

Optima Diode - Low forward voltage drop, Fast Recovery Diode

VRRM	600 V	IF	30 A
V _{F(TYP)}	1.3 V	T _{RR(TYP)}	75 ns

Features

- Fast recovery
- Low forward voltage
- Optimized trade-off performance between V_F & T_{RR}
- Soft recovery characteristic for better EMI
- High junction temperature 150 °C
- Lead free in compliance with EU RoHS 2.0
- Green molding compound as per IEC 61249 standard

Mechanical Data


• Case: TO-220AC molded plastic

• Terminals: Solderable per MIL-STD-750, Method 2026

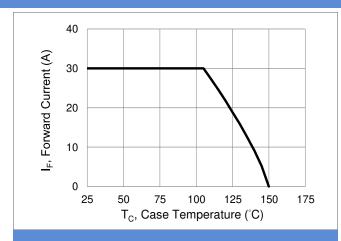
• Approx. Weight: 0.067 ounces, 1.89 grams

Application

• PFC, UPS, PV Inverter, EV Charging Station, Welder

Maximum Ratings and Thermal Characteristics (Tc = 25 °C unless otherwise specified)

PARAMETER	SYMBOL	LIMIT	UNITS
Repetitive Peak Reverse Voltage	V_{RRM}	600	V
DC Blocking Voltage	V _{DC}	600	V
Diode Forward Current @ Tc=105°C	I _{F(AV)}	30	Α
Repetitive Peak Surge Current tp = 8.3 ms, sine-wave, D=0.5	I _{FRM}	60	А
Peak Forward Surge Current tp = 8.3 ms, single half sine-wave	I _{FSM}	230	Α
Maximum Power Dissipation	P _{total}	96	W
Operating Junction Temperature Range	TJ	-55~150	°C
Storage Temperature Range	T _{STG}	-55~150	°C



Electrical Characteristics (T_C = 25 °C unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNITS
Farmer duality and dual	V _F	I _F = 30 A, T _J = 25 °C	-	1.3	1.8	V
Forward voltage drop		I _F = 30 A, T _J = 125 °C	-	1.2	-	
Davis and leading as a surrough	I _R	V _R = 600 V, T _J = 25 °C	-	-	250	μA
Reverse leakage current		V _R = 600 V, T _J = 125 °C	-	-	1	mA
Reverse recovery time	T _{RR}	I _F =0.5A, I _R =1A, I _{RR} =0.25A T _J = 25 °C	-	-	55	ns
		$I_F = 1 \text{ A}, V_R = 30 \text{ V},$ $di/dt = 300 \text{ A/}\mu\text{s},$ $T_J = 25 ^{\circ}\text{C}$	-	-	40	ns
Reverse recovery time	T_RR	1 00 4 1/ 400 1/	-	75	115	ns
Peak recovery current	I _{RRM}	$I_F = 30 \text{ A}, V_R = 400 \text{ V},$ $di/dt = 300 \text{ A}/\mu\text{s},$	-	6.6	ı	Α
Reverse recovery charge	Q _{RR}		-	325	ı	nC
Softness factor = tb / ta	S	T _J = 25 °C	-	0.9	ı	
Reverse recovery time	T_RR	I _F = 30 A, V _R = 400 V, di/dt = 300 A/μs,	-	115	ı	ns
Peak recovery current	I _{RRM}		-	14.5	ı	Α
Reverse recovery charge	Q _{RR}		-	1150	ı	nC
Softness factor = tb / ta	S	T _J = 125 °C	-	0.46	ı	
Thermal Resistance	R _θ JC		-	-	1.3	°C/W

TYPICAL CHARACTERISTIC CURVES

Fig.1 Forward Current Derating Curve

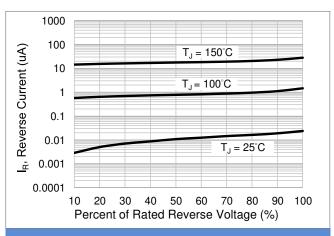


Fig.3 Typical Reverse Characteristics

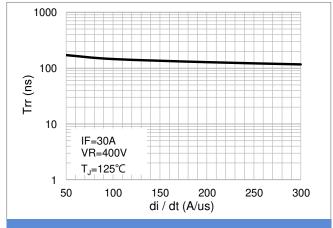


Fig.5 Typical Reverse Recovery Time Versus di/dt

Fig.2 Typical Junction Capacitance

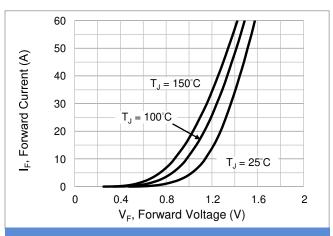
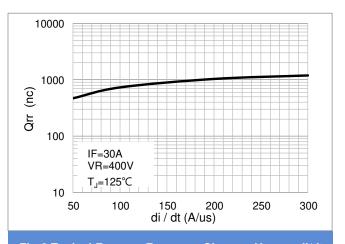
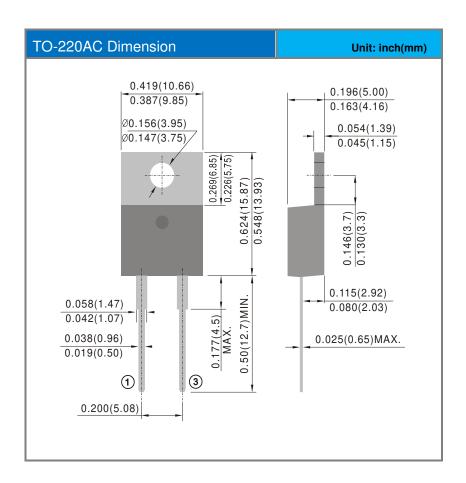


Fig.4 Typical Forward Characteristics




Fig.6 Typical Reverse Recovery Charges Versus di/dt

Product and Packing Information

Part No.	Package Type	Packing Type	Marking
PSDP3060L1	TO-220AC	50pcs / Tube	SDP3060L1

Packaging Information

Disclaimer

- Reproducing and modifying information of the document is prohibited without permission from Panjit International Inc..
- Panjit International Inc. reserves the rights to make changes of the content herein the document anytime without notification. Please refer to our website for the latest document.
- Panjit International Inc. disclaims any and all liability arising out of the application or use of any product including damages incidentally and consequentially occurred.
- Panjit International Inc. does not assume any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.
- Applications shown on the herein document are examples of standard use and operation. Customers are
 responsible in comprehending the suitable use in particular applications. Panjit International Inc. makes no
 representation or warranty that such applications will be suitable for the specified use without further testing
 or modification.
- The products shown herein are not designed and authorized for equipments requiring high level of reliability or relating to human life and for any applications concerning life-saving or life-sustaining, such as medical instruments, transportation equipment, aerospace machinery et cetera. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Panjit International Inc. for any damages resulting from such improper use or sale.
- Since Panjit uses lot number as the tracking base, please provide the lot number for tracking when complaining.