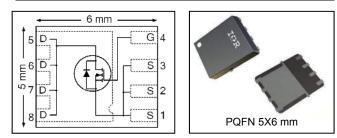


HEXFET[®] POWER MOSFET

Features

- Advanced Process Technology
- Ultra Low On-Resistance
- 175°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to Tjmax
- Lead-Free, RoHS Compliant
- Automotive Qualified *


Description

Specifically designed for Automotive applications, this HEXFET[®] Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this product an extremely efficient and reliable device for use in Automotive and wide variety of other applications.

Applications

- Electric Power Steering (EPS)
- Battery Switch
- Start/Stop Micro Hybrid
- Heavy Loads
- DC-DC Converter

V _{DSS}	40V
R _{DS(on)} typ.	1.6mΩ
max	2.0m Ω
D (Silicon Limited)	187A ①
D (Package Limited)	95A

G	D	S
Gate	Drain	Source

Base Part Number	Baakaga Typa	Standard	Pack	Orderable Part Number
Base Fait Nulliber	Package Type	Form	Quantity	Orderable Part Nulliber
AUIRFN8405	PQFN 5mm x 6mm	Tape and Reel	4000	AUIRFN8405TR

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified.

	Parameter	Max.	Units
I _D @ T _{C(Bottom)} = 25°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	187 ①	
I _D @ T _{C(Bottom)} = 100°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	132①	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Package Limited)	95	A
I _{DM}	Pulsed Drain Current ②	670 ®	
P _D @T _A = 25°C	Power Dissipation	3.3	w
P _D @T _{C(Bottom)} = 25°C	Power Dissipation	136	vv
	Linear Derating Factor	0.022	W/°C
V _{GS}	Gate-to-Source Voltage	± 20	V
TJ	Operating Junction and	-55 to + 175	°C
T _{STG}	Storage Temperature Range		°C

Avalanche Characteristics

EAS(Thermally Limited)	Single Pulse Avalanche Energy ③	190	mJ
E _{AS} (Tested)	Single Pulse Avalanche Energy	365	1110
I _{AR}	Avalanche Current ②	Soo Eig 14 15 220 22h	А
E _{AR}	Repetitive Avalanche Energy [®]	See Fig. 14, 15, 22a, 22b	mJ

HEXFET® is a registered trademark of International Rectifier. *Qualification standards can be found at http://www.irf.com/

09/24/2018

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
R _{0JC} (Bottom)	Junction-to-Case		1.1	
R _{θJC} (Top)	Junction-to-Case		30	°C/W
$R_{ ext{ heta}JA}$	Junction-to-Ambient ®		44	C/VV
R _{θJA} (<10s)	Junction-to-Ambient ®		28	

Static Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	40			V	$V_{GS} = 0V, I_{D} = 250\mu A$
$\Delta V_{(BR)DSS} / \Delta T_J$	Breakdown Voltage Temp. Coefficient		37		mV/°C	Reference to 25°C, I _D = 1.0mA ⁽
R _{DS(on)}	Static Drain-to-Source On-Resistance		1.6	2.0	mΩ	V _{GS} = 10V, I _D = 50A
V _{GS(th)}	Gate Threshold Voltage	2.2		3.9	V	$V_{DS} = V_{GS}, I_{D} = 100 \mu A$
				1.0		$V_{DS} = 40V, V_{GS} = 0V$
IDSS	Drain-to-Source Leakage Current			150	μA	$V_{DS} = 40V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	~ ^	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-100	nA	V _{GS} = -20V
R _G	Internal Gate Resistance		2.4		Ω	

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
gfs	Forward Transconductance	145			S	V _{DS} = 10V, I _D = 50A
Q_{g}	Total Gate Charge		78	117		I _D = 50A
Q_{gs}	Gate-to-Source Charge		21			V _{DS} = 20V
Q_{gd}	Gate-to-Drain ("Miller") Charge		25		nC	V _{GS} = 10V
Q _{sync}	Total Gate Charge Sync. (Q _g - Q _{gd})		53			
t _{d(on)}	Turn-On Delay Time		9.5			V _{DD} = 20V
t _r	Rise Time		30		-	I _D = 50A
t _{d(off)}	Turn-Off Delay Time		58		ns	$R_{G} = 2.7\Omega$
t _f	Fall Time		33			V _{GS} = 10V
C _{iss}	Input Capacitance		5142			V _{GS} = 0V
C _{oss}	Output Capacitance		758			V _{DS} = 25V
C _{rss}	Reverse Transfer Capacitance		501		pF	f = 1.0 MHz
C _{oss} eff. (ER)	Effective Output Capacitance (Energy Related)		900			V_{GS} = 0V, V_{DS} = 0V to 32V \odot
C _{oss} eff. (TR)	Effective Output Capacitance (Time Related)		1094			$V_{GS} = 0V, V_{DS} = 0V \text{ to } 32V $

Diode Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
1	Continuous Source Current			187 ①	^	MOSFET symbol
IS	(Body Diode)				A	showing the
1	Pulsed Source Current	<u> </u>		^	integral reverse	
I _{SM}	(Body Diode) ①				A	p-n junction diode.
V_{SD}	Diode Forward Voltage		0.9	1.3	V	T_J = 25°C, I_S = 50A, V_{GS} = 0V (5)
dv/dt	Peak Diode Recovery ④		5.2		V/ns	T _J = 175°C, I _S = 50A, V _{DS} = 40V
+			27		20	$T_J = 25^{\circ}C$ $V_R = 34V$,
t _{rr}	Reverse Recovery Time		28		ns	T _J = 125°C I _F = 50A
0	Poverse Desevery Charge		16		nC	T _J = 25°C di/dt = 100A/µs⑤
Q _{rr}	Reverse Recovery Charge		18		пС	T _J = 125°C
I _{RRM}	Reverse Recovery Current		0.92		А	T _J = 25°C

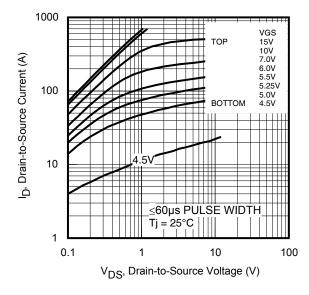


Fig. 1 Typical Output Characteristics

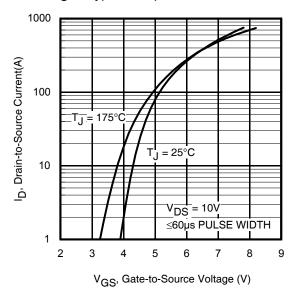


Fig. 3 Typical Transfer Characteristics

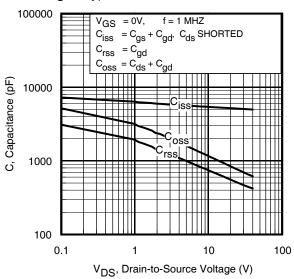


Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

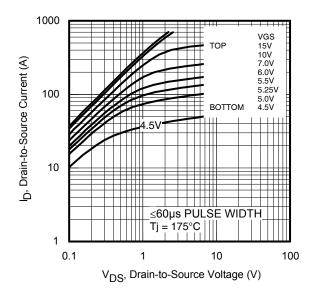


Fig. 2 Typical Output Characteristics

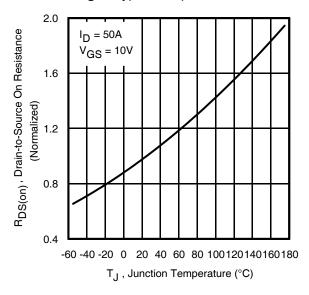
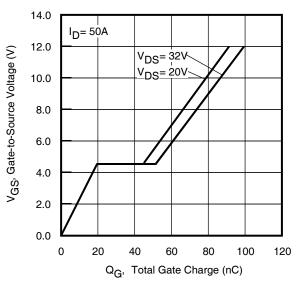
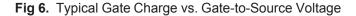




Fig. 4 Normalized On-Resistance vs. Temperature

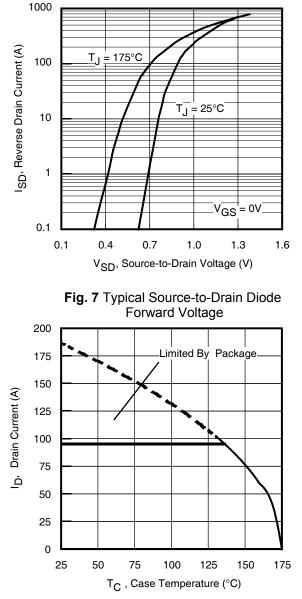


Fig 9. Maximum Drain Current vs. Case Temperature

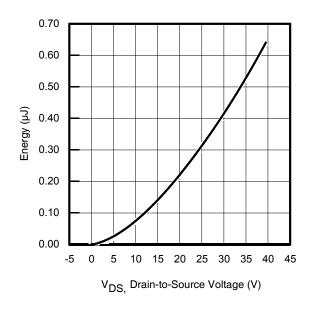


Fig 11. Typical Coss Stored Energy

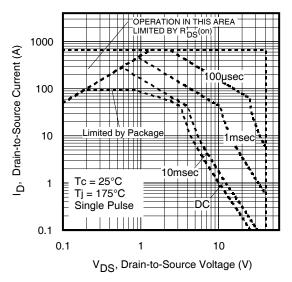


Fig 8. Maximum Safe Operating Area

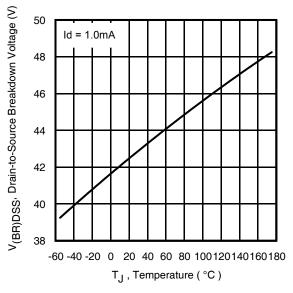


Fig 10. Drain-to-Source Breakdown Voltage

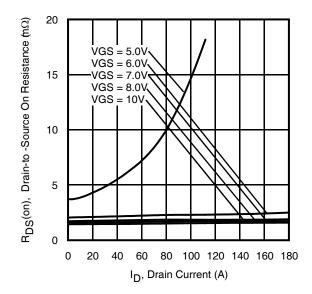


Fig 12. Typical On-Resistance vs. Drain Current

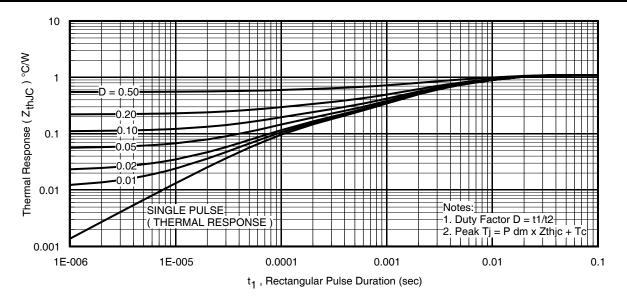


Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case

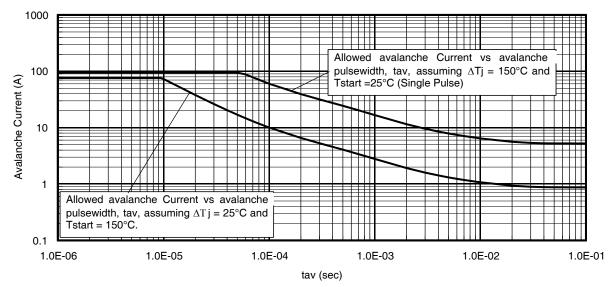


Fig 14. Typical Avalanche Current vs. Pulse Width

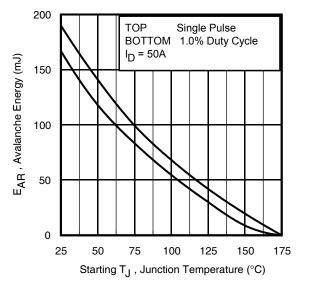


Fig 15. Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com)

- Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax}. This is validated for every part type.
- 2. Safe operation in Avalanche is allowed as long as T_{jmax} is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
- 4. PD (ave) = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. Iav = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 14, 15).

tav = Average time in avalanche.

D = Duty cycle in avalanche = tav ·f

```
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
```

$$\begin{split} \textbf{P}_{D (ave)} &= 1/2 \text{ (} 1.3 \cdot \textbf{BV} \cdot \textbf{I}_{av} \text{)} = \Delta T / \textbf{Z}_{thJC} \\ \textbf{I}_{av} &= 2 \Delta T / \text{ [} 1.3 \cdot \textbf{BV} \cdot \textbf{Z}_{th} \text{]} \\ \textbf{E}_{AS (AR)} &= \textbf{P}_{D (ave)} \cdot \textbf{t}_{av} \end{split}$$

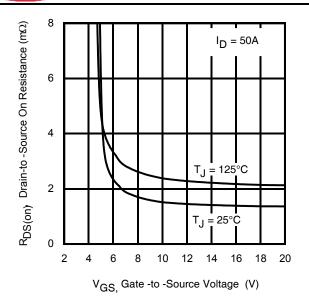


Fig 16. Typical On-Resistance vs. Gate Voltage

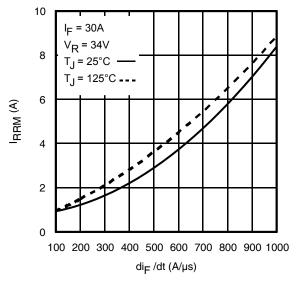


Fig. 18 - Typical Recovery Current vs. dif/dt

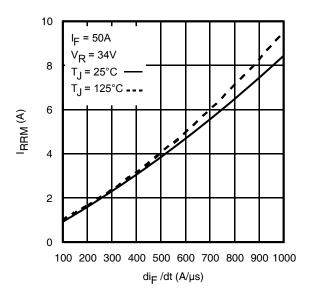


Fig. 20 - Typical Recovery Current vs. dif/dt

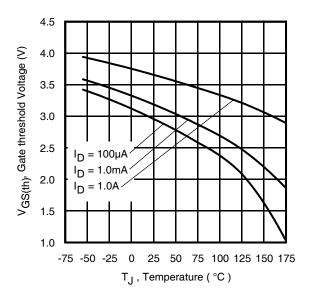


Fig 17. Threshold Voltage vs. Temperature

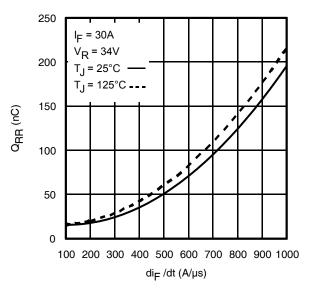


Fig. 19 - Typical Stored Charge vs. dif/dt

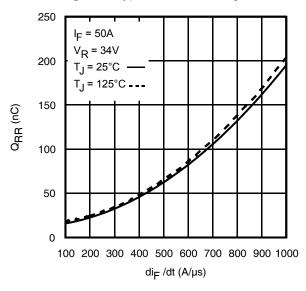
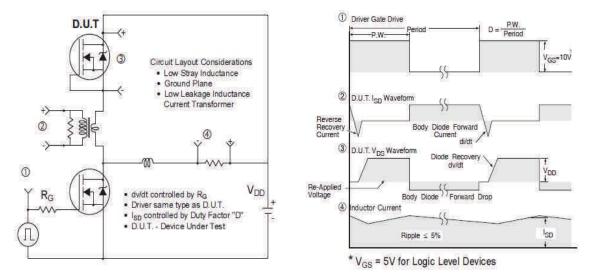
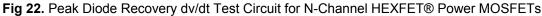




Fig. 21 - Typical Stored Charge vs. dif/dt

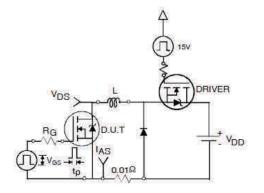


Fig 22a. Unclamped Inductive Test Circuit

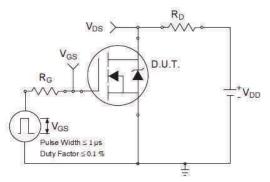


Fig 23a. Switching Time Test Circuit

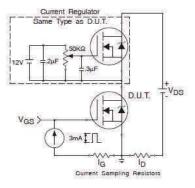


Fig 24a. Gate Charge Test Circuit

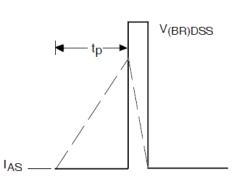


Fig 22b. Unclamped Inductive Waveforms

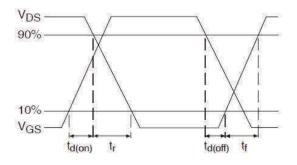
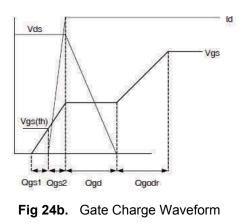
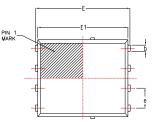
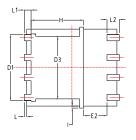
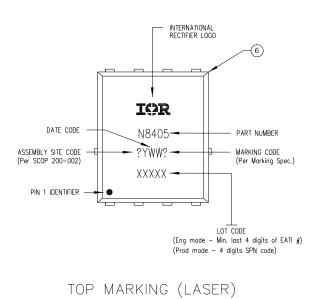




Fig 23b. Switching Time Waveforms

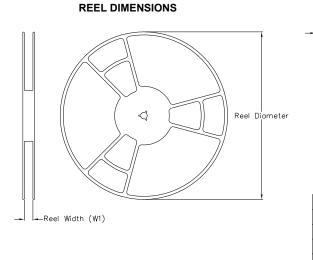


PQFN 5x6 Outline "E" Package Details


TOP VIEW

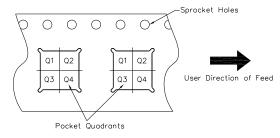
BOTTOM VIEW

For footprint and stencil design recommendations, please refer to application note AN-1136 at <u>http://www.irf.com/technical-info/appnotes/an-1136.pdf</u> For visual inspection recommendations, please refer to application note AN-1154 at <u>http://www.irf.com/technical-info/appnotes/an-1154.pdf</u>


PQFN 5x6 Outline "E" Part Marking

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

PQFN 5x6 Outline "E" Tape and Reel


Ko -P1 \oplus ∖⊕ \oplus \oplus \oplus \oplus \oplus \oplus $\oplus \oplus$ W \oplus \oplus \oplus Во

- Ao -

TAPE DIMENSIONS

CODE	DESCRIPTION
Ao	Dimension design to accommodate the component width
Во	Dimension design to accommodate the component lenght
Ko	Dimension design to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Note: All dimension are nominal

Package Type	Reel Diameter (Inch)	QTY	Reel Width W1 (mm)	Ao (mm)	Bo (mm)	Ko (mm)	P1 (mm)	W (mm)	Pin 1 Quadrant
5 X 6 PQFN	13	4000	12.4	6.300	5.300	1.20	8.00	12	Q1

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Qualification Information[†]

		Automotive (per AEC-Q101)				
Qualification Level		Comments: This part number(s) passed Automotive qualification. IR's Industrial and Consumer qualification level is granted by extension of the higher Automotive level.				
Moisture Se	ensitivity Level	PQFN 5mm x 6mm MSL1				
		Class H1C (+/- 2000V) ^{††}				
	Human Body Model	AEC-Q101-001				
ESD		Class C5 (+/- 2000V) ^{††}				
	Charged Device Model	AEC-Q101-005				
RoHS Compliant		Yes				

† Qualification standards can be found at International Rectifier's web site: <u>http://www.irf.com/</u>

†† Highest passing voltage.

Notes:

- Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 95A.
 Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. (Refer to AN-1140)
- ② Repetitive rating; pulse width limited by max. junction temperature.
- ③ Limited by TJmax, starting TJ = 25°C, L = 0.152mH, $R_G = 50\Omega$, $I_{AS} = 50A$, $V_{GS} = 10V$.
- ④ $I_{SD} \le 50A$, di/dt ≤ 961A/µs, $V_{DD} \le V_{(BR)DSS}$, $T_J \le 175^{\circ}C$.
- (5) Pulse width \leq 400µs; duty cycle \leq 2%.
- © Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80%VDSS.
- ⑦ Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS.
- When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994: <u>http://www.irf.com/technical-info/appnotes/an-994.pdf</u>
- (9) R_{θ} is measured at TJ approximately 90°C.
- Pulse drain current is limited at 380A by source bonding technology.

Revision History

Date	Comments
9/24/2018	Updated datasheet with corporate template
	 Corrected typo on Gate-to-Source Leakage from "Ω" to "nA" on page 2

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (<u>www.infineon.com</u>).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.