

Silicon Carbide Power MOSFET C3M[™] MOSFET Technology N-Channel Enhancement Mode

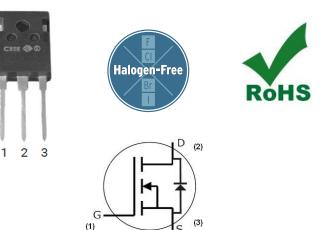
Features

- 3rd Generation SiC MOSFET technology
- High blocking voltage with low on-resistance
- High speed switching with low capacitances
- Fast intrinsic diode with low reverse recovery (Qrr)
- Halogen free, RoHS compliant

Benefits

- Higher system efficiency
- Reduced cooling requirements
- Increased power density
- Increased system switching frequency
- Easy to parallel and simple to drive
- Enable new hard switching PFC topologies (Totem-Pole)

Applications


- EV charging
- Solar PV Inverters
- UPS
- SMPS
- DC/DC converters

Maximum Ratings (T_c=25°C, unless otherwise specified)

Symbol	Parameter	Value	Unit	Note
V _{DSmax}	Drain - Source Voltage	650	V	
V_{GSmax}	Gate - Source voltage	-8/+19	V	Note 1
	Continuous Drain Current, $V_{GS} = 15 \text{ V}$, $T_C = 25^{\circ}\text{C}$	120		Fig. 19 Note 2
ID	Continuous Drain Current, $V_{GS} = 15 \text{ V}$, $T_C = 100^{\circ}\text{C}$	96		
I _{D(pulse)}	Pulsed Drain Current, Pulse width t_p limited by T_{jmax}	418	A	
P _D	Power Dissipation, $T_c = 25^{\circ}C$, $T_j = 175^{\circ}C$	416	W	Fig. 20
T _J , T _{stg}	Operating Junction and Storage Temperature		°C	
TL	Solder Temperature, 1.6mm (0.063") from case for 10s	260	°C	
M _d	Mounting Torque, (M3 or 6-32 screw)	1 8.8	Nm Ibf-in	

Note (1): Recommended turn off / turn on gate voltage V $_{\rm GS}\,$ - 4V...0V / +15V Note (2): Package limited to 120 A

Package

Part Number	Package	Marking	
C3M0015065D	TO-247-3	C3M0015065D	

Electrical Characteristics ($T_c = 25^{\circ}C$ unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions	Note	
$V_{\text{(BR)DSS}}$	Drain-Source Breakdown Voltage	650			V	$V_{GS} = 0 \text{ V}, I_D = 100 \mu\text{A}$		
M		1.8	2.3	3.6	V	$V_{DS} = V_{GS}, I_D = 15.5 \text{ mA}$		
$V_{GS(th)}$	Gate Threshold Voltage		1.9		V	$V_{DS} = V_{GS}$, $I_D = 15.5 \text{ mA}$, $T_J = 175^{\circ}\text{C}$		
I _{DSS}	Zero Gate Voltage Drain Current		1	50	μΑ	$V_{DS} = 650 \text{ V}, V_{GS} = 0 \text{ V}$		
I _{GSS}	Gate-Source Leakage Current		10	250	nA	$V_{GS} = 15 \text{ V}, V_{DS} = 0 \text{ V}$		
$R_{\text{DS(on)}}$	Drain-Source On-State Resistance	10.5	15	21	mΩ	$V_{GS} = 15 \text{ V}, I_D = 55.8 \text{ A}$	Fig. 4,	
DS(on)			20		11132	$V_{GS} = 15 \text{ V}, I_D = 55.8 \text{ A}, T_J = 175^{\circ}\text{C}$	5,6	
g _{fs}	Transconductance		42		s	V_{DS} = 20 V, I_{DS} = 55.8 A	Fig. 7	
913			40			V_{DS} = 20 V, I_{DS} = 55.8 A, T_J = 175°C		
C _{iss}	Input Capacitance		5011					
C _{oss}	Output Capacitance		289				Fig. 17 18	
C _{rss}	Reverse Transfer Capacitance		31	1	рF	$V_{GS} = 0 V, V_{DS} = 400 V$		
C _{o(er)}	Effective Output Capacitance (Energy Related)		357			f = 100 Khz V _{AC} = 25 mV	Note	
C _{o(tr)}	Effective Output Capacitance (Time Related)		516			VAC= 23 111V	Note	
E _{oss}	Coss Stored Energy		29		μ		Fig. 1	
Eon	Turn-On Switching Energy (Body Diode)		1500			$V_{DS} = 400 \text{ V}, V_{GS} = -4 \text{ V}/15 \text{ V}, I_D = 55.8 \text{ A},$ $R_{G(ext)} = 5 \Omega, L = 57.6 \mu\text{H}, T_J = 175^{\circ}\text{C}$	Fig. 25	
E _{OFF}	Turn Off Switching Energy (Body Diode)		700		μJ	FWD = Internal Body Diode of MOSFET		
E _{ON}	Turn-On Switching Energy (External Diode)		1200			$V_{DS} = 400 \text{ V}, V_{GS} = -4 \text{ V}/15 \text{ V}, I_{D} = 55.8 \text{ A},$	1	
E _{OFF}	Turn Off Switching Energy (External Diode)		1000		μJ	$R_{G(ext)} = 5 \Omega$, L= 57.6 µH, T _J = 175°C FWD = External SiC DIODE	Fig. 2	
$t_{d(\text{on})}$	Turn-On Delay Time		22					
tr	Rise Time		125			$V_{DD} = 400 \text{ V}, V_{GS} = -4 \text{ V}/15 \text{ V}$ $I_D = 55.8 \text{ A}, R_{G(ext)} = 5 \Omega, L = 57.6 \mu\text{H}$ Timing relative to V _{DS} Inductive load		
$t_{d(off)}$	Turn-Off Delay Time		58		ns		Fig. 2	
t _f	Fall Time		25					
$R_{G(int)}$	Internal Gate Resistance		1.5		Ω	$f = 1 MHz$, $V_{AC} = 25 mV$		
Q_{gs}	Gate to Source Charge		54			$V_{DS} = 400 \text{ V}, V_{GS} = -4 \text{ V}/15 \text{ V}$	Fig. 12	
Q_{gd}	Gate to Drain Charge		62	_	nC	I _D = 55.8 A		
Qg	Total Gate Charge		188			Per IEC60747-8-4 pg 21		

Note (3): C_{o(er)}, a lumped capacitance that gives same stored energy as Coss while Vds is rising from 0 to 400V C_{o(tr)}, a lumped capacitance that gives same charging time as Coss while Vds is rising from 0 to 400V

Reverse Diode Characteristics ($T_c = 25^{\circ}C$ unless otherwise specified)

Symbol	Parameter	Тур.	Max.	Unit	Test Conditions	Note
V _{SD}				v	$V_{GS} = -4 \text{ V}, \text{ I}_{SD} = 27.9 \text{ A}, \text{ T}_{J} = 25 \text{ °C}$	Fig. 8,
V _{SD}	Diode Forward Voltage	4.2		v	$V_{_{GS}} = -4 \text{ V}, \text{ I}_{_{SD}} = 27.9 \text{ A}, \text{ T}_{_{J}} = 175 ^{\circ}\text{C}$	9, 10
ls	Continuous Diode Forward Current		79	A	$V_{GS} = -4 V, T_C = 25^{\circ}C$	
I _{S, pulse}	Diode pulse Current		418	A	$V_{_{GS}} = -4 V$, pulse width t_p limited by T_{jmax}	
t _{rr}	Reverse Recovery time	85		ns		
Q _{rr}	Reverse Recovery Charge	667		nC	$V_{GS} = -4 V, I_{SD} = 55.8 A, V_{R} = 400 V$ dif/dt = 1500 A/µs, T _j = 175 °C	
I _{rrm}	Peak Reverse Recovery Current	17		A		
t _{rr}	Reverse Recovery time	74		ns		
Q _{rr}	Reverse Recovery Charge	562		nC	$V_{cs} = -4 V, I_{sD} = 55.8 A, V_{R} = 400 V$ dif/dt = 1000 A/µs, T _j = 175 °C	
I _{rrm}	Peak Reverse Recovery Current	14		A		

Thermal Characteristics

Symbol	Parameter	Тур.	Unit	Test Conditions	Note
R _{ejc}	Thermal Resistance from Junction to Case	0.35	0C ///		Fig. 21
R _{0JA}	Thermal Resistance From Junction to Ambient	40	°C/W		Fig. 21

Typical Performance

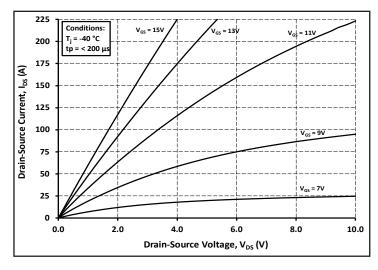


Figure 1. Output Characteristics T_J = -40 °C

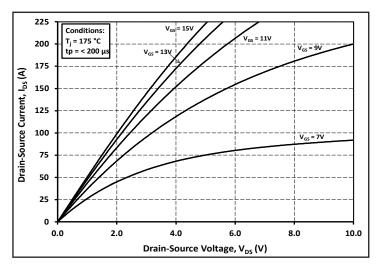


Figure 3. Output Characteristics T_J = 175 °C

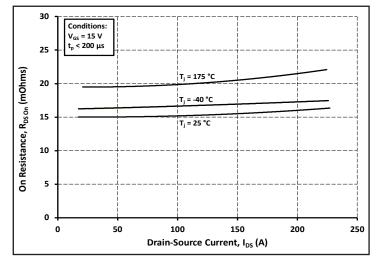


Figure 5. On-Resistance vs. Drain Current For Various Temperatures

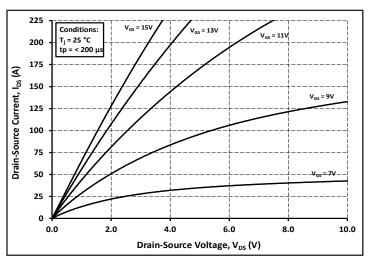
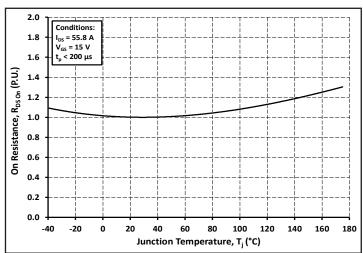



Figure 2. Output Characteristics T_J = 25 °C

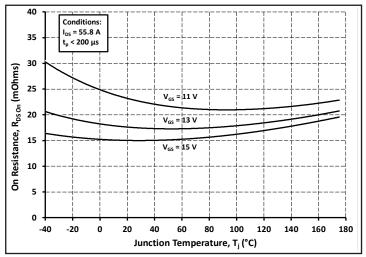
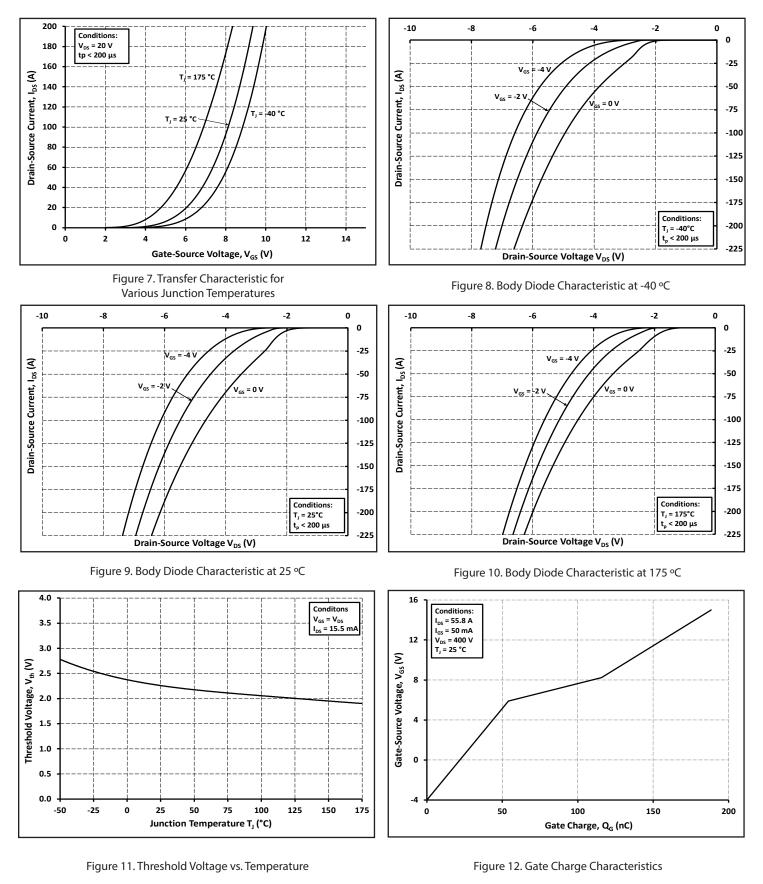



Figure 6. On-Resistance vs. Temperature For Various Gate Voltage

Typical Performance

© 2022 Wolfspeed, Inc. All rights reserved. Wolfspeed[®] and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. PATENT: https://www.wolfspeed.com/legal/patents The information in this document is subject to change without notice.

Typical Performance

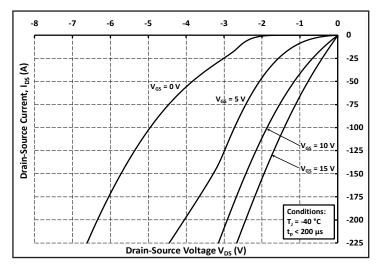


Figure 13. 3rd Quadrant Characteristic at -40 °C

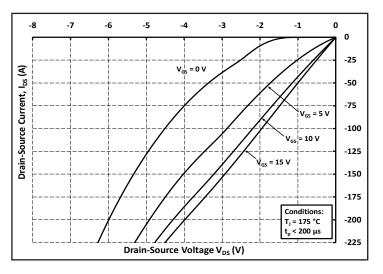
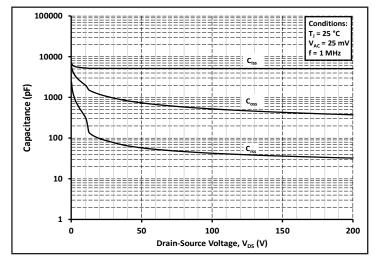
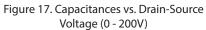




Figure 15. 3rd Quadrant Characteristic at 175 °C

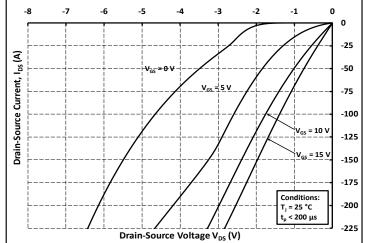


Figure 14. 3rd Quadrant Characteristic at 25 °C

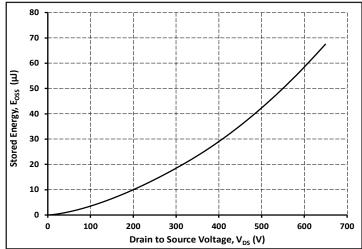


Figure 16. Output Capacitor Stored Energy

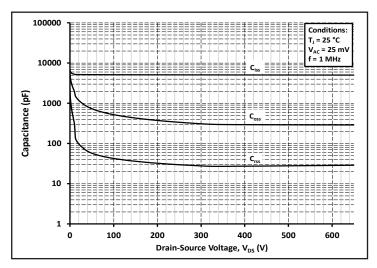
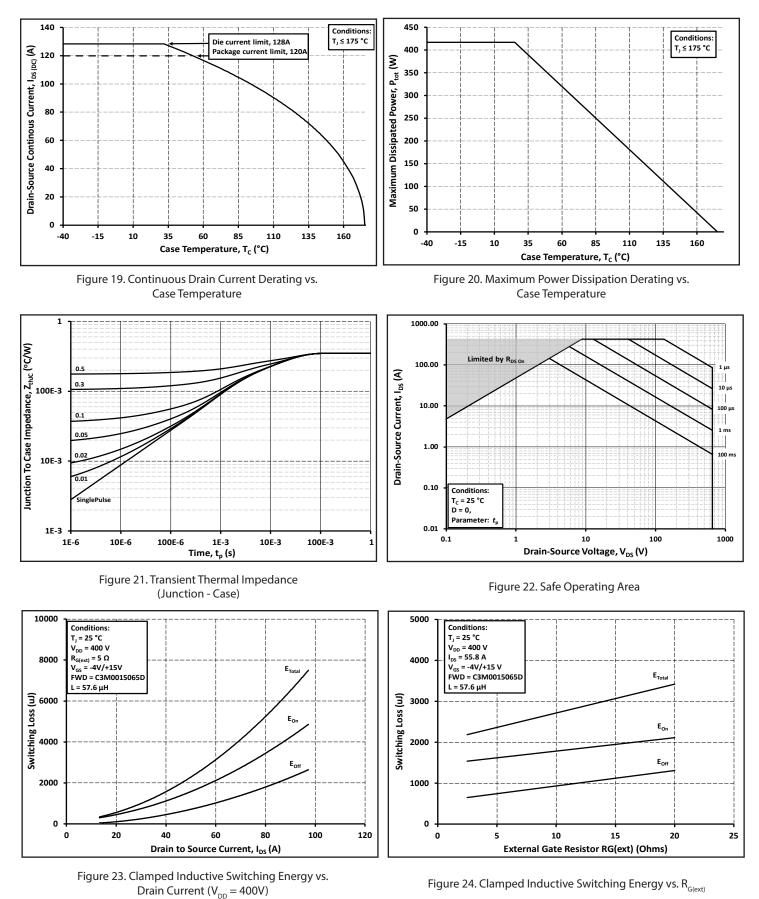



Figure 18. Capacitances vs. Drain-Source Voltage (0 - 650V)

Typical Performance

© 2022 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the

Wolfspeed logo is a trademark of Wolfspeed, Inc. PATENT: https://www.wolfspeed.com/legal/patents The information in this document is subject to change without notice.

Typical Performance

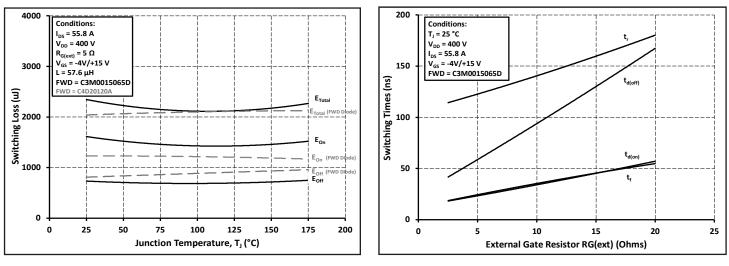


Figure 25. Clamped Inductive Switching Energy vs. Temperature

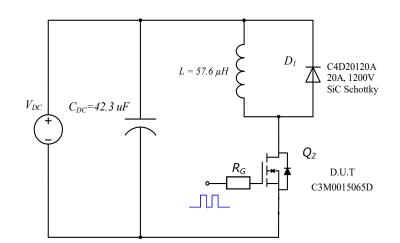


Figure 27. Clamped Inductive Switching Waveform Test Circuit

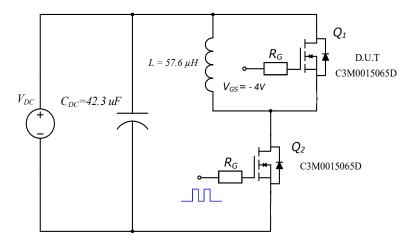
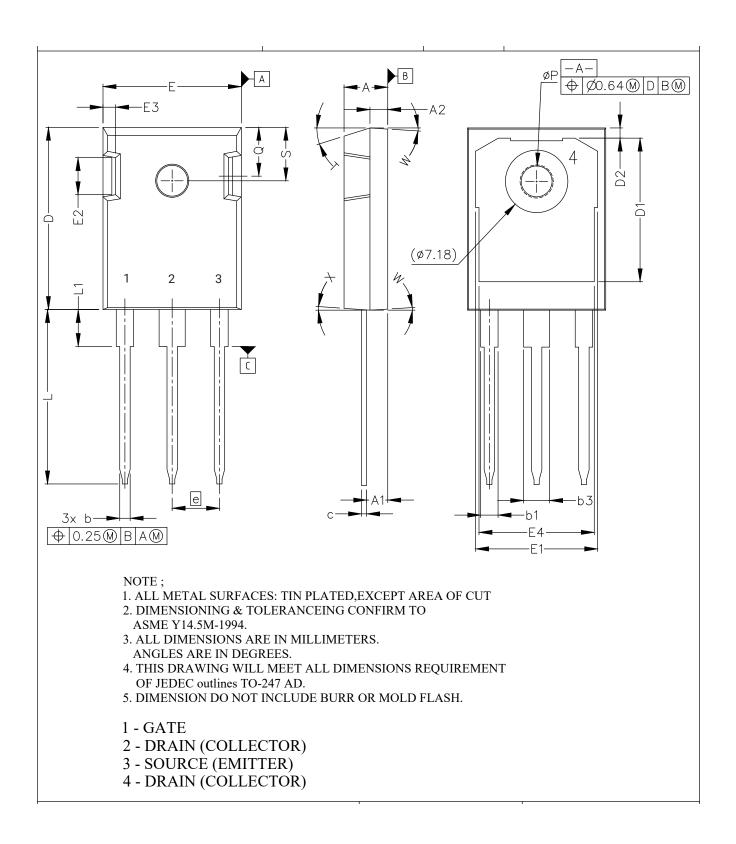
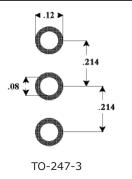



Figure 28. Body Diode Recovery Test Circuit

Package Dimensions

Package TO-247-3


Package Dimensions

Package TO-247-3

CVAL	MILLIM	ETERS	INC	HES		
SYM	MIN	MAX	MIN	MAX		
Α	4.83	5.21	.190	.205		
A1	2.29	2.54	.090	.100		
A2	1.91	2.16	.075	.085		
b	1.07	1.33	.042	.052		
b1	1.91	2.41	.075	.095		
b3	2.87	3.38	.113	.133		
с	0.55	0.68	.022	.027		
D	20.80	21.10	.819	.831		
D1	16.25	17.65	.640	.695		
D2	0.95	1.25	.037	.049		
E	15.75	16.13	.620	.635		
E1	13.10	14.15	.516	.557		
E2	3.68	5.10	.145	.201		
E3	1.00	1.90	.039	.075		
E4	12.38	13.43	.487	.529		
e	5.44 BSC	2	.214 E	BSC		
N	3		3			
L	19.81	20.32	.780	.800		
L1	4.10	4.40	.161	.173		
ØP	3.51	3.65	.138	.144		
Q	5.49	6.00	.216	.236		
S	6.04	6.30	.238	.248		
Т	17.5° REF.					
W	3.5° REF.					
Х	4° REF.					

11

Recommended Solder Pad Layout

Notes

This document and the information contained herein are subject to change without notice. Any such change shall be evidenced by the publication of an updated version of this document by Cree. No communication from any employee or agent of Cree or any third party shall effect an amendment or modification of this document. No responsibility is assumed by Cree for any infringement of patents or other rights of third parties which may result from use of the information contained herein. No license is granted by implication or otherwise under any patent or patent rights of Cree.

Not withstanding any application-specific information, guidance, assistance, or support that Cree may provide, the buyer of this product is solely responsible for determining the suitability of this product for the buyer's purposes, including without limitation for use in the applications identified in the next bullet point, and for the compliance of the buyers' products, including those that incorporate this product, with all applicable legal, regulatory, and safety-related requirements.

This product has not been designed or tested for use in, and is not intended for use in, applications in which failure of the product would reasonably be expected to cause death, personal injury, or property damage, including but not limited to equipment implanted into the human body, life-support machines, cardiac defibrillators, and similar emergency medical equipment, aircraft navigation, communication, and control systems, aircraft power and propulsion systems, air traffic control systems, and equipment used in the planning, construction, maintenance, or operation of nuclear facilities.

RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree representative or from the Product Documentation sections of www.cree.com.

REACh Compliance

REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact your Cree representative to ensure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request.

For more information please contact: 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 www.wolfspeed.com/power