MOSFET – Power, Single, P-Channel, SC-70

-8.0 V, -1.4 A

NTS2101P

Features

- Leading Trench Technology for Low R_{DS(on)} Extending Battery Life
- -1.8 V Rated for Low Voltage Gate Drive
- SC-70 Surface Mount for Small Footprint (2 x 2 mm)
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- High Side Load Switch
- Charging Circuit
- Single Cell Battery Applications such as Cell Phones, Digital Cameras, PDAs, etc.

MAXIMUM RATINGS (T_J = 25° C unless otherwise stated)

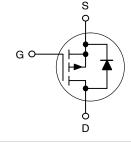
Parame	ter		Symbol	Value	Units			
Drain-to-Source Voltage			V _{DSS}	-8.0	V			
Gate-to-Source Voltage	te-to-Source Voltage			±8.0	V			
Continuous Drain	Steady T _A = 25° State		۱ _D	-1.4	А			
Current (Note 1)	State	$T_A = 70^{\circ}C$		-1.1				
	t ≤ 5 s	$T_A = 25^{\circ}C$		-1.5	А			
Power Dissipation (Note 1)	Steady State	$T_A = 25^{\circ}C$	PD	0.29	W			
	t≤5 s			0.33	W			
Pulsed Drain Current	tp =	= 10 μs	I _{DM}	-3.0	А			
Operating Junction and St	torage Tei	mperature	T _J , T _{STG}	–55 to 150	°C			
Source Current (Body Dio	de), Cont	inuous	۱ _S	-0.46	А			
Lead Temperature for Solo (1/8" from case for 10		rposes	ΤL	260	°C			

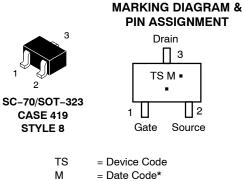
THERMAL RESISTANCE RATINGS

Parameter	Symbol	Мах	Units
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	430	°C/W
Junction-to-Ambient – t \leq 5 s (Note 1)	$R_{\theta JA}$	375	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces).




ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(on)} Typ	I _D Max
	65 mΩ @ –4.5 V	
-8.0 V	78 mΩ @ –2.5 V	–1.4 A
	117 mΩ @ –1.8 V	

⁼ Pb-Free Package

(Note: Microdot may be in either location)

*Date Code orientation may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping [†]
NTS2101PT1	SOT-323	3000/Tape & Reel
NTS2101PT1G	SOT-323 (Pb-Free)	3000/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

NTS2101P

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise stated)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
OFE CHARACTERISTICS						

OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D = -250 μ A		-8.0	-20		V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				-10		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = -6.4 V	$T_J = 25^{\circ}C$			-1.0	μΑ
		V _{DS} = -6.4 V	$T_J = 70^{\circ}C$			-5.0	1
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} = ±8.0 V				±100	nA

ON CHARACTERISTICS (Note 2)

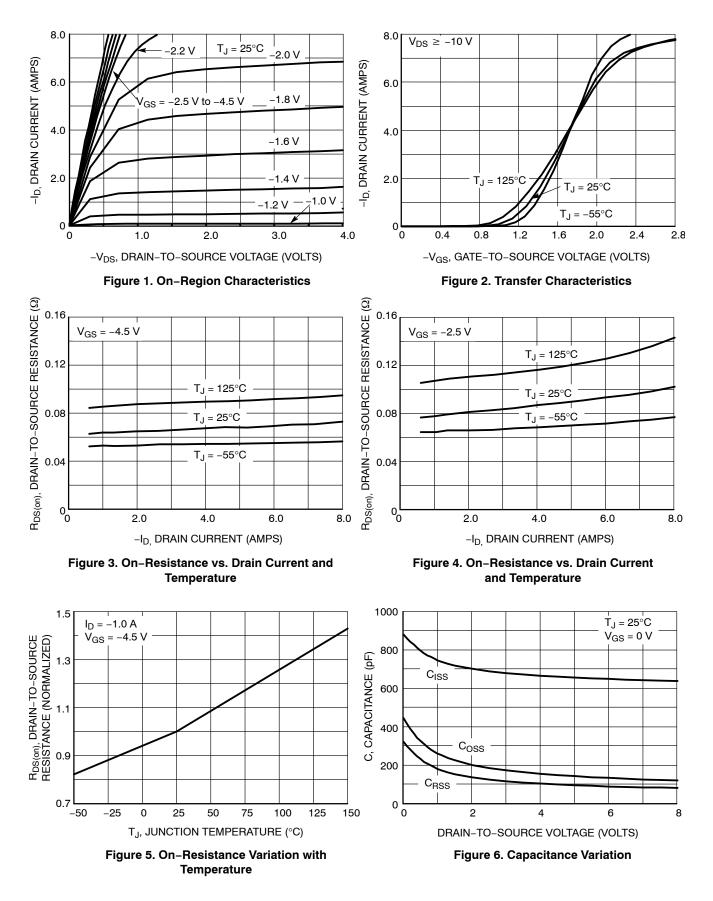
Gate Threshold Voltage	V _{GS(TH)}	V_{GS} = V_{DS} , I_D = -250 μ A	-0.45	-0.7	-1.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J			2.6		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V_{GS} = -4.5 V, I _D = -1.0 A		65	100	mΩ
		V_{GS} = -2.5 V, I _D = -0.5 A		78	140	
		V_{GS} = -1.8 V, I _D = -0.3 A		117	210	

