

TLE92104 APPKIT

About this document

Scope and purpose

This user manual is intended to help users using the TLE92104 APPKIT. This APPKIT is designed to evaluate hardware and software functionalities of the TLE92104.

This manual provides additional information about the board's layout, jumper settings, interface and how to use the GUI.

Intended audience

This document is for everyone who works with the TLE92104 APPKIT.

Abbreviations

Abbreviations

Chip select				
Current Sense Input x				
Current Sense Output				
Direct Current or Duty Cycle				
TLE92104 enable pin				
Gate high-side MOSFET for half-bridge 1-4				
Gate low-side MOSFET for half-bridge 1-4				
Ground				
Graphic User Interface				
Metal-Oxide-Semiconductor Field-Effect Transistor				
Not connected				
Overcurrent				
Overvoltage				
Pulse Width Modulation channel 1-3				
Serial Clock				
Serial Data In				
Serial Data Out				
Serial Periphery Interface				
Junction temperature				
Undervoltage				
Battery supply voltage				
Charge pump voltage				
Logic supply voltage				
Voltage drain of high-side MOSFET				
Battery supply voltage				
Half-bridge supply voltage				

Table of contents

Table of contents

	About this document	
	Abbreviations	2
	Table of contents	}
1	Concept4	ŀ
2	PCB layout	5
3	Connections6	3
4	Current Sense Output (CSO) jumper setting	3
5	SMD test points)
6	Bill of material)
7	TLE92104-232 pinout	
8 8.1 8.2 8.3	APPKIT set up	222
9 9.1 9.2 9.3 9.4	How to use the GUI (examples) 15 Example - PWM DC motor control using half-bridge 1 and 2 15 Example - Enabling Adaptive MOSFET Control 17 Example - Setting blanking, cross-current protection and drain-source monitoring 18 Example - Off-state diagnostics on half-bridge 1 and 2 19	; ; ;
10 10.1 10.2	Schematics and layout)))))
11	Revision history	3
	Disclaimer)

1 Concept

Figure 1 Block diagram

The TLE92104 APPKIT board provides a simple, easy-to-use tool to get familiar with Infineon's Multi MOSFET Driver TLE92104-232QX (TLE92104).

It contains the TLE92104 and a typical application circuit including 4 MOSFET half-bridges to drive up to 4 DC motors. The board is ready to be connected to a vehicle level power supply and is controlled over SPI.

All pins relevant to control the device can be accessed via the dedicated 8 × 2 header using the uIO-stick by hitex EMBEDDED TOOLS & SOLUTIONS (http://www.hitex.com/uIO).

The board is powered by the power connector and provides an active on-board reverse-polarity protection for fastest response time in case of reverse polarity with minimal power-loss during normal operation.

The board allows control of Phase 1-4 which can be used to control up to 4 motors independently that can be connected to OUT1-4 with the 2 screw terminal block motor connectors.

2 high-side shunts provide load current measurement and monitoring.

2 PCB layout

2 PCB layout

Infineon's TLE92104 is a Multi-MOSFET driver IC providing control of up to 8 n-channel MOSFETs. It supports up to 4 half-bridges for DC motor control applications such as automotive power seat control or other multi-motor applications (Datasheet of TLE92104-232QX).

0

HS1-4, LS1-4

Infineon's new OptiMOS[™]5 40 V product family in S3O8 package combines leading power MOSFET technology with 3.3 × 3.3 mm² leadless power package for very compact and robust automotive system solutions (Datasheet of IPZ40N04S5-3R1).

Reverse polarity protection

The active reverse polarity protection is based on the design documented in the "Reverse Polarity Protection for Embedded Power ICs" Application Note (Z864338247).

3 Connections

3 Connections

Several external connections are available on the TLE92104 APPKIT.

Figure 3

Connections

uIO-stick interface

The uIO-stick interface can be used to establish communication with the TLE92104 for programming of the SFRs and motor control. Setting up the interface can be found in APPKIT setup. The pinout is shown in Figure 4.

SDI	SDO	SCLK	CSN	N.C.	N.C.	N.C.	NC.
15	13	11	9	7	5	3	1
16	14	12	10	8	6	4	2
CSOx	EN	PWM3	PWM2	PWM1	N.C.	VDD	GND

Pin configuration of uIO-stick

3 Connections

Motor connectors

The screw terminal blocks can be used to connect DC motors in multiple topologies, some examples are shown in Figure 5.

Motor connectors and topologies

Power connector

The screw terminal blocks are used to connect the supply voltage to VBAT and ground to GND.

Power connector

SPI header

The 3 × 2 header can be used for SPI debugging. The pinout is shown in Figure 7.

SPI header pinout

4 Ourrent Sense Output (CSO) jumper setting

4 Current Sense Output (CSO) jumper setting

The Current Sense Output jumper selects which IC current sense output is connected to the uIO interface. The signal is routed to the uIO-stick interface pin 16. The pinout is shown in Figure 9.

Figure 8

Current Sense Output selection jumper

5 SMD test points

5 SMD test points

The TLE92104 APPKIT provides 9 SMD test points for evaluation and testing.

