

512K x 16 Static RAM

Features

· Temperature Ranges

Commercial: 0°C to 70°C
 Industrial: -40°C to 85°C
 Automotive: -40°C to 125°C

· High speed

— 55 ns and 70 ns availability

Voltage range:

— CY62157CV25: 2.2V-2.7V— CY62157CV30: 2.7V-3.3V— CY62157CV33: 3.0V-3.6V

Ultra-low active power

— Typical active current: 1.5 mA @ f = 1 MHz

— Typical active current: $5.5 \text{ mA} @ f = f_{\text{max}} (70 \text{ ns speed})$

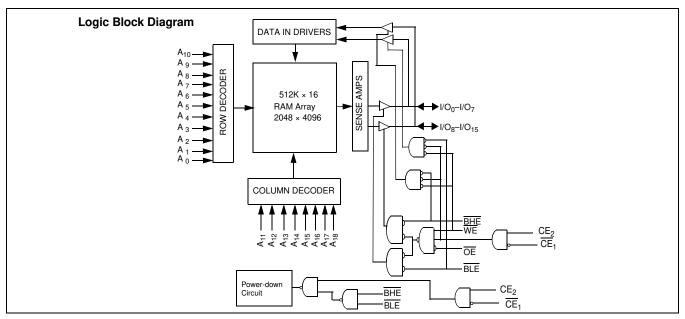
Low standby power

Easy memory expansion with CE₁, CE₂ and OE features

· Automatic power-down when deselected

CMOS for optimum speed/power

Functional Description[1]


The CY62157CV25/30/33 are high-performance CMOS static RAMs organized as 512K words by 16 bits. These devices feature advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life™

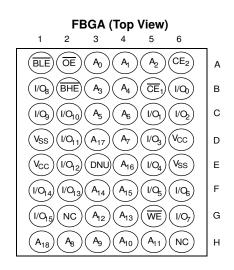
(MoBL[™]) in portable applications such as cellular telephones. The devices also have an automatic power-down feature that significantly reduces power consumption by 80% when addresses are not toggling. The device can also be put into standby mode reducing power consumption by more than 99% when deselected ($\overline{CE_1}$ HIGH or $\overline{CE_2}$ LOW or both \overline{BLE} and \overline{BHE} are HIGH). The input/output pins (I/O₀ through I/O₁₅) are placed in a high-impedance state when: deselected ($\overline{CE_1}$ HIGH or $\overline{CE_2}$ LOW), outputs are disabled (\overline{OE} HIGH), both \overline{Byte} High Enable and \overline{Byte} Low Enable \overline{are} disabled (\overline{BHE} , \overline{BLE} HIGH), or during a write operation ($\overline{CE_1}$ LOW and $\overline{CE_2}$ HIGH and \overline{WE} LOW).

Writing to the device is accomplished by taking Chip Enable 1 (CE_1) and Write Enable (WE) inputs LOW and Chip Enable 2 (CE_2) HIGH. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O₀ through I/O₇), is written into the location specified on the address pins (A₀ through A₁₈). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O₈ through I/O₁₅) is written into the location specified on the address pins (A₀ through A₁₈).

Reading from the device is accomplished by taking Chip Enable 1 ($\overline{\text{CE}}_1$) and Output Enable ($\overline{\text{OE}}$) LOW and Chip Enable 2 ($\overline{\text{CE}}_2$) HIGH while forcing the Write Enable ($\overline{\text{WE}}$) HIGH. If Byte Low Enable ($\overline{\text{BLE}}$) is LOW, then data from the memory location specified by the address pins will appear on I/O₀ to I/O₇. If Byte High Enable ($\overline{\text{BHE}}$) is LOW, then data from memory will appear on I/O₈ to I/O₁₅. See the truth table at the back of this data sheet for a complete description of read and write modes.

The CY62157CV25/30/33 are available in a 48-ball FBGA package.