CHARGES AND CAPACITANCES

Input Capacitance	C _{ISS}	$V_{GS} = 0 V, f = 1.0 MHz,$	640	pF
Output Capacitance	C _{OSS}	V _{DS} = -8.0 V	120	
Reverse Transfer Capacitance	C _{RSS}		82	
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = -5.0 \text{ V}, V_{DD} = -5.0 \text{ V},$ $I_{D} = -1.0 \text{ A}$	6.4	nC
Threshold Gate Charge	Q _{G(TH)}	$I_{\rm D} = -1.0 \rm A$	0.7	
Gate-to-Source Charge	Q _{GS}		1.0	
Gate-to-Drain Charge	Q _{GD}		1.5	1

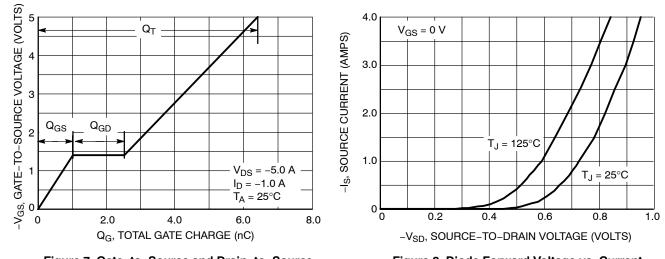
SWITCHING CHARACTERISTICS (Note 3)

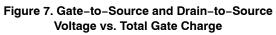
Turn-On Delay Time	t _{d(ON)}	$V_{GS} = -4.5$ V, $V_{DD} = -4.0$ V, $I_D = -1.0$ A, $R_G = 6.2$ Ω	6.2	ns
Rise Time	t _r	$I_{\rm D} = -1.0$ A, $\Pi_{\rm G} = 0.2$ S2	15	
Turn-Off Delay Time	t _{d(OFF)}		26	
Fall Time	t _f		18	


DRAIN-SOURCE DIODE CHARACTERISTICS

Forward Diode Voltage	V _{SD}	V _{GS} = 0 V, I _S = -0.3 A	$T_J = 25^{\circ}C$	-0.62	-1.2	V
		$I_{S} = -0.3 \text{ A}$	T _J = 125°C	-0.51		
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 V, dI_{SD}/dt$ $I_{S} = -1.$	t = 100 A/μs,	23.4		ns
Charge Time	Τ _a	I _S = –1.0 A		7.7		
Discharge Time	Т _b			15.7		
Reverse Recovery Charge	Q _{RR}			9.5		nC

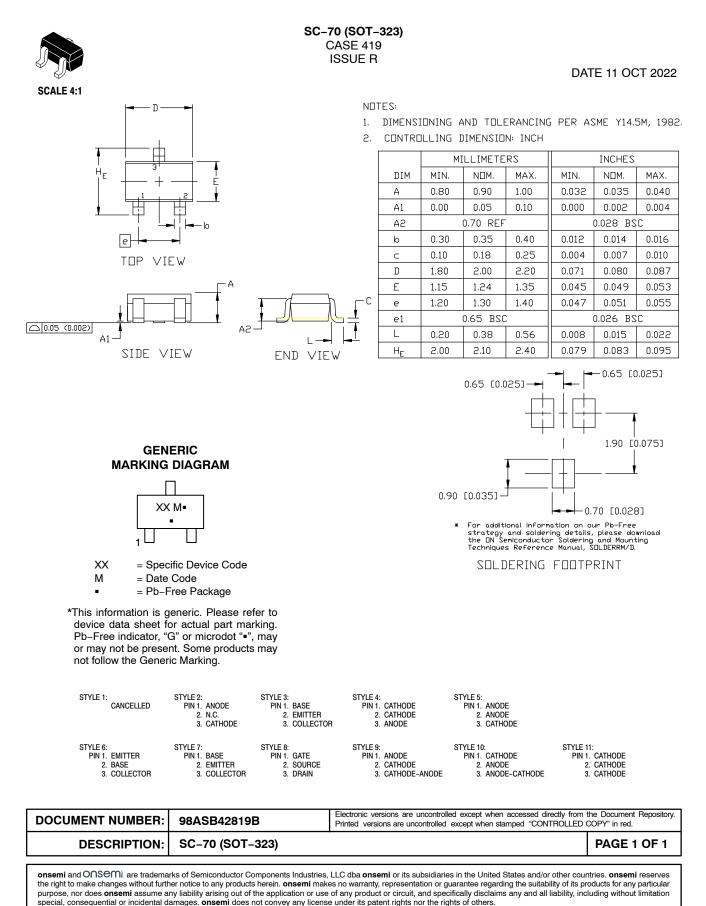
2. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%. 3. Switching characteristics are independent of operating junction temperatures.


NTS2101P


TYPICAL ELECTRICAL CHARACTERISTICS

NTS2101P

TYPICAL ELECTRICAL CHARACTERISTICS



MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

onsemi

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales