86mm 1U Front End DC-DC Power Supply Converter

NB: D1U86-D-1600-12-HB3DC variant shown

FEATURES

•	1600W	output	nower

- 93% efficiency at half load
- 12V main output
- 12V standby output of 30W
- 1U height: 3.4" x 7.75" x 1.59'
- 38.6 Watts per cubic inch density
- N+1 redundancy, including hot plugging (up to
- 8 in parallel)
- Current sharing on 12V main output, ORing FET
- Overvoltage, overcurrent, overtemperature protection
- Internal cooling fan (variable speed)
- TM / I²C interface monitoring and control
- RoHS compliant
- Two Year Warranty

PRODUCT OVERVIEW

The D1U86-D-1600-12-HBxDC series are highly efficient 1600 watt, DC input front end supplies with a 12V main output and a 12V (30W) standby. They have current sharing and up to 8 supplies may be operated in parallel. The supplies may be hot plugged, they recover from overtemperature faults, and have logic and PMBus monitoring and control. Their low profile 1U package and >38.6W/cubic inch power density make them ideal for delivering reliable, efficient power to servers, workstations, storage systems and other 12V distributed power systems.

ORDERING GUIDE					
Part Number	Power Output	Main Output	Standby Output ₁	Airflow	Handle Colour
D1U86-D-1600-12-HB4DC	1600W	10Vdo	10)/do	Back to front	Red
D1U86-D-1600-12-HB3DC	1600W	12Vdc	12Vdc	Front to back	Blue

INPUT CHARACTERISTICS					
Parameter	Conditions	Min.	Nom.	Max.	Units
Input Voltage Operating Range		-40	-48	-72	Vdc
Turn-on Voltage	Ramp up	-43	-43.5	-44	Vdc
Turn-off Voltage	Ramp down	-38.5	-39	-39.5	Vuc
Maximum Current at Vin = -40Vdc	1600W			47	Adc
DC Line Inrush Peak Current	Cold start between 0 to	40		50	Ank
DG LINE INTUSTI PEAK GUITEIR	200msec	72		100	Apk
	20% load		92		
Efficiency (48V)	50% load		93		%
	100% load		89		

OUTPUT VO	OUTPUT VOLTAGE CHARACTERISTICS						
Output Voltage	Parameter	Conditions	Min.	Тур.	Max.	Units	
	Voltage Set Point	50% load	12.17	12.20	12.23	Vdc	
	Line and Load Regulation		11.4		12.6	Vuc	
12V	Droop			3.10		mV/A	
120	Ripple Voltage & Noise ¹	20MHz Bandwidth			120	mV p-p	
	Output Current		0		133.3	Α	
	Load Capacitance		0		10000	μF	
	Voltage Set Point	50% load	11.97	12.0	12.03	Vdc	
	Line and Load Regulation		11.4		12.6	Vuc	
12VSB	Droop			120		mV/A	
12490	Ripple Voltage & Noise ¹	20MHz Bandwidth			120	mV p-p	
	Output Current		0		2.5	Α	
	Load Capacitance		0		350	μF	

¹ Ripple and noise are measured with 0.1 µF of ceramic capacitance and 10 µF of tantalum capacitance on each of the power supply outputs. A short coaxial cable with 50Ω scope termination is used.

For full details go to www.murata-ps.com/rohs **Test Certificate** and Test Report

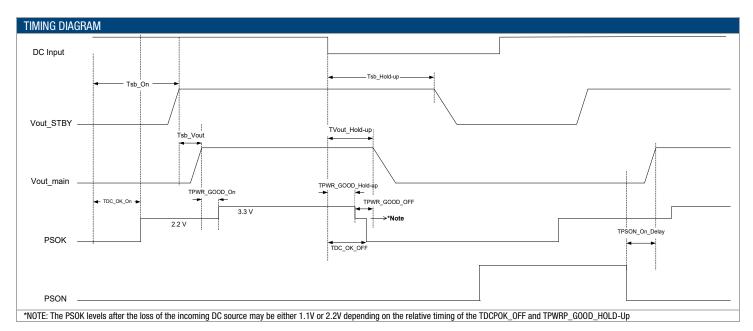
OUTPUT CHARACTERISTICS						
Parameter	Conditions	Min.	Тур.	Max.	Units	
Output Rise Monotonicity	No voltage excursion					
Startup Time	DC ramp up		1.5	3	S	
Transient Response	12V, 50% load step, 1.0A/µs di/dt		600		mV	
Transient nesponse	12VSB, 50% load step, 1.0A/µs di/dt		600		IIIV	
Current sharing accuracy (up to 8 in parallel) ²	At 100% load			±5	%	
Hot Swap Transients	All outputs remain in regulation			5	%	
Holdup Time	At full load (48V input)	1			ms	

ENVIRONMENTAL CHARACTERISTICS							
Parameter	Conditions	Min.	Тур.	Max.	Units		
Storage Temperature Range		-40		85			
Operating Temperature Range		0		55	°C		
Operating Humidity	Noncondensing	5		90			
Storage Humidity		5		95	%		
Altitude (without derating at 45°C)		3000			m		
Shock	30G non-operating						
Operational Vibration	1G, 10-500Hz, 1.6G (non-operational)						
MTBF	Per Telcordia SR-322 M1C1@ 40°C	500K			hrs		
Safety Approvals	CE Marking per LVD DIRECTIVE 2006/95/E	CSA/UL 60950-1-07-2nd Ed. IEC 60950-1:2005 (2nd Edition) w Am. 1:2009 CE Marking per LVD DIRECTIVE 2006/95/EC BIS IS13252(Part 1):2010/ IEC 60950-1: 2005					
Input Fuse	Power Supply has internal 60A/170VDC fas	Power Supply has internal 60A/170VDC fast blow fuse on the DC line input					
Weight	1.108kg (2.44lbs)						

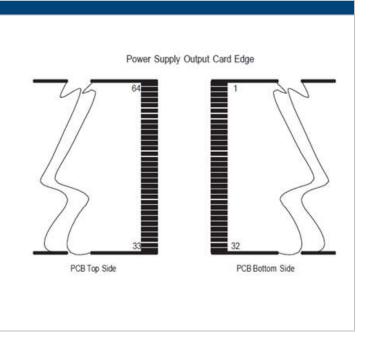
² The load current of 100% refers to each power module max load connected in an N+1 configuration; therefore the total load will be "N" x 100% load of each module. The share accuracy of ±5% is a fixed percentage irrespective of the total loading and number of units connected in parallel.

PROTECTION CHARACTERISTICS									
Output Voltage	Parameter	Conditions	Min.	Тур.	Max.	Units			
	Overtemperature (intake)	An OTP warning will be issued via the PMBus interface when the air inlet exceeds 70°C; however the power module shall not shut down until critical internal hotspot temperatures are exceeded.		70		°C			
	Overtemperature (hotspots)	The unit will shut down when internal hot spot exceed the derating guide lines and automatically recovers when the unit is cooled down. The unit will shut down due to hot spot at ambient temperature between 55°C-60°C with main 12V at full load.		55-60		C			
	Overvoltage	Latching	13.2		14.4	V			
12V	Overcurrent	For overloads (slow) over current events a 147A nominal constant current will be sustained until the output voltage drops below 3VDC. At this point the unit shall shut down after a 1sec period and remain in that condition for 10secs. The cycle will then repeat. For severe (short circuit) over current events the unit shall shut down within 1ms and remain in this condition for 200ms before attempting a re-start. the unit shall attempt 10 shutdown/re-start cycles before permanently latching off. It will then be necessary to either recycle the DC input or toggle the PSON# input.	137		154				
101/00	Overvoltage	Latching	13.2		14.4	V			
12VSB	Overcurrent	Auto-recovery	2.75		3.0	Α			

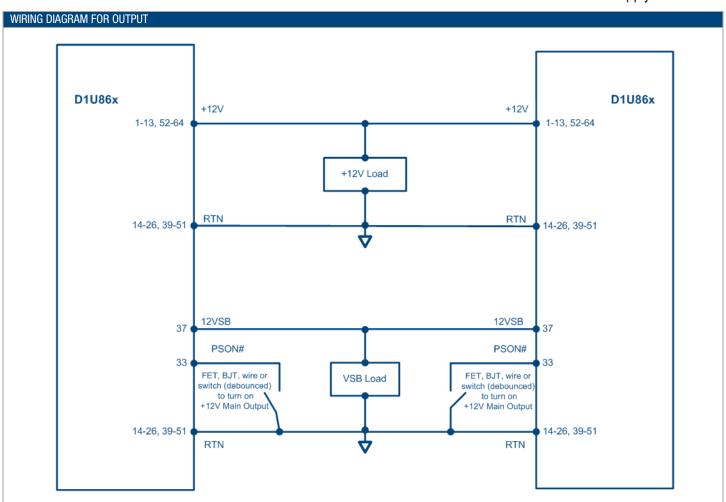
ISOLATION CHARACTERISTICS							
Parameter	Conditions	Min.	Тур.	Max.	Units		
Insulation Safety Rating / Test Voltage	Input to Output - Basic	1500			Vdc		
insulation safety nating / Test voltage	Input to Chassis - Basic	1500			Vdc		
Isolation	Output to Chassis	500			Vdc		


OUTPUT CONNECTOR AND SIGNAL SPECIFICTIONEMISSIONS AND IMMUNITY						
Characteristic	Standard	Compliance				
Conducted Emissions	FCC 47 CFR Part 15/CISPR 22/EN55022	Class A, 6dB margin				
ESD Immunity	IEC/EN 61000-4-2	Level 3 criteria A				
Radiated Field Immunity	IEC/EN 61000-4-3	Level 3 criteria B				
Electrical Fast Transient Immunity	IEC/EN 61000-4-4	Level 3 criteria A				
Surge Immunity	IEC/EN 61000-4-5	Level 2 criteria B				
Radiated Field Conducted Immunity	IEC/EN 61000-4-6	Level 3 criteria A				
Magnetic Field Immunity	IEC/EN 61000-4-8	3 A/m criteria B				

STATUS AND CONTROL	_ SIGNALS_								
Signal Name	1/0	Description						Inte	erface Details
PSOK (Output OK)	Output The PSOK output is a logical "OR" of three internal signals; however the output is not strictly a "digital" signal that transitions between "low" and "high" but is analogue in nature. The internal logic signals are as follows: 1. DC_OK_H 2. PWR_GOOD_H 3. PS FAULT L							prov resi 1.	h internal signal is buffered and vided with a series or pull up stor: DC_OK_H; 1K62 series resistor
		upon the three in	nternal logic signa	als:	alogue levels	of operation of the	e signal dependent	2.	PWR_GOOD_H; 3K32 series resistor
		PSOK TRUTH	Table VS. Anal	OG OUTPUT					DO FALLET 1 - 401/
		DC_OK_H	PWR_GOOD_H	PS_FAULT_L	P	SOK	OPERATION MODE	3.	PS_FAULT_L; a 10K pull up resistor to VDD_OR (an internally
		0	0	1	< 0.1Vdc		No DC Input		derived 3.3VDC rail)
		0	1	1	(1/3) VDD		Invalid	The	embedded truth table shows the
		1	0	1	(2/3) VDD	VDD = 3.3Vdc	Standby		ropriate levels.
		1	1	1	VDD		Power Good		·
		X	Х	0	0.2-0.4Vdc		PS Fault		
PS_INTERRUPT	Output					ecification section	n that follows. warning or fault and		ed up internally via 10K to 3.3Vdc.
(FAULT/WARNING)		correctly (within The signal will re removed.	specified limits). vert to a high lev	el when the wa	rning/fault sti	n when the power mulus (that caused	d the alert) is	A lo Driv drai	gic high >2.0Vdc gic low <0.8Vdc en low by internal buffer (open n output).
PRESENT#	Output	of an (installed) p Main 12Vdc outp The signal is also conjunction with To "enable" the The value of the 1. If the signal 2. If the signal resistor value	ased on the industry standard Common Slot requirement this signal is used to detect the presence of an (installed) power module within the host system. However it is also intended to "Enable" the falin 12Vdc output. He signal is also designed to control the power module during hot plug insertion/extraction in onjunction with the host system and is provided on a short "last to make; first to break" signal pin. o "enable" the Main 12Vdc output the signal requires to be pulled "high" with respect $+12V_{\rm L}$ GND. he value of the pull up resistor is as follows: If the signal is to be pulled up to the 12VSB output then the resistor value should be $21K\Omega$ When the tresistor value should be $5.11K\Omega$ When the resistor value should be $5.11K\Omega$ When the tresistor valu						
PS_ON (Power Supply Enable/Disable	Input	"enable" the Mai Alternatively the switch between ' The signal is pull power supply ma In the low state ti The 12Vdc outpu	The PS_ON can be permanently connected to +12V_GND (via the host system mid/back plane) to "enable" the Main 12Vdc output. Alternatively the signal can be connected via the host system electronics to provide the ability to switch between "enable/disable" states. The signal is pulled up internally to the internal housekeeping supply (within the power supply). The power supply main 12Vdc output will be enabled when this signal is pulled low to +12V_GND. In the low state the signal input shall source a nominal 1.2mAdc. The 12Vdc output will be disabled when the input is driven higher than 2.4V, or open circuited. Cycling this signal shall clear latched fault conditions.						ed up internally via 10K to 3.3Vdc. gic high >2.0Vdc gic low <0.8Vdc ıt is via CMOS Schmitt trigger er.


Signal Name	I/O	Description	Interface Details				
ADDR (Address Select)	Input	An analogue input that is used to microprocessor) used for digital of	to +12V_GND, in conjunction with	`	DC voltage between the limits of 0 and +3.3Vdc.		
		HEX Address Combinations by A	nalogue ADDR External Resistance	Value			
		ADDR External Resistance to RTN/Ground $(K\Omega; \pm 5\% \text{ Tolerance})$	Power Module Secondary Main Controller (Serial Slave Address)	Power Module EEPROM (Serial Slave Address)			
		0.82	0xB0	0xA0			
		2.7	0xB2	0xA2			
		5.6	0xB4	0xA4			
		8.2	0xB6	0xA6			
		15 27	0xB8 0xBA	0xA8 0xAA			
		56	0xBC	0xAC			
		180	0xBE	0xAE			
SCL (Serial Clock)	Both	Requirements Rev 1.1. No additional internal capacitance	h PMBus™ Power Systems Manage e is added that would affect the spe es isolator device to disconnect the nonwered	eed of the bus.	VIL is 0.8V maximum VOL is 0.4V maximum when sinkin 3mA VIH is 2.1V minimum		
SDA (Serial Data)	Both	A serial data line compatible with Requirements Rev 1.1.	PMBus [™] Power Systems Manager es isolator device to disconnect the		VIL is 0.8V maximum VOL is 0.4V maximum when sinkin 3mA VIH is 2.1V minimum		
IMONITOR	Analogue Voltage	the current monitor signal is an analogue DC voltage that indicates the actual current contribution rovided by a single unit. If the power module is the sole contributor to the system load current nen the indicated current (proportional to the DC voltage) is the total load current. The power module is one of a number of a single module. The power module is one of a number of a single module or a single unit the voltage of the signal pin would read 8VDC at 100% module capability. The overall load current of a single module or a single unit the voltage of the signal pin would read 8VDC for perfect current that in the number of the signal pin would read 8VDC for perfect current that is sharing the same 100% current this would read 4VDC for perfect current that in the number of the signal pin would read 4VDC for perfect current that is sharing the same 100% current this would read 4VDC for perfect current that is sharing the same 100% current this would read 4VDC for perfect current that is sharing the same 100% current this would read 4VDC for perfect current that is sharing the same 100% current this would read 4VDC for perfect current that is sharing the same 100% current this would read 4VDC for perfect current that is sharing the same 100% current this would read 4VDC for perfect current the number of the signal pin would read 4VDC for perfect current the number of the signal pin would read 4VDC for perfect current the number of the signal pin would read 4VDC for perfect current the number of the signal pin would read 4VDC for perfect current the number of the number of the signal pin would read 4VDC for perfect current the number of the number o					

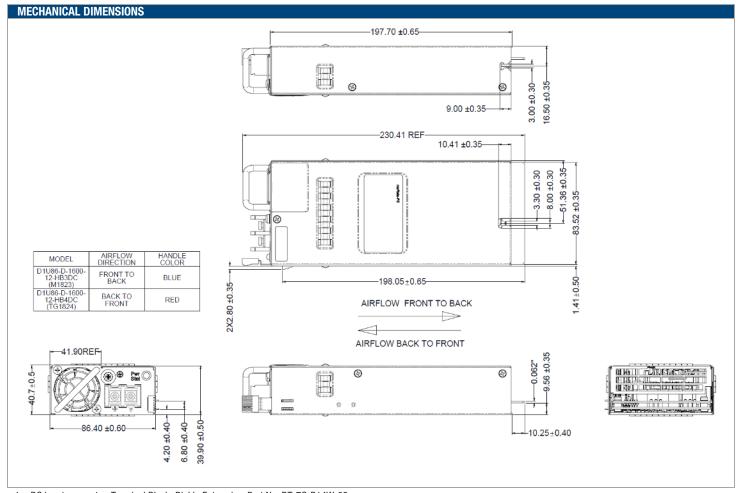
ST	STATUS INDICATOR CONDITIONS							
	LED State	Mode	Operating Condition					
1.	Off	DC Turn-off	The incoming DC source is below the minimum power module turn-on specification					
2.	Green – blinking 1Hz	Standby	The power module VStandby output is operating within normal parameters and main output is disabled					
3.	Green – solid	Power-good	The power module VStandby & Main outputs are operating within normal parameters and delivering power					
4.	Yellow – blinking 1Hz	Warning	A warning condition within the power supply has been detected					
5.	Yellow – solid	Fault	A fault condition within the power supply has been detected.					



TIMING SPECIFICATIONS				
Parameter	Description	Min	Max	Unit
Tsb_On	Delay from AC being applied to standby output being within regulation	0	3000	ms
Tsb_Vout	Delay from standby output to main output voltage being within regulation	50	500	ms
TPWR_G00D_0n	Delay from output voltages within regulation limits to PWR_GOOD assertion	20	500	ms
TVout_Hold-up	Delay from loss of AC to main output being out of regulation	1		ms
Tsb_Hold-up	Delay from loss of AC to standby output being out of regulation	20	2000	ms
TPWR_GOOD_OFF	Delay from de-assertion of PWR_GOOD to output falling out of regulation	1		ms
TPSON_On_Delay	Delay from PSON assertion to output being within regulation	300	500	ms

OUTPUT AND SIGNAL SPECIFICATION					
Pin#	Function	Pin Type	Description		
14-26, 39- 51	RTN	Power Ground	Power and Standby Return		
1-13, 52-64	12V	Power	12V Output		
37	12VSB	Power	12V Standby Output		
38	PSINTERRUPT	Output	Active low; interrupt line for power supply fault & warning detection as per PMBus spec		
36	PRESENT#	Input	Power Supply Present Signal (shortest pin)		
35	PS0K*	Analog output	Combination of their power supply output indicator signals: 1. DC input OK 2. Power Good 3. Power Supply Fault		
34	ISHARE	Analog I/O	Analog representation of main output current. Typical analog voltage shall be 60.15mV/Amp of main output current.		
33	PSON#	Input	Power Supply on/off control signal		
32	SCL	Input	SMBus/PMBus Clock		
31	SDA	1/0	SMBus/PMBus Data		
30	GND	Analog I/O	Power Supply Signal Ground		
29	N/A	N/A	Reserved; no User connection		
28	N/A	N/A	Reserved; no User connection		
27	ADDR	Analog input	PMBus Address		

86mm 1U Front End DC-DC Power Supply Converter


CURRENT SHARING NOTES

Main Output: Current share is achieved using the droop method. Nominal output voltage (12.20V) is achieved at 50% load and output voltage changes at a rate of 3.10mv per amp. Startup of parallel power supplies is not internally synchronized. If more than 1600W combined power is needed, start-up synchronization must be provided by using a common PS_ON signal. To account for ±5% full load current sharing accuracy and the reduction in full load output voltage due to droop, available output power must be derated by 10% when units are operated in parallel. Internal ORing FETs are provided.

Standby output can be tied together for redundancy but total combined output power must not exceed 30W; Internal MOSFET ORing devices are used.

86mm 1U Front End DC-DC Power Supply Converter

- 1. DC input connector: Terminal Block, Dinkle Enterprise: Part No. DT-7C-B14W-02
- 2. Dimensions: 3.4" x 7.75" x 1.59" [86mm x 196.85mm x 39.9mm]
- 3. This drawing is a graphical representation of the product and may not show all fine details.
- 4. Reference File: D1U86-D-1600-12-HBxDC (M1823-M1824)_Drawing for Product Datasheet_20160106.PDF

MATING CONNECTOR	
Part Number	Description
FCI 10053363-200LF	Right Angle
FCI 10046971-008LF	Vertical

OPTIONAL ACCESSORIES				
Desc	ription	Part Number		
12V [D1U86P Output Connector Card	D1U86P-12-CONC		

APPLICATION NOTES		
Document Number	Description	
ACAN-50	D1U86P Output Connector Card: https://power.murata.com/datasheet?/data/apnotes/acan-50.pdf	
ACAN-54	D1U86D Communication Protocol: https://power.murata.com/datasheet?/data/apnotes/acan-54.pdf	

Murata Power Solutions, Inc. 129 Flanders Road Westborough, MA 01581 ISO 9001 REGISTERED

This product is subject to the following operating requirements and the Life and Safety Critical Application Sales Policy. Refer to: https://www.murata-ps.com/requirements/

Murata Power Solutions, Inc. ("Murata") makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangenous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm, and take appropriate remedial actions. Buyer will fully indemntry Murata, its affiliated companies, and its representatives against any damages arising out of the use of any Murata products in safety-critical applications. Specifications are subject to change without notice.

© 2023 Murata Power Solutions, Inc.