_ipl

 Receive interrupt priority.

IRQn_Type rxi_irq

 Receive interrupt IRQ number.

uint8_t txi_ipl

 Transmit interrupt priority.

IRQn_Type txi_irq

 Transmit interrupt IRQ number.

uint8_t tei_ipl

 Transmit end interrupt priority.

IRQn_Type tei_irq

 Transmit end interrupt IRQ number.

uint8_t eri_ipl

 Error interrupt priority.

IRQn_Type eri_irq

 Error interrupt IRQ number.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 548 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > UART Interface

transfer_instance_t const * p_transfer_rx

transfer_instance_t const * p_transfer_tx

void(* p_callback)(uart_callback_args_t *p_args)

 Pointer to callback function.

void const * p_context

 User defined context passed into callback function.

void const * p_extend

 UART hardware dependent configuration.

Field Documentation

◆ p_transfer_rx

transfer_instance_t const* uart_cfg_t::p_transfer_rx

Optional transfer instance used to receive multiple bytes without interrupts. Set to NULL if unused.
If NULL, the number of bytes allowed in the read API is limited to one byte at a time.

◆ p_transfer_tx

transfer_instance_t const* uart_cfg_t::p_transfer_tx

Optional transfer instance used to send multiple bytes without interrupts. Set to NULL if unused. If
NULL, the number of bytes allowed in the write APIs is limited to one byte at a time.

◆ uart_api_t

struct uart_api_t

Shared Interface definition for UART

Data Fields

fsp_err_t(* open)(uart_ctrl_t *const p_ctrl, uart_cfg_t const *const p_cfg)

fsp_err_t(* read)(uart_ctrl_t *const p_ctrl, uint8_t *const p_dest, uint32_t const
bytes)

fsp_err_t(* write)(uart_ctrl_t *const p_ctrl, uint8_t const *const p_src, uint32_t

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 549 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > UART Interface

const bytes)

fsp_err_t(* baudSet)(uart_ctrl_t *const p_ctrl, void const *const
p_baudrate_info)

fsp_err_t(* infoGet)(uart_ctrl_t *const p_ctrl, uart_info_t *const p_info)

fsp_err_t(* communicationAbort)(uart_ctrl_t *const p_ctrl, uart_dir_t
communication_to_abort)

fsp_err_t(* close)(uart_ctrl_t *const p_ctrl)

fsp_err_t(* versionGet)(fsp_version_t *p_version)

Field Documentation

◆ open

fsp_err_t(* uart_api_t::open) (uart_ctrl_t *const p_ctrl, uart_cfg_t const *const p_cfg)

Open UART device.

Implemented as

R_SCI_UartOpen()
Parameters

[in,out] p_ctrl Pointer to the UART control
block Must be declared by
user. Value set here.

[in] uart_cfg_t Pointer to UART
configuration structure. All
elements of this structure
must be set by user.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 550 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > UART Interface

◆ read

fsp_err_t(* uart_api_t::read) (uart_ctrl_t *const p_ctrl, uint8_t *const p_dest, uint32_t const bytes)

Read from UART device. The read buffer is used until the read is complete. When a transfer is
complete, the callback is called with event UART_EVENT_RX_COMPLETE. Bytes received outside an
active transfer are received in the callback function with event UART_EVENT_RX_CHAR. The
maximum transfer size is reported by infoGet().

Implemented as

R_SCI_UartRead()
Parameters

[in] p_ctrl Pointer to the UART control
block for the channel.

[in] p_dest Destination address to read
data from.

[in] bytes Read data length.

◆ write

fsp_err_t(* uart_api_t::write) (uart_ctrl_t *const p_ctrl, uint8_t const *const p_src, uint32_t const
bytes)

Write to UART device. The write buffer is used until write is complete. Do not overwrite write buffer
contents until the write is finished. When the write is complete (all bytes are fully transmitted on
the wire), the callback called with event UART_EVENT_TX_COMPLETE. The maximum transfer size is
reported by infoGet().

Implemented as

R_SCI_UartWrite()
Parameters

[in] p_ctrl Pointer to the UART control
block.

[in] p_src Source address to write data
to.

[in] bytes Write data length.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 551 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > UART Interface

◆ baudSet

fsp_err_t(* uart_api_t::baudSet) (uart_ctrl_t *const p_ctrl, void const *const p_baudrate_info)

Change baud rate.

Warning
Calling this API aborts any in-progress transmission and disables reception until the new
baud settings have been applied.

Implemented as

R_SCI_UartBaudSet()
Parameters

[in] p_ctrl Pointer to the UART control
block.

[in] p_baudrate_info Pointer to module specific
information for configuring
baud rate.

◆ infoGet

fsp_err_t(* uart_api_t::infoGet) (uart_ctrl_t *const p_ctrl, uart_info_t *const p_info)

Get the driver specific information.

Implemented as

R_SCI_UartInfoGet()
Parameters

[in] p_ctrl Pointer to the UART control
block.

[in] baudrate Baud rate in bps.

◆ communicationAbort

fsp_err_t(* uart_api_t::communicationAbort) (uart_ctrl_t *const p_ctrl, uart_dir_t
communication_to_abort)

Abort ongoing transfer.

Implemented as

R_SCI_UartAbort()
Parameters

[in] p_ctrl Pointer to the UART control
block.

[in] communication_to_abort Type of abort request.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 552 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > UART Interface

◆ close

fsp_err_t(* uart_api_t::close) (uart_ctrl_t *const p_ctrl)

Close UART device.

Implemented as

R_SCI_UartClose()
Parameters

[in] p_ctrl Pointer to the UART control
block.

◆ versionGet

fsp_err_t(* uart_api_t::versionGet) (fsp_version_t *p_version)

Get version.

Implemented as

R_SCI_UartVersionGet()
Parameters

[in] p_version Pointer to the memory to
store the version
information.

◆ uart_instance_t

struct uart_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

uart_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

uart_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

uart_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 553 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > UART Interface

◆ uart_ctrl_t

typedef void uart_ctrl_t

UART control block. Allocate an instance specific control block to pass into the UART API calls.

Implemented as

sci_uart_instance_ctrl_t

Enumeration Type Documentation

◆ uart_event_t

enum uart_event_t

UART Event codes

Enumerator

UART_EVENT_RX_COMPLETE Receive complete event.

UART_EVENT_TX_COMPLETE Transmit complete event.

UART_EVENT_RX_CHAR Character received.

UART_EVENT_ERR_PARITY Parity error event.

UART_EVENT_ERR_FRAMING Mode fault error event.

UART_EVENT_ERR_OVERFLOW FIFO Overflow error event.

UART_EVENT_BREAK_DETECT Break detect error event.

UART_EVENT_TX_DATA_EMPTY Last byte is transmitting, ready for more data.

◆ uart_data_bits_t

enum uart_data_bits_t

UART Data bit length definition

Enumerator

UART_DATA_BITS_8 Data bits 8-bit.

UART_DATA_BITS_7 Data bits 7-bit.

UART_DATA_BITS_9 Data bits 9-bit.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 554 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > UART Interface

◆ uart_parity_t

enum uart_parity_t

UART Parity definition

Enumerator

UART_PARITY_OFF No parity.

UART_PARITY_EVEN Even parity.

UART_PARITY_ODD Odd parity.

◆ uart_stop_bits_t

enum uart_stop_bits_t

UART Stop bits definition

Enumerator

UART_STOP_BITS_1 Stop bit 1-bit.

UART_STOP_BITS_2 Stop bits 2-bit.

◆ uart_dir_t

enum uart_dir_t

UART transaction definition

Enumerator

UART_DIR_RX_TX Both RX and TX.

UART_DIR_RX Only RX.

UART_DIR_TX Only TX.

4.3.29 USB Interface
Interfaces

Detailed Description

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 555 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB Interface

Interface for USB functions.

Summary
The USB interface provides USB functionality.

The USB interface can be implemented by:

Universal Serial Bus (r_usb_basic)

Data Structures

struct usb_api_t

struct usb_instance_t

Macros

#define USB_API_VERSION_MINOR

 Minor version of the API.

#define USB_API_VERSION_MAJOR

 Major version of the API.

#define USB_BREQUEST

 b15-8

#define USB_GET_STATUS

 USB Standard request Get Status.

#define USB_CLEAR_FEATURE

 USB Standard request Clear Feature.

#define USB_REQRESERVED

 USB Standard request Reqreserved.

#define USB_SET_FEATURE

 USB Standard request Set Feature.

#define USB_REQRESERVED1

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 556 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB Interface

 USB Standard request Reqreserved1.

#define USB_SET_ADDRESS

 USB Standard request Set Address.

#define USB_GET_DESCRIPTOR

 USB Standard request Get Descriptor.

#define USB_SET_DESCRIPTOR

 USB Standard request Set Descriptor.

#define USB_GET_CONFIGURATION

 USB Standard request Get Configuration.

#define USB_SET_CONFIGURATION

 USB Standard request Set Configuration.

#define USB_GET_INTERFACE

 USB Standard request Get Interface.

#define USB_SET_INTERFACE

 USB Standard request Set Interface.

#define USB_SYNCH_FRAME

 USB Standard request Synch Frame.

#define USB_HOST_TO_DEV

 From host to device.

#define USB_DEV_TO_HOST

 From device to host.

#define USB_STANDARD

 Standard Request.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 557 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB Interface

#define USB_CLASS

 Class Request.

#define USB_VENDOR

 Vendor Request.

#define USB_DEVICE

 Device.

#define USB_INTERFACE

 Interface.

#define USB_ENDPOINT

 End Point.

#define USB_OTHER

 Other.

#define USB_NULL

 NULL pointer.

#define USB_IP0

 USB0 module.

#define USB_IP1

 USB1 module.

#define USB_PIPE0

 Pipe Number0.

#define USB_PIPE1

 Pipe Number1.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 558 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB Interface

#define USB_PIPE2

 Pipe Number2.

#define USB_PIPE3

 Pipe Number3.

#define USB_PIPE4

 Pipe Number4.

#define USB_PIPE5

 Pipe Number5.

#define USB_PIPE6

 Pipe Number6.

#define USB_PIPE7

 Pipe Number7.

#define USB_PIPE8

 Pipe Number8.

#define USB_PIPE9

 Pipe Number9.

#define USB_EP0

 End Point Number0.

#define USB_EP1

 End Point Number1.

#define USB_EP2

 End Point Number2.

#define USB_EP3

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 559 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB Interface

 End Point Number3.

#define USB_EP4

 End Point Number4.

#define USB_EP5

 End Point Number5.

#define USB_EP6

 End Point Number6.

#define USB_EP7

 End Point Number7.

#define USB_EP8

 End Point Number8.

#define USB_EP9

 End Point Number9.

#define USB_EP10

 End Point Number10.

#define USB_EP11

 End Point Number11.

#define USB_EP12

 End Point Number12.

#define USB_EP13

 End Point Number13.

#define USB_EP14

 End Point Number14.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 560 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB Interface

#define USB_EP15

 End Point Number15.

#define USB_DT_DEVICE

 Device Descriptor.

#define USB_DT_CONFIGURATION

 Configuration Descriptor.

#define USB_DT_STRING

 String Descriptor.

#define USB_DT_INTERFACE

 Interface Descriptor.

#define USB_DT_ENDPOINT

 Endpoint Descriptor.

#define USB_DT_DEVICE_QUALIFIER

 Device Qualifier Descriptor.

#define USB_DT_OTHER_SPEED_CONF

 Other Speed Configuration Descriptor.

#define USB_DT_INTERFACE_POWER

 Interface Power Descriptor.

#define USB_DT_OTGDESCRIPTOR

 OTG Descriptor.

#define USB_DT_HUBDESCRIPTOR

 HUB descriptor.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 561 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB Interface

#define USB_IFCLS_NOT

 Un corresponding Class.

#define USB_IFCLS_AUD

 Audio Class.

#define USB_IFCLS_CDC

 CDC Class.

#define USB_IFCLS_CDCC

 CDC-Control Class.

#define USB_IFCLS_HID

 HID Class.

#define USB_IFCLS_PHY

 Physical Class.

#define USB_IFCLS_IMG

 Image Class.

#define USB_IFCLS_PRN

 Printer Class.

#define USB_IFCLS_MAS

 Mass Storage Class.

#define USB_IFCLS_HUB

 HUB Class.

#define USB_IFCLS_CDCD

 CDC-Data Class.

#define USB_IFCLS_CHIP

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 562 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB Interface

 Chip/Smart Card Class.

#define USB_IFCLS_CNT

 Content-Security Class.

#define USB_IFCLS_VID

 Video Class.

#define USB_IFCLS_DIAG

 Diagnostic Device.

#define USB_IFCLS_WIRE

 Wireless Controller.

#define USB_IFCLS_APL

 Application-Specific.

#define USB_IFCLS_VEN

 Vendor-Specific Class.

#define USB_EP_IN

 In Endpoint.

#define USB_EP_OUT

 Out Endpoint.

#define USB_EP_ISO

 Isochronous Transfer.

#define USB_EP_BULK

 Bulk Transfer.

#define USB_EP_INT

 Interrupt Transfer.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 563 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB Interface

#define USB_CF_RESERVED

 Reserved(set to 1)

#define USB_CF_SELFP

 Self Powered.

#define USB_CF_BUSP

 Bus Powered.

#define USB_CF_RWUPON

 Remote Wake up ON.

#define USB_CF_RWUPOFF

 Remote Wake up OFF.

#define USB_DD_BLENGTH

 Device Descriptor Length.

#define USB_CD_BLENGTH

 Configuration Descriptor Length.

#define USB_ID_BLENGTH

 Interface Descriptor Length.

#define USB_ED_BLENGTH

 Endpoint Descriptor Length.

Enumerations

enum usb_speed_t

enum usb_setup_status_t

enum usb_status_t

enum usb_class_t

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 564 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB Interface

enum usb_bcport_t

enum usb_onoff_t

enum usb_transfer_t

enum usb_transfer_type_t

enum usb_mode_t

enum usb_compliancetest_status_t

Data Structure Documentation

◆ usb_api_t

struct usb_api_t

WDT functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(usb_ctrl_t *const p_api_ctrl, usb_cfg_t const *const p_cfg,
usb_instance_transfer_t *p_api_trans)

fsp_err_t(* close)(usb_ctrl_t *const p_api_ctrl, usb_instance_transfer_t
*p_api_trans)

fsp_err_t(* read)(usb_ctrl_t *const p_api_ctrl, uint8_t *p_buf, uint32_t size,
usb_instance_transfer_t *p_api_trans)

fsp_err_t(* write)(usb_ctrl_t *const p_api_ctrl, uint8_t *p_buf, uint32_t size,
usb_instance_transfer_t *p_api_trans)

fsp_err_t(* stop)(usb_ctrl_t *const p_api_ctrl, usb_transfer_t type,
usb_instance_transfer_t *p_api_trans)

fsp_err_t(* suspend)(usb_ctrl_t *const p_api_ctrl, usb_instance_transfer_t
*p_api_trans)

fsp_err_t(* resume)(usb_ctrl_t *const p_api_ctrl, usb_instance_transfer_t
*p_api_trans)

fsp_err_t(* vbusSet)(usb_ctrl_t *const p_api_ctrl, uint16_t state,

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 565 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB Interface

usb_instance_transfer_t *p_api_trans)

fsp_err_t(* infoGet)(usb_ctrl_t *const p_api_ctrl, usb_info_t *p_info)

fsp_err_t(* pipeRead)(usb_ctrl_t *const p_api_ctrl, uint8_t *p_buf, uint32_t size,
usb_instance_transfer_t *p_api_trans)

fsp_err_t(* pipeWrite)(usb_ctrl_t *const p_api_ctrl, uint8_t *p_buf, uint32_t size,
usb_instance_transfer_t *p_api_trans)

fsp_err_t(* pipeStop)(usb_ctrl_t *const p_api_ctrl, usb_instance_transfer_t
*p_api_trans)

fsp_err_t(* usedPipesGet)(usb_ctrl_t *const p_api_ctrl, uint16_t *p_pipe)

fsp_err_t(* pipeInfoGet)(usb_ctrl_t *const p_api_ctrl, usb_pipe_t *p_info)

fsp_err_t(* versionGet)(fsp_version_t *const p_version)

fsp_err_t(* eventGet)(usb_ctrl_t *const p_api_ctrl, usb_status_t *event)

fsp_err_t(* pullup)(uint8_t state)

fsp_err_t(* modulenumberget)(usb_ctrl_t *const p_api_ctrl, uint8_t
*module_number)

fsp_err_t(* classtypeget)(usb_ctrl_t *const p_api_ctrl, usb_class_t *class_type)

fsp_err_t(* deviceaddressget)(usb_ctrl_t *const p_api_ctrl, uint8_t
*device_address)

fsp_err_t(* pipenumberget)(usb_ctrl_t *const p_api_ctrl, uint8_t *pipe_number)

fsp_err_t(* devicestateget)(usb_ctrl_t *const p_api_ctrl, uint16_t *state)

fsp_err_t(* datasizeget)(usb_ctrl_t *const p_api_ctrl, uint32_t *data_size)

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 566 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB Interface

fsp_err_t(* setupget)(usb_ctrl_t *const p_api_ctrl, usb_setup_t *setup)

Field Documentation

◆ open

fsp_err_t(* usb_api_t::open) (usb_ctrl_t *const p_api_ctrl, usb_cfg_t const *const p_cfg,
usb_instance_transfer_t *p_api_trans)

Start the USB module

Implemented as

R_USB_Open()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure.

[in] p_api_trans pointer to transfer structure.

◆ close

fsp_err_t(* usb_api_t::close) (usb_ctrl_t *const p_api_ctrl, usb_instance_transfer_t *p_api_trans)

Stop the USB module

Implemented as

R_USB_Close()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_api_trans pointer to transfer structure.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 567 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB Interface

◆ read

fsp_err_t(* usb_api_t::read) (usb_ctrl_t *const p_api_ctrl, uint8_t *p_buf, uint32_t size,
usb_instance_transfer_t *p_api_trans)

Request USB data read

Implemented as

R_USB_Read()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_buf Pointer to area that stores
read data.

[in] size Read request size.

[in] p_api_trans pointer to transfer structure.

◆ write

fsp_err_t(* usb_api_t::write) (usb_ctrl_t *const p_api_ctrl, uint8_t *p_buf, uint32_t size,
usb_instance_transfer_t *p_api_trans)

Request USB data write

Implemented as

R_USB_Write()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_buf Pointer to area that stores
write data.

[in] size Read request size.

[in] p_api_trans pointer to transfer structure.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 568 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB Interface

◆ stop

fsp_err_t(* usb_api_t::stop) (usb_ctrl_t *const p_api_ctrl, usb_transfer_t type,
usb_instance_transfer_t *p_api_trans)

Stop USB data read/write processing

Implemented as

R_USB_Stop()
Parameters

[in] p_ctrl Pointer to control structure.

[in] type Receive (USB_READ) or send
(USB_WRITE).

[in] p_api_trans pointer to transfer structure.

◆ suspend

fsp_err_t(* usb_api_t::suspend) (usb_ctrl_t *const p_api_ctrl, usb_instance_transfer_t *p_api_trans)

Request suspend

Implemented as

R_USB_Suspend()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_api_trans pointer to transfer structure.

◆ resume

fsp_err_t(* usb_api_t::resume) (usb_ctrl_t *const p_api_ctrl, usb_instance_transfer_t *p_api_trans)

Request resume

Implemented as

R_USB_Resume()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_api_trans pointer to transfer structure.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 569 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB Interface

◆ vbusSet

fsp_err_t(* usb_api_t::vbusSet) (usb_ctrl_t *const p_api_ctrl, uint16_t state, usb_instance_transfer_t
*p_api_trans)

Sets VBUS supply start/stop.

Implemented as

R_USB_VbusSet()
Parameters

[in] p_ctrl Pointer to control structure.

[in] state VBUS supply start/stop
specification

[in] p_api_trans pointer to transfer structure.

◆ infoGet

fsp_err_t(* usb_api_t::infoGet) (usb_ctrl_t *const p_api_ctrl, usb_info_t *p_info)

Get information on USB device.

Implemented as

R_USB_InfomationGet()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_info Pointer to usb_info_t
structure area.

◆ pipeRead

fsp_err_t(* usb_api_t::pipeRead) (usb_ctrl_t *const p_api_ctrl, uint8_t *p_buf, uint32_t size,
usb_instance_transfer_t *p_api_trans)

Request data read from specified pipe

Implemented as

R_USB_PipeRead()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_buf Pointer to area that stores
read data.

[in] size Read request size.

[in] p_api_trans pointer to transfer structure.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 570 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB Interface

◆ pipeWrite

fsp_err_t(* usb_api_t::pipeWrite) (usb_ctrl_t *const p_api_ctrl, uint8_t *p_buf, uint32_t size,
usb_instance_transfer_t *p_api_trans)

Request data write to specified pipe

Implemented as

R_USB_PipeWrite()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_buf Pointer to area that stores
write data.

[in] size Read request size.

[in] p_api_trans pointer to transfer structure.

◆ pipeStop

fsp_err_t(* usb_api_t::pipeStop) (usb_ctrl_t *const p_api_ctrl, usb_instance_transfer_t *p_api_trans)

Stop USB data read/write processing to specified pipe

Implemented as

R_USB_PipeStop()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_api_trans pointer to transfer structure.

◆ usedPipesGet

fsp_err_t(* usb_api_t::usedPipesGet) (usb_ctrl_t *const p_api_ctrl, uint16_t *p_pipe)

Get pipe number

Implemented as

R_USB_UsedPipesGet()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_pipe Pointer to area that stores
the selected pipe number
(bit map information).

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 571 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB Interface

◆ pipeInfoGet

fsp_err_t(* usb_api_t::pipeInfoGet) (usb_ctrl_t *const p_api_ctrl, usb_pipe_t *p_info)

Get pipe information

Implemented as

R_USB_PipeInfoGet()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_info Pointer to usb_pipe_t
structure area.

◆ versionGet

fsp_err_t(* usb_api_t::versionGet) (fsp_version_t *const p_version)

Get the driver version

Implemented as

R_USB_VersionGet()
Parameters

[out] version Version number.

◆ eventGet

fsp_err_t(* usb_api_t::eventGet) (usb_ctrl_t *const p_api_ctrl, usb_status_t *event)

Return USB-related completed events (Non-OS only)

Implemented as

R_USB_EventGet()
Parameters

[in] p_ctrl Pointer to control structure.

[out] event Pointer to event.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 572 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB Interface

◆ pullup

fsp_err_t(* usb_api_t::pullup) (uint8_t state)

Pull-up enable/disable setting of D+/D- line.

Implemented as

R_USB_PullUp()
Parameters

[in] state Pull-up enable/disable
setting.

◆ modulenumberget

fsp_err_t(* usb_api_t::modulenumberget) (usb_ctrl_t *const p_api_ctrl, uint8_t *module_number)

This API gets the module number.

Implemented as

R_USB_ModuleNumberGet()
Parameters

[in] p_api_ctrl USB control structure.

[out] module_number Module number to get.

◆ classtypeget

fsp_err_t(* usb_api_t::classtypeget) (usb_ctrl_t *const p_api_ctrl, usb_class_t *class_type)

This API gets the module number.

Implemented as

R_USB_ClassTypeGet()
Parameters

[in] p_api_ctrl USB control structure.

[out] class_type Class type to get.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 573 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB Interface

◆ deviceaddressget

fsp_err_t(* usb_api_t::deviceaddressget) (usb_ctrl_t *const p_api_ctrl, uint8_t *device_address)

This API gets the device address.

Implemented as

R_USB_DeviceAddressGet()
Parameters

[in] p_api_ctrl USB control structure.

[out] device_address device address to get.

◆ pipenumberget

fsp_err_t(* usb_api_t::pipenumberget) (usb_ctrl_t *const p_api_ctrl, uint8_t *pipe_number)

This API gets the pipe number.

Implemented as

R_USB_PipeNumberGet()
Parameters

[in] p_api_ctrl USB control structure.

[out] pipe_number Pipe number to get.

◆ devicestateget

fsp_err_t(* usb_api_t::devicestateget) (usb_ctrl_t *const p_api_ctrl, uint16_t *state)

This API gets the state of the device.

Implemented as

R_USB_DeviceStateGet()
Parameters

[in] p_api_ctrl USB control structure.

[out] state device state to get.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 574 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB Interface

◆ datasizeget

fsp_err_t(* usb_api_t::datasizeget) (usb_ctrl_t *const p_api_ctrl, uint32_t *data_size)

This API gets the data size.

Implemented as

R_USB_DataSizeGet()
Parameters

[in] p_api_ctrl USB control structure.

[out] data_size Data size to get.

◆ setupget

fsp_err_t(* usb_api_t::setupget) (usb_ctrl_t *const p_api_ctrl, usb_setup_t *setup)

This API gets the setup type.

Implemented as

R_USB_SetupGet()
Parameters

[in] p_api_ctrl USB control structure.

[out] setup Setup type to get.

◆ usb_instance_t

struct usb_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

usb_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

usb_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

usb_api_t const * p_api Pointer to the API structure for
this instance.

Enumeration Type Documentation

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 575 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB Interface

◆ usb_speed_t

enum usb_speed_t

USB speed type

Enumerator

USB_SPEED_LS Low speed operation.

USB_SPEED_FS Full speed operation.

USB_SPEED_HS Hi speed operation.

◆ usb_setup_status_t

enum usb_setup_status_t

USB request result

Enumerator

USB_SETUP_STATUS_ACK ACK response.

USB_SETUP_STATUS_STALL STALL response.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 576 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB Interface

◆ usb_status_t

enum usb_status_t

USB driver status

Enumerator

USB_STATUS_POWERED Powered State.

USB_STATUS_DEFAULT Default State.

USB_STATUS_ADDRESS Address State.

USB_STATUS_CONFIGURED Configured State.

USB_STATUS_SUSPEND Suspend State.

USB_STATUS_RESUME Resume State.

USB_STATUS_DETACH Detach State.

USB_STATUS_REQUEST Request State.

USB_STATUS_REQUEST_COMPLETE Request Complete State.

USB_STATUS_READ_COMPLETE Read Complete State.

USB_STATUS_WRITE_COMPLETE Write Complete State.

USB_STATUS_BC battery Charge State

USB_STATUS_OVERCURRENT Over Current state.

USB_STATUS_NOT_SUPPORT Device Not Support.

USB_STATUS_NONE None Status.

USB_STATUS_MSC_CMD_COMPLETE MSC_CMD Complete.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 577 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB Interface

◆ usb_class_t

enum usb_class_t

USB class type

Enumerator

USB_CLASS_PCDC PCDC Class.

USB_CLASS_PCDCC PCDCC Class.

USB_CLASS_PHID PHID Class.

USB_CLASS_PVND PVND Class.

USB_CLASS_HCDC HCDC Class.

USB_CLASS_HCDCC HCDCC Class.

USB_CLASS_HHID HHID Class.

USB_CLASS_HVND HVND Class.

USB_CLASS_HMSC HMSC Class.

USB_CLASS_PMSC PMSC Class.

USB_CLASS_REQUEST USB Class Request.

◆ usb_bcport_t

enum usb_bcport_t

USB battery charging type

Enumerator

USB_BCPORT_SDP SDP port settings.

USB_BCPORT_CDP CDP port settings.

USB_BCPORT_DCP DCP port settings.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 578 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB Interface

◆ usb_onoff_t

enum usb_onoff_t

USB status

Enumerator

USB_OFF USB Off State.

USB_ON USB On State.

◆ usb_transfer_t

enum usb_transfer_t

USB read / write type

Enumerator

USB_TRANSFER_READ Data Receive communication.

USB_TRANSFER_WRITE Data transmission communication.

◆ usb_transfer_type_t

enum usb_transfer_type_t

USB transfer type

Enumerator

USB_TRANSFER_TYPE_BULK Bulk communication.

USB_TRANSFER_TYPE_INT Interrupt communication.

USB_TRANSFER_TYPE_ISO Isochronous communication.

◆ usb_mode_t

enum usb_mode_t

Enumerator

USB_MODE_HOST Host mode.

USB_MODE_PERI Peripheral mode.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 579 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB Interface

◆ usb_compliancetest_status_t

enum usb_compliancetest_status_t

Enumerator

USB_COMPLIANCETEST_ATTACH Device Attach Detection.

USB_COMPLIANCETEST_DETACH Device Detach Detection.

USB_COMPLIANCETEST_TPL TPL device connect.

USB_COMPLIANCETEST_NOTTPL Not TPL device connect.

USB_COMPLIANCETEST_HUB USB Hub connect.

USB_COMPLIANCETEST_OVRC Over current.

USB_COMPLIANCETEST_NORES Response Time out for Control Read Transfer.

USB_COMPLIANCETEST_SETUP_ERR Setup Transaction Error.

4.3.30 USB HMSC Interface
Interfaces

Detailed Description

Interface for USB HMSC functions.

Summary
The USB HMSC interface provides USB HMSC functionality.

The USB HMSC interface can be implemented by:

Host Mass Storage Class Driver (r_usb_hmsc)

Data Structures

struct usb_hmsc_api_t

Enumerations

enum usb_atapi_t

enum usb_csw_result_t

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 580 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB HMSC Interface

Data Structure Documentation

◆ usb_hmsc_api_t

struct usb_hmsc_api_t

WDT functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* strgcmd)(usb_ctrl_t *const p_api_ctrl, uint8_t *buf, uint16_t
command, usb_instance_transfer_t *p_api_trans)

fsp_err_t(* drivenoget)(usb_ctrl_t *const p_api_ctrl, uint8_t *p_drive,
usb_instance_transfer_t *p_api_trans)

fsp_err_t(* drive2addr)(uint16_t side, usb_utr_t *devadr)

Field Documentation

◆ strgcmd

fsp_err_t(* usb_hmsc_api_t::strgcmd) (usb_ctrl_t *const p_api_ctrl, uint8_t *buf, uint16_t command,
usb_instance_transfer_t *p_api_trans)

Start the USB_HMSC module

Implemented as

R_USB_HmscStrgCmd()
Parameters

[in] p_api_ctrl Pointer to control structure.

[in] buf Pointer to the buffer area to
store the transfer data.

[in] command ATAPI command.

[in] p_api_trans pointer to transfer structure.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 581 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB HMSC Interface

◆ drivenoget

fsp_err_t(* usb_hmsc_api_t::drivenoget) (usb_ctrl_t *const p_api_ctrl, uint8_t *p_drive,
usb_instance_transfer_t *p_api_trans)

Stop the USB_HMSC module

Implemented as

R_USB_HmscDriveNoGet()
Parameters

[in] p_api_ctrl Pointer to control structure.

[out] p_drive Store address for Drive No.

[in] p_api_trans pointer to transfer structure.

◆ drive2addr

fsp_err_t(* usb_hmsc_api_t::drive2addr) (uint16_t side, usb_utr_t *devadr)

Retrieves device address

Implemented as

R_USB_HmscSmpDrive2Addr()
Parameters

[in] side Drive number.

[out] devadr Pointer to usb_utr_t
structure.

Enumeration Type Documentation

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 582 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB HMSC Interface

◆ usb_atapi_t

enum usb_atapi_t

Enumerator

USB_ATAPI_TEST_UNIT_READY ATAPI command Test Unit Ready.

USB_ATAPI_REQUEST_SENSE ATAPI command Request Sense.

USB_ATAPI_FORMAT_UNIT ATAPI command Format Unit.

USB_ATAPI_INQUIRY ATAPI command Inquiry.

USB_ATAPI_MODE_SELECT6 ATAPI command Mode Select6.

USB_ATAPI_MODE_SENSE6 ATAPI command Mode Sense6.

USB_ATAPI_START_STOP_UNIT ATAPI command Start Stop Unit.

USB_ATAPI_PREVENT_ALLOW ATAPI command Prevent Allow.

USB_ATAPI_READ_FORMAT_CAPACITY ATAPI command Read Format Capacity.

USB_ATAPI_READ_CAPACITY ATAPI command Read Capacity.

USB_ATAPI_READ10 ATAPI command Read10.

USB_ATAPI_WRITE10 ATAPI command Write10.

USB_ATAPI_SEEK ATAPI command Seek.

USB_ATAPI_WRITE_AND_VERIFY ATAPI command Write and Verify.

USB_ATAPI_VERIFY10 ATAPI command Verify10.

USB_ATAPI_MODE_SELECT10 ATAPI command Mode Select10.

USB_ATAPI_MODE_SENSE10 ATAPI command Mode Sense10.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 583 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB HMSC Interface

◆ usb_csw_result_t

enum usb_csw_result_t

Enumerator

USB_CSW_RESULT_SUCCESS CSW was successful.

USB_CSW_RESULT_FAIL CSW failed.

USB_CSW_RESULT_PHASE CSW has phase error.

4.3.31 USB PCDC Interface
Interfaces

Detailed Description

Interface for USB PCDC functions.

Summary
The USB interface provides USB functionality.

The USB PCDC interface can be implemented by:

Universal Serial Bus Peripheral Communication Device Class (r_usb_pcdc)

Macros

#define USB_PCDC_SET_LINE_CODING

 Command code for Set Line Codeing.

#define USB_PCDC_GET_LINE_CODING

 Command code for Get Line Codeing.

#define USB_PCDC_SET_CONTROL_LINE_STATE

 Command code for Control Line State.

#define USB_PCDC_SERIAL_STATE

 Serial State Code.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 584 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB PCDC Interface

#define USB_PCDC_SETUP_TBL_BSIZE

 setup packet table size (uint16_t * 5)

4.3.32 WDT Interface
Interfaces

Detailed Description

Interface for watch dog timer functions.

Summary
The WDT interface for the Watchdog Timer (WDT) peripheral provides watchdog functionality
including resetting the device or generating an interrupt.

The watchdog timer interface can be implemented by:

Watchdog Timer (r_wdt)
Independent Watchdog Timer (r_iwdt)

Data Structures

struct wdt_callback_args_t

struct wdt_timeout_values_t

struct wdt_cfg_t

struct wdt_api_t

struct wdt_instance_t

Typedefs

typedef void wdt_ctrl_t

Enumerations

enum wdt_timeout_t

enum wdt_clock_division_t

enum wdt_window_start_t

enum wdt_window_end_t

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 585 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > WDT Interface

enum wdt_reset_control_t

enum wdt_stop_control_t

enum wdt_status_t

Data Structure Documentation

◆ wdt_callback_args_t

struct wdt_callback_args_t

Callback function parameter data

Data Fields

void const * p_context Placeholder for user data. Set in
wdt_api_t::open function in
wdt_cfg_t.

◆ wdt_timeout_values_t

struct wdt_timeout_values_t

WDT timeout data. Used to return frequency of WDT clock and timeout period

Data Fields

uint32_t clock_frequency_hz Frequency of watchdog clock
after divider.

uint32_t timeout_clocks Timeout period in units of
watchdog clock ticks.

◆ wdt_cfg_t

struct wdt_cfg_t

WDT configuration parameters.

Data Fields

wdt_timeout_t timeout

 Timeout period.

wdt_clock_division_t clock_division

 Clock divider.

wdt_window_start_t window_start

 Refresh permitted window start position.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 586 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > WDT Interface

wdt_window_end_t window_end

 Refresh permitted window end position.

wdt_reset_control_t reset_control

 Select NMI or reset generated on underflow.

wdt_stop_control_t stop_control

 Select whether counter operates in sleep mode.

void(* p_callback)(wdt_callback_args_t *p_args)

 Callback provided when a WDT NMI ISR occurs.

void const * p_context

void const * p_extend

 Placeholder for user extension.

Field Documentation

◆ p_context

void const* wdt_cfg_t::p_context

Placeholder for user data. Passed to the user callback in wdt_callback_args_t.

◆ wdt_api_t

struct wdt_api_t

WDT functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(wdt_ctrl_t *const p_ctrl, wdt_cfg_t const *const p_cfg)

fsp_err_t(* refresh)(wdt_ctrl_t *const p_ctrl)

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 587 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > WDT Interface

fsp_err_t(* statusGet)(wdt_ctrl_t *const p_ctrl, wdt_status_t *const p_status)

fsp_err_t(* statusClear)(wdt_ctrl_t *const p_ctrl, const wdt_status_t status)

fsp_err_t(* counterGet)(wdt_ctrl_t *const p_ctrl, uint32_t *const p_count)

fsp_err_t(* timeoutGet)(wdt_ctrl_t *const p_ctrl, wdt_timeout_values_t *const
p_timeout)

fsp_err_t(* versionGet)(fsp_version_t *const p_data)

Field Documentation

◆ open

fsp_err_t(* wdt_api_t::open) (wdt_ctrl_t *const p_ctrl, wdt_cfg_t const *const p_cfg)

Initialize the WDT in register start mode. In auto-start mode with NMI output it registers the NMI
callback.

Implemented as

R_WDT_Open()
R_IWDT_Open()

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to pin configuration
structure.

◆ refresh

fsp_err_t(* wdt_api_t::refresh) (wdt_ctrl_t *const p_ctrl)

Refresh the watchdog timer.

Implemented as

R_WDT_Refresh()
R_IWDT_Refresh()

Parameters
[in] p_ctrl Pointer to control structure.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 588 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > WDT Interface

◆ statusGet

fsp_err_t(* wdt_api_t::statusGet) (wdt_ctrl_t *const p_ctrl, wdt_status_t *const p_status)

Read the status of the WDT.

Implemented as

R_WDT_StatusGet()
R_IWDT_StatusGet()

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_status Pointer to variable to return
status information through.

◆ statusClear

fsp_err_t(* wdt_api_t::statusClear) (wdt_ctrl_t *const p_ctrl, const wdt_status_t status)

Clear the status flags of the WDT.

Implemented as

R_WDT_StatusClear()
R_IWDT_StatusClear()

Parameters
[in] p_ctrl Pointer to control structure.

[in] status Status condition(s) to clear.

◆ counterGet

fsp_err_t(* wdt_api_t::counterGet) (wdt_ctrl_t *const p_ctrl, uint32_t *const p_count)

Read the current WDT counter value.

Implemented as

R_WDT_CounterGet()
R_IWDT_CounterGet()

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_count Pointer to variable to return
current WDT counter value.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 589 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > WDT Interface

◆ timeoutGet

fsp_err_t(* wdt_api_t::timeoutGet) (wdt_ctrl_t *const p_ctrl, wdt_timeout_values_t *const p_timeout)

Read the watchdog timeout values.

Implemented as

R_WDT_TimeoutGet()
R_IWDT_TimeoutGet()

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_timeout Pointer to structure to return
timeout values.

◆ versionGet

fsp_err_t(* wdt_api_t::versionGet) (fsp_version_t *const p_data)

Return the version of the driver.

Implemented as

R_WDT_VersionGet()
R_IWDT_VersionGet()

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_data Memory address to return
version information to.

◆ wdt_instance_t

struct wdt_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

wdt_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

wdt_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

wdt_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 590 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > WDT Interface

◆ wdt_ctrl_t

typedef void wdt_ctrl_t

WDT control block. Allocate an instance specific control block to pass into the WDT API calls.

Implemented as

wdt_instance_ctrl_t
iwdt_instance_ctrl_t

Enumeration Type Documentation

◆ wdt_timeout_t

enum wdt_timeout_t

WDT time-out periods.

Enumerator

WDT_TIMEOUT_128 128 clock cycles

WDT_TIMEOUT_512 512 clock cycles

WDT_TIMEOUT_1024 1024 clock cycles

WDT_TIMEOUT_2048 2048 clock cycles

WDT_TIMEOUT_4096 4096 clock cycles

WDT_TIMEOUT_8192 8192 clock cycles

WDT_TIMEOUT_16384 16384 clock cycles

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 591 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > WDT Interface

◆ wdt_clock_division_t

enum wdt_clock_division_t

WDT clock division ratio.

Enumerator

WDT_CLOCK_DIVISION_1 CLK/1.

WDT_CLOCK_DIVISION_4 CLK/4.

WDT_CLOCK_DIVISION_16 CLK/16.

WDT_CLOCK_DIVISION_32 CLK/32.

WDT_CLOCK_DIVISION_64 CLK/64.

WDT_CLOCK_DIVISION_128 CLK/128.

WDT_CLOCK_DIVISION_256 CLK/256.

WDT_CLOCK_DIVISION_512 CLK/512.

WDT_CLOCK_DIVISION_2048 CLK/2048.

WDT_CLOCK_DIVISION_8192 CLK/8192.

◆ wdt_window_start_t

enum wdt_window_start_t

WDT refresh permitted period window start position.

Enumerator

WDT_WINDOW_START_25 Start position = 25%.

WDT_WINDOW_START_50 Start position = 50%.

WDT_WINDOW_START_75 Start position = 75%.

WDT_WINDOW_START_100 Start position = 100%.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 592 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > WDT Interface

◆ wdt_window_end_t

enum wdt_window_end_t

WDT refresh permitted period window end position.

Enumerator

WDT_WINDOW_END_75 End position = 75%.

WDT_WINDOW_END_50 End position = 50%.

WDT_WINDOW_END_25 End position = 25%.

WDT_WINDOW_END_0 End position = 0%.

◆ wdt_reset_control_t

enum wdt_reset_control_t

WDT Counter underflow and refresh error control.

Enumerator

WDT_RESET_CONTROL_NMI NMI request when counter underflows.

WDT_RESET_CONTROL_RESET Reset request when counter underflows.

◆ wdt_stop_control_t

enum wdt_stop_control_t

WDT Counter operation in sleep mode.

Enumerator

WDT_STOP_CONTROL_DISABLE Count will not stop when device enters sleep
mode.

WDT_STOP_CONTROL_ENABLE Count will automatically stop when device
enters sleep mode.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 593 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > WDT Interface

◆ wdt_status_t

enum wdt_status_t

WDT status

Enumerator

WDT_STATUS_NO_ERROR No status flags set.

WDT_STATUS_UNDERFLOW_ERROR Underflow flag set.

WDT_STATUS_REFRESH_ERROR Refresh error flag set. Refresh outside of
permitted window.

WDT_STATUS_UNDERFLOW_AND_REFRESH_ERR
OR

Underflow and refresh error flags set.

4.3.33 Touch Middleware Interface
Interfaces

Detailed Description

Interface for Touch Middleware functions.

Summary
The TOUCH interface provides TOUCH functionality.

The TOUCH interface can be implemented by:

Capacitive Touch Middleware (rm_touch)

Data Structures

struct touch_button_cfg_t

struct touch_slider_cfg_t

struct touch_wheel_cfg_t

struct touch_cfg_t

struct touch_api_t

struct touch_instance_t

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 594 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Touch Middleware Interface

Typedefs

typedef void touch_ctrl_t

typedef struct
st_ctsu_callback_args

touch_callback_args_t

Data Structure Documentation

◆ touch_button_cfg_t

struct touch_button_cfg_t

Configuration of each button

Data Fields

uint8_t elem_index Element number used by this
button.

uint16_t threshold Touch/non-touch judgment
threshold.

uint16_t hysteresis Threshold hysteresis for
chattering prevention.

◆ touch_slider_cfg_t

struct touch_slider_cfg_t

Configuration of each slider

Data Fields

uint8_t const * p_elem_index Element number array used by
this slider.

uint8_t num_elements Number of elements used by
this slider.

uint16_t threshold Position calculation start
threshold value.

◆ touch_wheel_cfg_t

struct touch_wheel_cfg_t

Configuration of each wheel

Data Fields

uint8_t const * p_elem_index Element number array used by
this wheel.

uint8_t num_elements Number of elements used by
this wheel.

uint16_t threshold Position calculation start
threshold value.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 595 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Touch Middleware Interface

◆ touch_cfg_t

struct touch_cfg_t

User configuration structure, used in open function

Data Fields

touch_button_cfg_t const * p_buttons Pointer to array of button
configuration.

touch_slider_cfg_t const * p_sliders Pointer to array of slider
configuration.

touch_wheel_cfg_t const * p_wheels Pointer to array of wheel
configuration.

uint8_t num_buttons Number of buttons.

uint8_t num_sliders Number of sliders.

uint8_t num_wheels Number of wheels.

uint8_t on_freq The cumulative number of
determinations of ON.

uint8_t off_freq The cumulative number of
determinations of OFF.

uint16_t drift_freq Base value drift frequency. [0 :
no use].

uint16_t cancel_freq Maximum continuous ON. [0 :
no use].

ctsu_instance_t const * p_ctsu_instance Pointer to CTSU instance.

void const * p_context User defined context passed
into callback function.

void const * p_extend Pointer to extended
configuration by instance of
interface.

◆ touch_api_t

struct touch_api_t

Functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(touch_ctrl_t *const p_ctrl, touch_cfg_t const *const p_cfg)

fsp_err_t(* scanStart)(touch_ctrl_t *const p_ctrl)

fsp_err_t(* dataGet)(touch_ctrl_t *const p_ctrl, uint64_t *p_button_status,
uint16_t *p_slider_position, uint16_t *p_wheel_position)

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 596 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Touch Middleware Interface

fsp_err_t(* close)(touch_ctrl_t *const p_ctrl)

fsp_err_t(* versionGet)(fsp_version_t *const p_data)

Field Documentation

◆ open

fsp_err_t(* touch_api_t::open) (touch_ctrl_t *const p_ctrl, touch_cfg_t const *const p_cfg)

Open driver.

Implemented as

RM_TOUCH_Open()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to pin configuration
structure.

◆ scanStart

fsp_err_t(* touch_api_t::scanStart) (touch_ctrl_t *const p_ctrl)

Scan start.

Implemented as

RM_TOUCH_ScanStart()
Parameters

[in] p_ctrl Pointer to control structure.

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 597 / 601

Flexible Software Package

User’s Manual
API Reference > Interfaces > Touch Middleware Interface

◆ dataGet

fsp_err_t(* touch_api_t::dataGet) (touch_ctrl_t *const p_ctrl, uint64_t *p_button_status, uint16_t
*p_slider_position, uint16_t *p_wheel_position)

Data get.

Implemented as

RM_TOUCH_DataGet()
Parameters

[in] p_ctrl Pointer to control structure.

[out] p_buton_status Pointer to get data bitmap.

[out] p_slider_position Pointer to get data array.

[out] p_wheel_position Pointer to get data array.

◆ close

fsp_err_t(* touch_api_t::close) (touch_ctrl_t *const p_ctrl)

Close driver.

Implemented as

RM_TOUCH_Close()
Parameters

[in] p_ctrl Pointer to control structure.

◆ versionGet

fsp_err_t(* touch_api_t::versionGet) (fsp_version_t *const p_data)

Return the version of the driver.

Implemented as

RM_TOUCH_VersionGet()
Parameters

[in] p_ctrl Pointer to control structure.

[out] p_data Memory address to return
version information to.

◆ touch_instance_t

struct touch_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 598 / 601

Flexible Software Package User’s Manual
API Reference > Interfaces > Touch Middleware Interface

touch_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

touch_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

touch_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ touch_ctrl_t

typedef void touch_ctrl_t

Control block. Allocate an instance specific control block to pass into the API calls.

Implemented as

touch_instance_ctrl_t

◆ touch_callback_args_t

typedef struct st_ctsu_callback_args touch_callback_args_t

Callback function parameter data

R11UM0137EU0081 Revision 0.81
Nov.08.19

Page 599 / 601

Renesas FSP
Copyright © (2019) Renesas Electronics Corporation. All Rights Reserved.

User’s Manual

Publication Date: Revision 0.81 Nov.08.19

Renesas FSP v0.80

User’s Manual

 Renesas Electronics Corporation

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

	INDEX
	Chapter 1 Introduction
	1.1 Overview
	1.2 How to Read this Manual
	1.3 Documentation Standard

	Chapter 2 Starting Development
	2.1 Starting Development Introduction
	2.1.1 Getting Started with the e2 studio ISDE and FSP

	2.2 e2 studio ISDE User Guide
	2.2.1 What is e2 studio ISDE?
	2.2.2 e2 studio ISDE Prerequisites
	2.2.2.1 Obtaining an RA MCU Kit
	2.2.2.2 PC Requirements
	2.2.2.3 Installing e2 studio, platform installer and the FSP package
	2.2.2.4 Choosing a Toolchain
	2.2.2.5 Licensing

	2.2.3 What is a Project?
	2.2.4 Creating a Project
	2.2.4.1 Creating a New Project
	2.2.4.2 Selecting a Board and Toolchain
	2.2.4.3 Selecting a Project Template

	2.2.5 Configuring a Project
	2.2.5.1 Configuring the BSP with the ISDE
	2.2.5.2 Configuring Clocks
	2.2.5.3 Configuring Pins
	2.2.5.4 Configuring Interrupts
	2.2.5.5 Viewing Event Links

	2.2.6 Adding Threads and Drivers
	2.2.6.1 Adding and Configuring HAL Drivers
	2.2.6.2 Adding Drivers to a Thread and Configuring the Drivers
	2.2.6.3 Configuring Threads

	2.2.7 Reviewing and Adding Components
	2.2.8 Writing the Application
	2.2.8.1 Coding Features
	2.2.8.2 RTOS-independent Applications
	2.2.8.3 RTOS Applications

	2.2.9 Debugging the Project
	2.2.10 Modifying Toolchain Settings
	2.2.11 Importing an Existing Project into e2 studio ISDE

	2.3 Tutorial: Your First RA MCU Project - Blinky
	2.3.1 Tutorial Blinky
	2.3.2 What Does Blinky Do?
	2.3.3 Prerequisites
	2.3.4 Create a New Project for Blinky
	2.3.4.1 Details about the Blinky Configuration
	2.3.4.2 Configuring the Blinky Clocks
	2.3.4.3 Configuring the Blinky Pins
	2.3.4.4 Configuring the Parameters for Blinky Components
	2.3.4.5 Where is main()?
	2.3.4.6 Blinky Example Code