Note:


1. For best practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com.

Product Portfolio

						Power Dissipation					
						C	Operating (I _{CC}) mA Standby (I _{SB:}			v (lepa)	
		'	V _{CC} Range	е	Speed	f = 1 MHz		f = 1	max	μ A	
Product	Range	Min.	Typ. ^[2]	Max.		Typ. ^[2]	Max.	Typ . ^[2]	Max.	Typ . ^[2]	Max.
CY62157CV25	Industrial	2.2V	2.5V	2.7V	55 ns	1.5	3	7	15	6	25
	Industrial				70 ns	1.5	3	5.5	12		
CY62157CV30	Industrial	2.7V	3.0V	3.3V	55 ns	1.5	3	7	15	8	25
	Industrial				70 ns	1.5	3	5.5	12	8	25
	Automotive				70 ns					8	70
CY62157CV33	Industrial	3.0V	3.3V	3.6V	55 ns	1.5	3	7	15	10	30
	Industrial				70 ns	1.5	3	5.5	12	10	30
	Automotive				70 ns					10	80

Pin Configurations^[2, 3, 4]

Pin Definitions

Name	Definition
Input	A ₀ -A ₁₈ . Address Inputs
Input/Output	I/O ₀ -I/O ₁₅ . Data lines. Used as input or output lines depending on operation
Input/Control	WE. Write Enable, Active LOW. When selected LOW, a WRITE is conducted. When selected HIGH, a READ is conducted.
Input/Control	CE ₁ . Chip Enable 1, Active LOW.
Input/Control	CE2. Chip Enable 2, Active HIGH.
Input/Control	OE. Output Enable, Active LOW. Controls the direction of the I/O pins. When LOW, the I/O pins behave as outputs. When deasserted HIGH, I/O pins are three-stated, and act as input data pins
Ground	Vss. Ground for the device
Power Supply	Vcc. Power supply for the device

- 2. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ.)}, T_A = 25°C.
 3. NC pins are not connected on the die.
 4. E3 (DNU) can be left as NC or V_{SS} to ensure proper application.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature -65°C to +150°C Ambient Temperature with Power Applied55°C to +125°C Supply Voltage to Ground Potential...–0.5V to V_{ccmax} + 0.5V DC Input Voltage^[5].....-0.5V to V_{CC} + 0.3V Output Current into Outputs (LOW)20 mA

Static Discharge Voltage	> 2001 V
(per MIL-STD-883, Method 3015)	
Latch-up Current	> 200 mA

Operating Range

Device	Range	Ambient Tempera- ture[T _A] ^[6]	V _{cc}
CY62157CV25	Industrial	-40°C to +85°C	2.2V - 2.7V
CY62157CV30	Industrial	-40°C to +85°C	2.7V - 3.3V
	Automotive	-40°C to +125°C	2.7V - 3.3V
CY62157CV33	Industrial	-40°C to +85°C	3.0V - 3.6V
	Automotive	-40°C to +125°C	3.0V - 3.6V

Electrical Characteristics Over the Operating Range

				CY6	2157CV	25-55	CY	25-70		
Parameter	Description	Test Con	ditions	Min.	Typ . ^[2]	Max.	Min.	Typ. [2]	Max.	Unit
V _{OH}	Output HIGH Voltage	$I_{OH} = -0.1 \text{ mA}$	V _{CC} = 2.2V	2.0			2.0			V
V _{OL}	Output LOW Voltage	$I_{OL} = 0.1 \text{ mA}$	$V_{CC} = 2.2V$			0.4			0.4	V
V _{IH}	Input HIGH Voltage			1.8		V _{CC} + 0.3V	1.8		V _{CC} + 0.3V	V
V _{IL}	Input LOW Voltage			-0.3		0.6	-0.3		0.6	V
I _{IX}	Input Leakage Current	$GND \le V_1 \le V_{CC}$		-1		+1	-1		+1	μА
I _{OZ}	Output Leakage Current	GND≤V _O ≤V _{CC} , Output Disabled		-1		+1	-1		+1	μА
I _{CC}	V _{CC} Operating Supply	$f = f_{MAX} = 1/t_{RC}$	$V_{CC} = 2.7V$		7	15		5.5	12	mA
	Current	f = 1 MHz	I _{OUT} = 0 mA CMOS Levels		1.5	3		1.5	3	
I _{SB1}	Automatic CE Power-Down Current— CMOS Inputs	$CE_1 \ge V_{CC} - 0.2V$ or $CE_2 \le 0.2V$ $V_{IN} \ge V_{CC} - 0.2V$ or $V_{IN} \le 0.2V$, $f = f_{max}$ (Address and Data Only), f = 0 (OE,WE,BHE and BLE)			6	25		6	25	μА
I _{SB2}	Automatic CE Power-Down Current— CMOS Inputs	$\begin{array}{l} CE_1 \geq V_{CC} - 0.2V \\ V_{IN} \geq V_{CC} - 0.2V \\ f = 0, \ V_{CC} = 2.7V \end{array}$								

Electrical Characteristics Over the Operating Range

				CY62157CV30-55			CY62157CV30-70			
Parameter	Description	Test Conditions M		Min.	Typ. ^[2]	Max.	Min.	Typ. ^[2]	Max.	Unit
V _{OH}	Output HIGH Voltage	$I_{OH} = -1.0 \text{ mA}$	$V_{CC} = 2.7V$	2.4			2.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 2.1 mA	$V_{CC} = 2.7V$			0.4			0.4	V
V _{IH}	Input HIGH Voltage			2.2		V _{CC} + 0.3V	2.2		V _{CC} + 0.3V	V
V _{IL}	Input LOW Voltage			-0.3		0.8	-0.3		0.8	V
I _{IX}	Input Leakage Current	$GND \le V_1 \le V_{CC}$	Industrial	-1		+1	-1		+1	μА
			Automotive				-10		+10	μА
I _{OZ}	Output Leakage Current	$GND \leq V_{O} \leq V_{CC}$	Industrial	-1		+1	-1		+1	μΑ
		Output Disabled	Automotive				-10		+10	μА
I _{CC}	V _{CC} Operating Supply	$f = f_{MAX} = 1/t_{RC}$	$V_{CC} = 3.3V$		7	15		5.5	12	mA
	Current f = 1 MHz	I _{OUT} = 0 mA CMOS Levels		1.5	3		1.5	3		

Notes:

^{5.} $V_{\rm IL,(min.)}$ = -2.0V for pulse durations less than 20 ns. 6. $T_{\rm A}$ is the "Instant-On" case temperature.

Electrical Characteristics Over the Operating Range (continued)

		Test Conditions		CY6	CY62157CV30-55			CY62157CV30-70		
Parameter	Description			Min.	Typ . ^[2]	Max.	Min.	Typ . ^[2]	Max.	Unit
I _{SB1}	Automatic CE	$CE_{1 \ge V_{CC} - 0.2V}$	Industrial		8	25		8	25	μΑ
	Power-Down Current— CMOS Inputs	$\begin{array}{l} \text{or } CE_2 \leq 0.2V \\ V_{IN} \geq V_{CC} - 0.2V \\ \text{or } V_{IN} \leq 0.2V, \\ \text{f} = f_{max} \text{ (Address and Data Only),} \\ \underline{f=0} \text{ (OE, WE,} \\ \text{BHE and BLE)} \end{array}$	Automotive					8	70	μА
I _{SB2}	Automatic CE	$\overline{CE}_{1 \ge V_{CC}} - 0.2V$	Industrial		8	25		8	25	μΑ
	$\begin{array}{ll} \mbox{Power-Down Current} & \mbox{or $CE_2 \le 0.2V$} \\ \mbox{CMOS Inputs} & \mbox{V}_{IN} \ge V_{CC} - 0.2V \\ \mbox{or $V_{IN} \le 0.2V$,} \\ \mbox{f = 0, $V_{CC} = 3.3V$} \end{array}$	Automotive					8	70	μА	

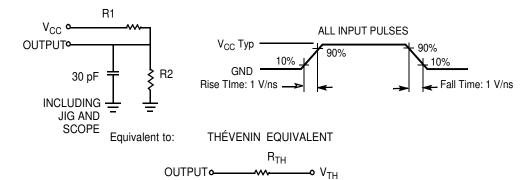
Electrical Characteristics Over the Operating Range

					2157CV	33-55	CY62			
Parameter	Description	Test Condition	าร	Min.	Typ. ^[2]	Max.	Min.	Typ. ^[2]	Max.	Unit
V _{OH}	Output HIGH Voltage	$I_{OH} = -1.0 \text{ mA}$	$V_{CC} = 3.0V$	2.4			2.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 2.1 mA	$V_{CC} = 3.0V$			0.4			0.4	V
V _{IH}	Input HIGH Voltage			2.2		V _{CC} + 0.3V	2.2		V _{CC} + 0.3V	V
V_{IL}	Input LOW Voltage			-0.3		0.8	-0.3		0.8	V
I _{IX}	Input Leakage $GND \le V_1 \le V_{CC}$		Industrial	-1		+1	-1		+1	μΑ
	Current		Automotive				-10		+10	μΑ
I _{OZ}	Output Leakage	$GND \le V_O \le V_{CC}$, Output	Industrial	-1		+1	-1		+1	μΑ
	Current	Disabled	Automotive				-10		+10	μΑ
I _{CC}		Operating Supply $f = f_{MAX} = 1/t_{RC}$			7	15		5.5	12	mA
	Current	f = 1 MHz	I _{OUT} = 0 mA CMOS Levels		1.5	3		1.5	3	
I _{SB1}	Automatic CE	$\overline{CE}_1 \ge V_{CC} - 0.2V \text{ or } \overline{CE}_2 \le$	Industrial		10	30		10	30	μΑ
	Power-Down Current—CMOS Inputs	$\begin{array}{l} 0.2V \\ V_{IN} \geq V_{CC} - 0.2V \text{ or } V_{IN} \leq \\ 0.2V, \\ f = f_{max} \text{ (Address and Data Only),} \\ \underline{f = 0} \text{ (OE,WE,BHE,and BLE)} \end{array}$	Automotive					10	80	μΑ
I _{SB2}	Automatic CE	$\overline{CE}_1 \ge V_{CC} - 0.2V \text{ or } \overline{CE}_2 \le$	Industrial		10	30		10	30	μА
	Power-Down Current—CMOS Inputs	$\begin{array}{l} 0.2V \\ V_{IN} \geq V_{CC} - 0.2V \text{ or } V_{IN} \leq \\ 0.2V, f = 0, V_{CC} = 3.6V \end{array}$	Automotive					10	80	μА

Thermal Resistance

Parameter	Description	Test Conditions	BGA	Unit
Θ_{JA}	Thermal Resistance (Junction to Ambient) ^[7]	Still Air, soldered on a 3 x 4.5 inch, two-layer printed circuit board	55	°C/W
$\Theta_{\sf JC}$	Thermal Resistance (Junction to Case) ^[7]		16	°C/W

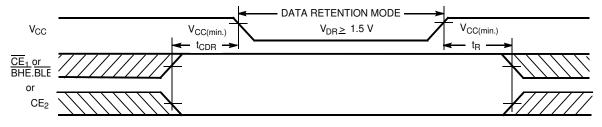
Note:


^{7.} Tested initially and after any design or process changes that may affect these parameters.

Capacitance^[7]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ.)}$	8	pF

AC Test Loads and Waveforms



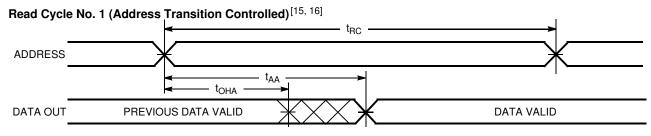
Parameters	2.5V	3.0V	3.3V	Unit
R1	16.6	1.105	1.216	ΚΩ
R2	15.4	1.550	1.374	ΚΩ
R _{TH}	8.0	0.645	0.645	ΚΩ
V _{TH}	1.20	1.75	1.75	V

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions		Min.	Typ. ^[2]	Max.	Unit
V_{DR}	V _{CC} for Data Retention			1.5			V
I _{CCDR}	Data Retention Current	$V_{CC} = 1.5V, \overline{CE}_{1} \ge V_{CC} - 0.2V \text{ or}$	Industrial		4	20	μΑ
		$CE_2 \le 0.2V$, $V_{IN} \ge V_{CC} - 0.2V$ or $V_{IN} \le 0.2V$	Automotive		4	60	μА
t _{CDR} ^[8]	Chip Deselect to Data Retention Time			0			ns
t _R [8]	Operation Recovery Time			t _{RC}			ns

Data Retention Waveform[9]

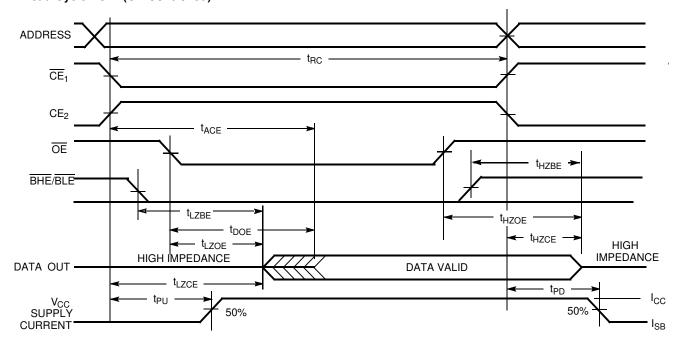
Notes:


8. <u>Full Device</u> AC operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min.)} > 100 μs or stable at V_{CC(min.)} >100 μs.
 9. BHE.BLE is the AND of both BHE and BLE. Chip can be deselected by either disabling the chip enable signals or by disabling both BHE and BLE.

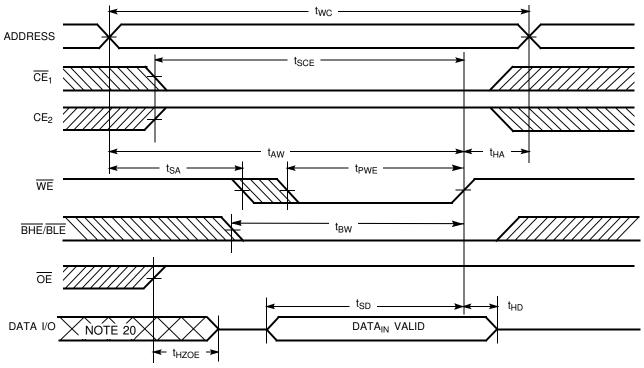
Switching Characteristics Over the Operating Range [10]

		55 ns		70 ns			
Parameter	Description	Min. Max.		Min. Max.		Unit	
Read Cycle	·		•		•		
t _{RC}	Read Cycle Time	55		70		ns	
t _{AA}	Address to Data Valid		55		70	ns	
t _{OHA}	Data Hold from Address Change	10		10		ns	
t _{ACE}	CE ₁ LOW and CE ₂ HIGH to Data Valid		55		70	ns	
t _{DOE}	OE LOW to Data Valid		25		35	ns	
t _{LZOE}	OE LOW to Low-Z ^[11]	5		5		ns	
t _{HZOE}	OE HIGH to High-Z ^[11, 12]		20		25	ns	
t _{LZCE}	CE ₁ LOW and CE ₂ HIGH to Low-Z ^[11]	10		10		ns	
t _{HZCE}	CE ₁ HIGH or CE ₂ LOW to High-Z ^[11, 12]		20		25	ns	
t _{PU}	CE ₁ LOW and CE ₂ HIGH to Power-up	0		0		ns	
t _{PD}	CE ₁ HIGH or CE ₂ LOW to Power-down		55		70	ns	
t _{DBE}	BHE/BLE LOW to Data Valid		55		70	ns	
t _{LZBE} [11]	BHE/BLE LOW to Low-Z ^[13]	5		5		ns	
t _{HZBE}	BHE/BLE HIGH to High-Z[11, 12]		20		25	ns	
Write Cycle ^[14]				ı	.1	I.	
t _{WC}	Write Cycle Time			70		ns	
t _{SCE}	CE ₁ LOW and CE ₂ HIGH to Write End	45		60		ns	
t _{AW}	Address Set-up to Write End	45		60		ns	
t _{HA}	Address Hold from Write End	0		0		ns	
t _{SA}	Address Set-up to Write Start	0		0		ns	
t _{PWE}	WE Pulse Width	45		50		ns	
t _{BW}	BHE/BLE Pulse Width	50		60		ns	
t _{SD}	Data Set-up to Write End	25		30		ns	
t _{HD}	Data Hold from Write End	0		0		ns	
t _{HZWE}	WE LOW to High-Z ^[11, 12]		20		25	ns	
t _{LZWE}	WE HIGH to Low-Z ^[11]	5		5		ns	

Switching Waveforms


Notes:

- 10. Test conditions assume signal transition time of 5 ns or less, timing reference levels of V_{CC(typ.)}/2, input pulse levels of 0 to V_{CC(typ.)}, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.
- 11. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZBE} is less than t_{LZOE}, t_{HZDE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZOE}, t_{HZDE} for any given device.
- 12. t_{HZOE} , t_{HZCE} , t_{HZBE} , and t_{HZWE} transitions are measured when the outputs enter a high-impedance state.
- 13. When both byte enables are toggled together this value is 10 ns.
- 14. The internal Write time of the memory is defined by the overlap of WE, CE₁ = V_{IL}, BHE and/or BLE = V_{IL}, CE₂ = V_{IH}. All signals must be ACTIVE to initiate a Write and any of these signals can terminate a Write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates the Write.
- 15. <u>Device</u> is continuously selected. \overline{OE} , $\overline{CE}_1 = V_{IL}$, \overline{BHE} and/or $\overline{BLE} = V_{IL}$, $\overline{CE}_2 = V_{IH}$.
- 16. WE is HIGH for Read cycle.



Switching Waveforms (continued)

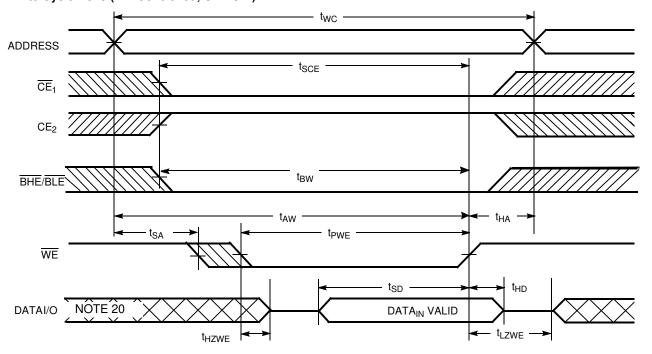
Read Cycle No. 2 ($\overline{\rm OE}$ Controlled) $^{[16,\ 17]}$

Write Cycle No. 1 (WE Controlled) [14, 18, 19]

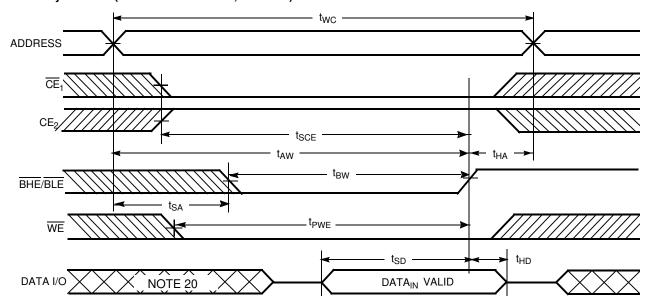
Notes:

- 17. Address valid prior to or coincident with $\overline{\text{CE}}_1$, $\overline{\text{BHE}}$, $\overline{\text{BLE}}$ transition LOW and $\overline{\text{CE}}_2$ transition HIGH.
- 18. Data I/O is high-impedance if $\overline{OE} = V_{IH}$.

 19. If \overline{CE}_1 goes HIGH or \overline{CE}_2 goes LOW simultaneously with \overline{WE} HIGH, the output remains in a high-impedance state.

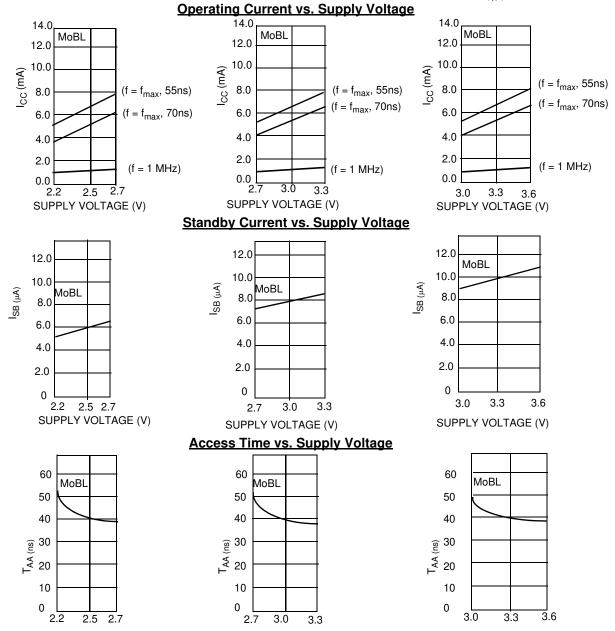

 20. During this period, the I/Os are in output state and input signals should not be applied.

Switching Waveforms (continued)


Write Cycle No. 3 (WE Controlled, OE LOW) [19]

Switching Waveforms (continued)

Write Cycle No. 4 (BHE/BLE Controlled, OE LOW)[19]


Truth Table

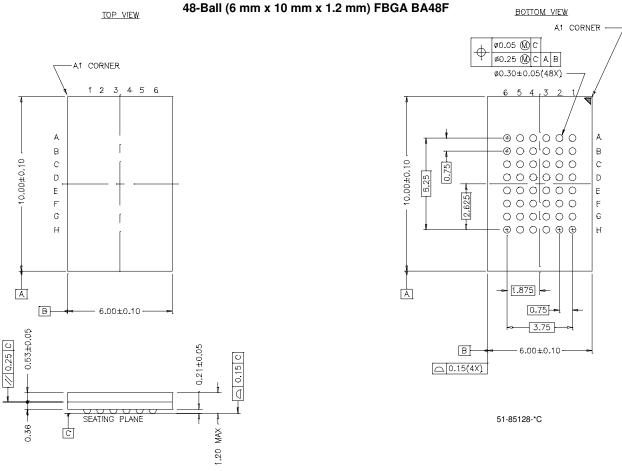
CE ₁	CE ₂	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	Х	Х	High Z	Deselect/Power-Down	Standby (I _{SB})
Х	L	Х	Х	Х	Х	High Z	Deselect/Power-Down	Standby (I _{SB})
Χ	Х	Х	Χ	Н	Н	High Z	Deselect/Power-Down Standby (
L	Н	Н	L	L	L	Data Out (I/O _O -I/O ₁₅)	Read	Active (I _{CC})
L	Н	Н	L	Н	L	Data Out (I/O_O – I/O_7); I/O_8 – I/O_{15} in High Z	Read	Active (I _{CC})
L	Н	Н	L	L	Н	Data Out (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Read Active (I _{CC}	
L	Н	Н	Н	L	L	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	Н	Н	L	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	Н	L	Н	High Z	Output Disabled	Active (I _{CC})
L	Н	L	Χ	L	L	Data In (I/O _O -I/O ₁₅)	Write	Active (I _{CC})
L	Н	L	Х	Н	L	Data In (I/O_O – I/O_7); I/O_8 – I/O_{15} in High Z	Write Active (I _{CC}	
L	Н	L	Х	L	Н	Data In (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Write	Active (I _{CC})

Typical DC and AC Characteristics

(Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{CC} = V_{CC(typ.)}$, $T_A = 25^{\circ}C$.)

SUPPLY VOLTAGE (V)

SUPPLY VOLTAGE (V)


SUPPLY VOLTAGE (V)

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
55	CY62157CV25LL-55BAI	BA48F	48-ball Fine-pitch BGA	Industrial
	CY62157CV30LL-55BAI	1		
	CY62157CV33LL-55BAI	1		
70	CY62157CV25LL-70BAI	-		Industrial
	CY62157CV30LL-70BAI	1		Industrial
	CY62157CV30LL-70BAE	1		Automotive
	CY62157CV33LL-70BAI	-		Industrial
	CY62157CV33LL-70BAE	-		Automotive

Package Diagram

MoBL, MoBL2, and More Battery Life are trademarks of Cypress Semiconductor Corporation. All product and company names mentioned in this document may be the trademarks of their respective holders.

Document History Page

Document Title: CY62157CV25/30/33 512K x 16 Static Ram Document Number: 38-05014						
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change		
**	106184	05/10/01	HRT/MGN	New data sheet – Advance Information		
*A	107241	07/24/01	MGN	Made corrections to Advance Information Added 55 ns bin		
*B	109621	03/11/02	MGN	Changed from Advance Information to Final		
*C	114218	05/01/02	GUG/MGN	Improved Typical and Max I _{CC} values		
*D	238448	See ECN	AJU	Added Automotive Product information		
*E	269729	See ECN	SYT	Added Automotive Product information for CY62157CV30 $-$ 70 ns Added I_{IX} and I_{OZ} values for Automotive range of CY62157CV33 $-$ 70 ns		