

PNP RF Transistor

This device is designed for general RF amplifier and mixer applications to 250 mHz with collector currents in the 1.0 mA to 30 mA range. Sourced from Process 75.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	20	V
V _{CBO}	Collector-Base Voltage	20	V
V _{EBO}	Emitter-Base Voltage	3.0	V
I _C	Collector Current - Continuous	50	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

1) These ratings are based on a maximum junction temperature of 150 degrees C.
2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.
3) All voltages (V) and currents (A) are negative polarity for PNP transistors.

Thermal Characteristics TA = 25°C unless otherwise noted

Symbol	Characteristic Max		Units	
		MPSH81	*MMBTH81	
P _D	Total Device Dissipation Derate above 25°C	350 2.8	225 1.8	mW mW/∘C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	125		°C/W
$R_{ ext{ hetaJA}}$	Thermal Resistance, Junction to Ambient	357	556	°C/W

*Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06."

©1997 Fairchild Semiconductor Corporation

PNP RF Transistor (0

continued)	

25°C unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Max	Units
OFF CHAF	OFF CHARACTERISTICS				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage*	$I_{\rm C} = 1.0 \text{ mA}, I_{\rm B} = 0$	20		V

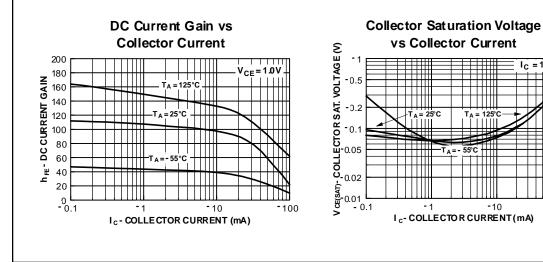
V (BR)CEO	Collector-Emitter Dreakdown voltage	$I_{\rm C} = 1.0$ IIIA, $I_{\rm B} = 0$	20		v
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{\rm C} = 10 \ \mu {\rm A}, \ I_{\rm E} = 0$	20		V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_{E} = 10 \ \mu A, \ I_{C} = 0$	3.0		V
I _{CBO}	Collector Cutoff Current	$V_{CB} = 10 \text{ V}, I_E = 0$		100	nA
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 2.0 \text{ V}, I_{C} = 0$		100	nA

ON CHARACTERISTICS

h _{FE}	DC Current Gain	$I_{C} = 5.0 \text{ mA}, V_{CE} = 10 \text{ V}$	60		
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_{C} = 5.0 \text{ mA}, I_{B} = 0.5 \text{ mA}$		0.5	V
V _{BE(on)}	Base-Emitter On Voltage	$I_{C} = 5.0 \text{ mA}, V_{CE} = 10 \text{ V}$		0.9	V

SMALL SIGNAL CHARACTERISTICS

f _T	Current Gain - Bandwidth Product	$I_{C} = 5.0 \text{ mA}, V_{CE} = 10 \text{ V},$ f = 100 MHz	600		MHz
C _{cb}	Collector-Base Capacitance	$V_{CB} = 10 \text{ V}, I_E = 0, f = 1.0 \text{ MHz}$		0.85	pF
C _{ce}	Collector Emitter Capcitance	$V_{CB} = 10 \text{ V}, I_B = 0, f = 1.0 \text{ MHz}$		0.65	pF


*Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%

NOTE: All voltages (V) and currents (A) are negative polarity for PNP transistors.