	2.3.5 Build the Blinky Project
	2.3.6 Debug the Blinky Project
	2.3.6.1 Debug prerequisites
	2.3.6.2 Debug steps
	2.3.6.3 Details about the Debug Process

	2.3.7 Run the Blinky Project

	2.4 Tutorial: Using HAL Drivers - Programming the WDT
	2.4.1 Application WDT
	2.4.2 Creating a WDT Application Using the RA MCU FSP and ISDE
	2.4.2.1 Using the FSP and the e2 studio ISDE
	2.4.2.2 The WDT Application
	2.4.2.3 WDT Application flow

	2.4.3 Creating the Project with the ISDE
	2.4.4 Configuring the Project with the ISDE
	2.4.4.1 BSP Tab
	2.4.4.2 Clocks Tab
	2.4.4.3 Pins Tab
	2.4.4.4 Stacks Tab
	2.4.4.5 Components Tab

	2.4.5 WDT Generated Project Files
	2.4.5.1 WDT hal_data.h
	2.4.5.2 WDT hal_data.c
	2.4.5.3 WDT main.c
	2.4.5.4 WDT hal_entry.c

	2.4.6 Building and Testing the Project

	Chapter 3 FSP Architecture
	3.1 FSP Architecture Overview
	3.1.1 C99 Use
	3.1.2 Doxygen
	3.1.3 Weak Symbols
	3.1.4 Memory Allocation
	3.1.5 FSP Terms

	3.2 FSP Modules
	3.3 FSP Stacks
	3.4 FSP Interfaces
	3.4.1 FSP Interface Enumerations
	3.4.2 FSP Interface Callback Functions
	3.4.3 FSP Interface Data Structures
	3.4.3.1 FSP Interface Configuration Structure
	3.4.3.2 FSP Interface API Structure
	3.4.3.3 FSP Interface Instance Structure

	3.5 FSP Instances
	3.5.1 FSP Instance Control Structure
	3.5.2 FSP Interface Extensions
	3.5.2.1 FSP Extended Configuration Structure

	3.5.3 FSP Instance API

	3.6 FSP API Standards
	3.6.1 FSP Function Names
	3.6.2 Use of const in API parameters
	3.6.3 FSP Version Information

	3.7 FSP Build Time Configurations
	3.8 FSP File Structure
	3.9 FSP Architecture in Practice
	3.9.1 FSP Connecting Layers
	3.9.2 Using FSP Modules in an Application
	3.9.2.1 Create a Module Instance in the RA Configuration Tool
	3.9.2.2 Use the Instance API in the Application

	Chapter 4 API Reference
	4.1 BSP
	4.1.1 Common Error Codes
	4.1.2 MCU Board Support Package
	4.1.2.1 RA2A1
	4.1.2.2 RA4M1
	4.1.2.3 RA6M1
	4.1.2.4 RA6M2
	4.1.2.5 RA6M3

	4.1.3 BSP I/O access

	4.2 Modules
	4.2.1 High-Speed Analog Comparator (r_acmphs)
	4.2.2 Low-Power Analog Comparator (r_acmplp)
	4.2.3 Analog to Digital Converter (r_adc)
	4.2.4 Asynchronous General Purpose Timer (r_agt)
	4.2.5 Clock Frequency Accuracy Measurement Circuit (r_cac)
	4.2.6 Clock Generation Circuit (r_cgc)
	4.2.7 Cyclic Redundancy Check (CRC) Calculator (r_crc)
	4.2.8 Capacitive Touch Sensing Unit (r_ctsu)
	4.2.9 Digital to Analog Converter (r_dac)
	4.2.10 Direct Memory Access Controller (r_dmac)
	4.2.11 Data Operation Circuit (r_doc)
	4.2.12 D/AVE 2D Port Interface (r_drw)
	4.2.13 Data Transfer Controller (r_dtc)
	4.2.14 Event Link Controller (r_elc)
	4.2.15 Ethernet (r_ether)
	4.2.16 Ethernet PHY (r_ether_phy)
	4.2.17 High-Performance Flash Driver (r_flash_hp)
	4.2.18 Low-Power Flash Driver (r_flash_lp)
	4.2.19 Graphics LCD Controller (r_glcdc)
	4.2.20 General PWM Timer (r_gpt)
	4.2.21 Interrupt Controller Unit (r_icu)
	4.2.22 I2C Master on IIC (r_iic_master)
	4.2.23 I2C Slave on IIC (r_iic_slave)
	4.2.24 I/O Ports (r_ioport)
	4.2.25 Independent Watchdog Timer (r_iwdt)
	4.2.26 JPEG Codec (r_jpeg)
	4.2.27 Key Interrupt (r_kint)
	4.2.28 Low Power Modes (r_lpm)
	4.2.29 Low Voltage Detection (r_lvd)
	4.2.30 Realtime Clock (r_rtc)
	4.2.31 Serial Communications Interface (SCI) I2C (r_sci_i2c)
	4.2.32 Serial Communications Interface (SCI) SPI (r_sci_spi)
	4.2.33 Serial Communications Interface (SCI) UART (r_sci_uart)
	4.2.34 SD/MMC Host Interface (r_sdhi)
	4.2.35 Serial Peripheral Interface (r_spi)
	4.2.36 Serial Sound Interface (r_ssi)
	4.2.37 Universal Serial Bus (r_usb_basic)
	4.2.38 Host Mass Storage Class Driver (r_usb_hmsc)
	4.2.39 Universal Serial Bus Peripheral Communication Device Class (r_usb_pcdc)
	4.2.40 Watchdog Timer (r_wdt)
	4.2.41 SEGGER emWin Port (rm_emwin_port)
	4.2.42 FreeRTOS Plus FAT (rm_freertos_plus_fat)
	4.2.43 Amazon FreeRTOS Port (rm_freertos_port)
	4.2.44 Crypto Middleware (rm_psa_crypto)
	4.2.45 Capacitive Touch Middleware (rm_touch)

	4.3 Interfaces
	4.3.1 ADC Interface
	4.3.2 CAC Interface
	4.3.3 CGC Interface
	4.3.4 Comparator Interface
	4.3.5 CRC Interface
	4.3.6 CTSU Interface
	4.3.7 DAC Interface
	4.3.8 Display Interface
	4.3.9 DOC Interface
	4.3.10 ELC Interface
	4.3.11 Ethernet Interface
	4.3.12 Ethernet PHY Interface
	4.3.13 External IRQ Interface
	4.3.14 Flash Interface
	4.3.15 I2C Master Interface
	4.3.16 I2C Slave Interface
	4.3.17 I2S Interface
	4.3.18 I/O Port Interface
	4.3.19 JPEG Codec Interface
	4.3.20 Key Matrix Interface
	4.3.21 Low Power Modes Interface
	4.3.22 Low Voltage Detection Interface
	4.3.23 RTC Interface
	4.3.24 SD/MMC Interface
	4.3.25 SPI Interface
	4.3.26 Timer Interface
	4.3.27 Transfer Interface
	4.3.28 UART Interface
	4.3.29 USB Interface
	4.3.30 USB HMSC Interface
	4.3.31 USB PCDC Interface
	4.3.32 WDT Interface
	4.3.33 Touch Middleware Interface