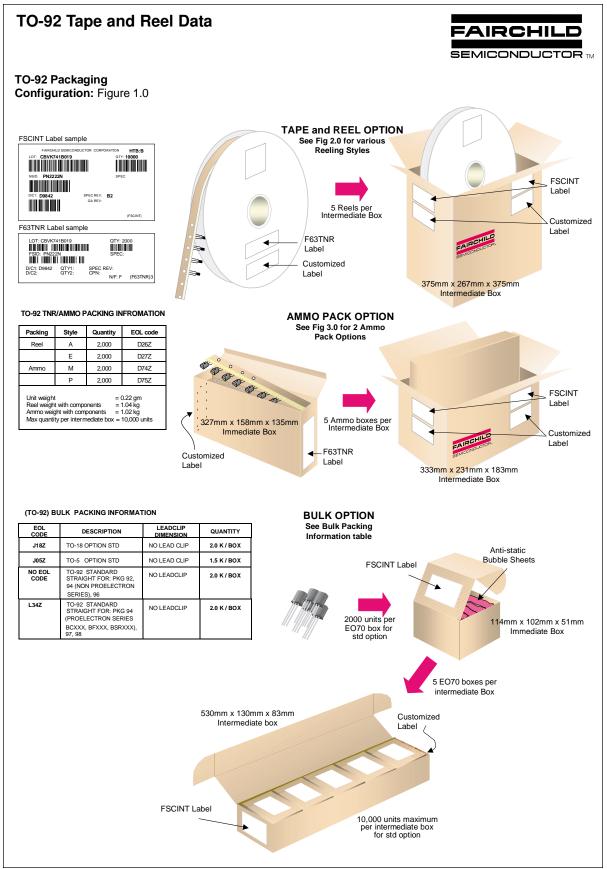
Spice Model

PNP(Is=10f Xti=3 Eg=1.11 Vaf=100 Bf=133.8 Ise=1.678p Ne=2.159 Ikf=.1658 Nk=.901 Xtb=1.5 Var=100 Br=1 Isc=9.519n Nc=3.88 Ikr=5.813 Rc=7.838 Cjc=2.81p Mjc=.1615 Vjc=.8282 Fc=.5 Cje=2.695p Mje=.3214 Vje=.7026 Tr=11.32n Tf=97.83p Itf=69.29 Xtf=599u Vtf=10)

Typical Characteristics

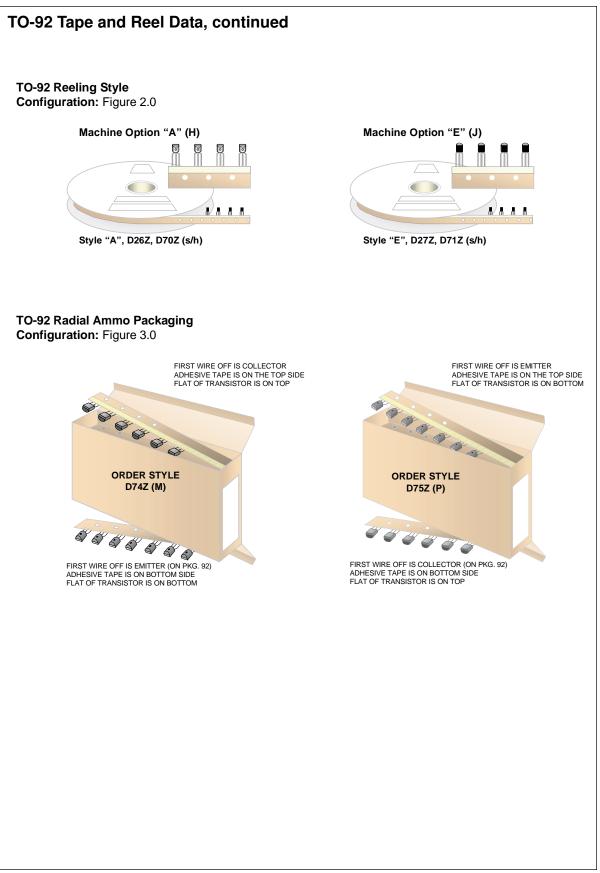
MPSH81 / MMBTH81

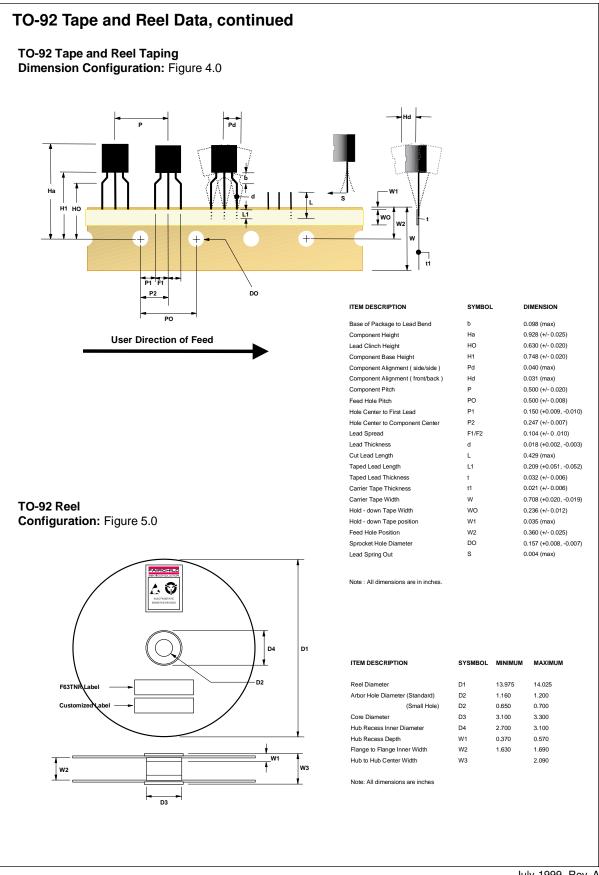
 $I_{C} = 10 I_{E}$

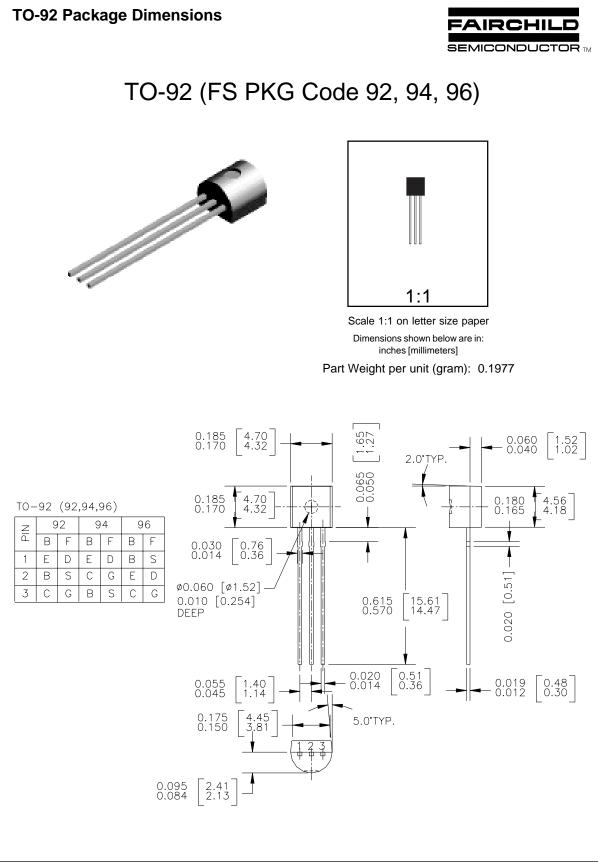

- 100

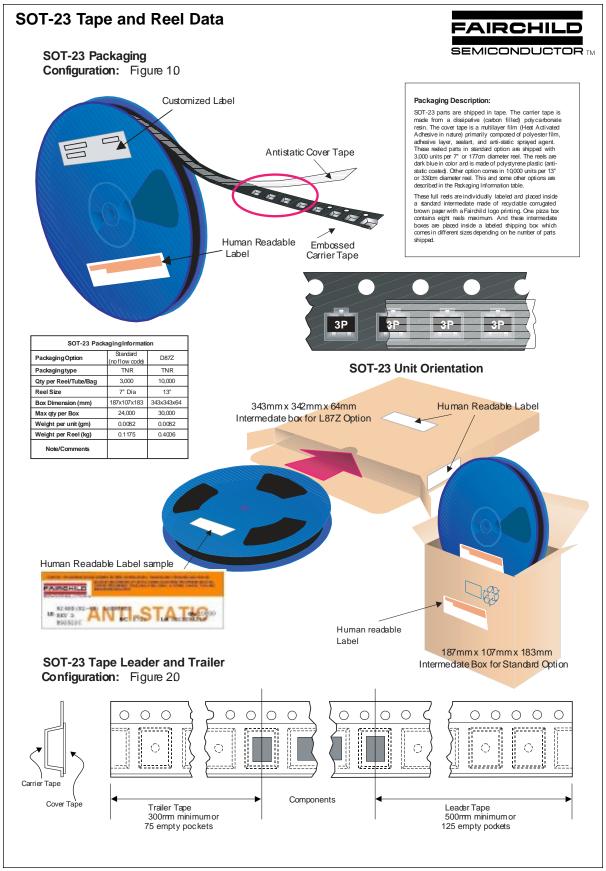
-10

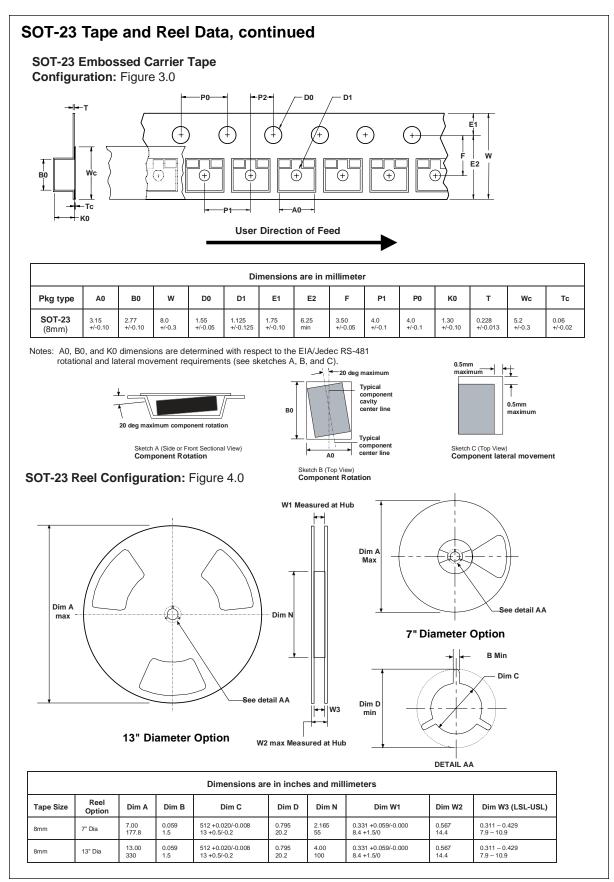
T_A = 125°

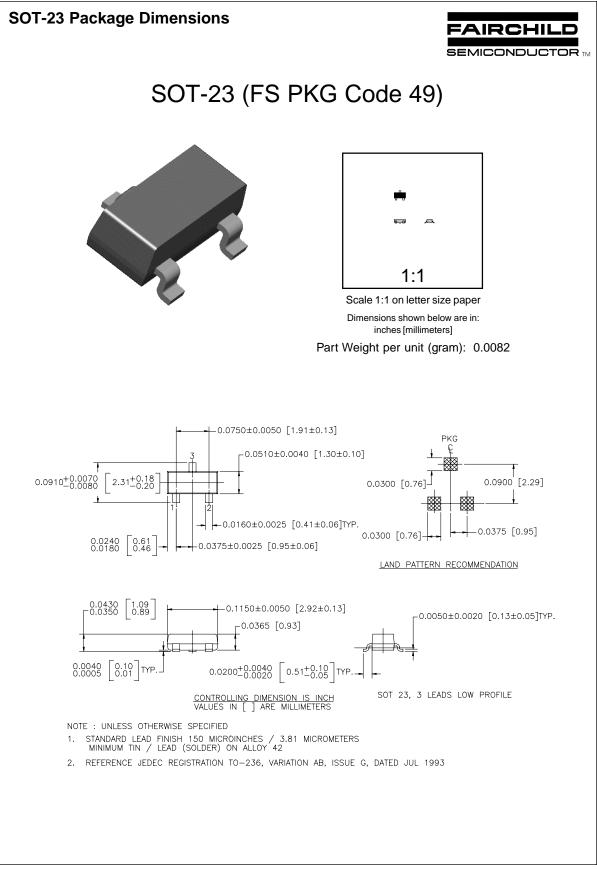

-T_A=- 55°C


MPSH81 / MMBTH81 **PNP RF Transistor** (continued) **Typical Characteristics** (continued) Base-Emitter ON Voltage **Base-Emitter Saturation NOLTAGE (V)** vs Collector Current Voltage vs Collector Current V BEOM- BASE-EMITTER ON VOLTAGE (V) 0-0 0-0 700 - 0 7000 - 0 7000 - 0 7000 - 0 7000 - 0 7000 - 0 7000 - 0 7000 - 0 7000 - 0 7000 - 0 7000 - 0 70000000 V_{CE} = 10V $I_{\rm C} = 10 I_{\rm B}$ T_A = 25°C **1.**2 ŦĦ -1 -0.8 -0.6 T_A = 100°C †††† а-(_{мс})-04 -0-04 Л Γ_Δ = 125 0 - 0.1 **-**0.1 -100 -1 -10 I^C- COLLECTOR CURRENT (mA) -10 -100 Ic - COLLECTOR CURRENT (mA) Input / Output Capacitance **Collector Reverse Current** I ces- COLLECTOR REVERSE CURRENT (IA) vs Ambient Temperature vs Reverse Bias Voltage 3 100 = 1.0 MHz 2.8 **CAPACITANCE (pF)** 2.2 2.2 2.2 1.8 1.6 1.6 10 V_{CE}=-6.0V Cobo V_{CE}=-3.0V 0.1 1.4 Ċibo 1.2 1 25 50 75 100 150 125 0 -2 -4 -6 -8 -10 T_A - AMBIENT TEMPERATURE (°C) **REVERSE BIAS VOLTAGE (V) Contours of Constant Gain Power Dissipation vs** Ambient Temperature Bandwidth Product (f_T) 350 **P**^D - **POWER DISSIPATION (mW)** 100 - **DOWER DISSIPATION (mW)** 100 - **D** TO-92 -8 SOT-23 1500 MHz 1200 MH -6 500 MHz 200 MH -2 500 MHz 200 MH 900 MHz _ ل_ - 0.1 0 -10 -100 - 1 50 75 100 TEMPERATURE (°C) 0 25 125 150 Ic- COLLECTOR CURRENT (mA)


©2001 Fairchild Semiconductor Corporation


March 2001, Rev. B1


July 1999, Rev. A



©2000 Fairchild Semiconductor International

September 1999, Rev. C

September 1999, Rev. C

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ Bottomless™ CoolFET™ CROSSVOLT™ DOME™ E²CMOS[™] EnSigna™ FACT™ FACT Quiet Series[™] FAST[®]

FASTr™ GlobalOptoisolator[™] GTO™ HiSeC™ ISOPLANAR™ MICROWIRE™ OPTOLOGIC™ **OPTOPLANAR™** PACMAN™ **POP™**

PowerTrench[®] QFET™ QS™ QT Optoelectronics[™] Quiet Series[™] SILENT SWITCHER® SMART START™ SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8

SvncFET™ TinyLogic™ UHC™ VCX[™]

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.