Figure 10 SMD test points

The TLE92104 APPKIT includes test points for:

- 2×GND
- 1 × VDH
- 2× GL1
- 2×GH1
- 1 × PWM1
- 1 × PWM3

6 Bill of material

6 Bill of material

Table 1	Bill of material

Value
100 pF
100 nF
220 nF
470 nF
22 nF
560 uF
1.50 nF
22 nF
BZX84C16LT1G
BAS21
20020316-G021B01LF
IPZ40N04S5-3R1
BCR141
IPZ40N04S5L-2P8
1 kR
47 kR
2R
10 R
2.20 R
100 kR
4.7 kR
47 kR
5 mR
15 kR
4.70 R
TLE92104-233QX
Header 3
connector_1_f
Header 8X2
Header 3X2A

7 TLE92104-232 pinout

7 TLE92104-232 pinout

The TLE92104 comes in a space saving $7 \times 7 \text{ mm}^2$ VQFN 48 pin package and is AEQ-Q100 qualified up to a junction temperature T_J of 150°C.

8 APPKIT set up

8 APPKIT set up

The APPKIT can be controlled with the uIO-stick which provides an interface between the PC GUI and the APPKIT's uIO connector is able to translate message between the APPKIT and the GUI available for PC.

8.1 Installing the GUI

The GUI is installed the Infineon Toolbox following the steps below:

- 1. Go to: www.infineon.com/toolbox.
- 2. Follow the instructions provided on the toolbox installation webpage. Also see the "Download Getting Started Infineon Toolbox Guide" link for additional user information.
- 3. Launch the Infineon Toolbox on your PC:
- 4. Select Manage Tools.
- 5. Search and install the tool: Config Wizard for Multi MOSFET Driver.
- 6. Start the Config Wizard for Multi MOSFET Driver.
- 7. Click on TLE92104 APPKIT.

8.2 Establishing communication

To establish communication between the GUI and the TLE92104 APPKIT you must:

- Connect the TLE92104 Appkit to a power-supply.
- Connect the uIO-stick to the TLE92104 APPKIT.
- Connect the uIO-stick to a USB port of your PC.
- Turn on the power supply.
- Start the GUI.

Note: The GUI requires the uIO-sticks'-firmware to be of version 2.21 or above.

The GUI can be used to update the uIO-stick firmware to the latest version:

- 1. Open the GUI.
- 2. Click Extras.
- 3. Click Update uIO
- 4. A window will pop up, click Yes.
- 5. Select uIO_v221.hex or above.
- 6. Click Open.

Note: It is recommended to remove and reinsert the uIO-stick to reboot the uIO hardware.

8 APPKIT setup

8.3 Using the GUI

The GUI consists of three panels/tabs:

- Motor Control
- Detailed Settings
- PWM and Diagnostic

		101			10		
SB Status: 🥥 Ch	ar Diagnostic/Status Registers	RES	SET	Bridge Driver active	•	DIAG	INO STIC READ
Motor 1	gs PWM and Diagnostic	Motor 1	-Motor 2		Motor 2		Current Sense Amp. (CSA)
	vs T	High Imped.		vs	High In	iped.	CSA Selection 1 2
		⊖ HS1/LS2 an	CSIN2		O HS31.	54 an	Current Vcsox = 0 V
SH1		O LS1/HS2 on	SH3		O LS3/H	i4 on	RSHUNT 4.70 mOhm
		O Break Low	- Charles -		0.0.1		
LS1	LS2		IS IS	LS4	U Break	.ow	Calc. Current: -21.28 A
		O Break High	H ^{LS}		O Break	-ow High	Calc. Current, -21.28 A
xt. PWM Generation via uIO-Stic	PWM Signal Mapping	O Break High PWM Mapping Error	Off. State Diagnose		O Break	ligh Itus	Calc. Current21.28 A
xt. PWM Generation via uIO.Sticl	PWM Signal Mapping	Break High PWM Mapping Error HB1	Off State Diagnose		General St O Break	igh tus Q TW	Calc. Current: -21.28 A
xt. PWM Generation via uIO.Stict PWW 1 Duty C. 60 % 2 PWW 2 Duty C. 50 % 2		Break High PWIA Mapping Error HB1 HB2	Off State Diagnose	з LS4 (с вт. нв2 нвз мв.	General St PWM3 PWM42 PWM42	High Atus O TW O OC2 O OC1	Calc. Current: -21.28 A CAL an CAL CSA2 on Clobal Status Calcada Status Fail Safe Thermal Error Neg. POR
int. PWM Generation via uIO-Sticl PWM 1 Duty C. 50 % 2 PWM 2 Duty C. 50 % 2 PWM 3 Duty C. 50 % 2		Break High PWM Mapping Error HB1 HB2 HB3	Off State Diagnose		General St PWM3 PWM3 PWM4 O TOREC O TOREC	atus 	Calc. Current: -21.28 A

Figure 12 TLE92104 APPKIT GUI

Additionally the status of the USB connection, bridge driver and diagnostic read is shown on the top of the display:

Everything is up and running.

There seems to be a problem.

The GUI provides buttons to Clear Diagnosis, to Clear Status Registers and to RESET the device.

Motor Control

In this panel it is possible to:

- Configure the PWM channels 1-3 with 0-100% DC and up to 25 kHz which are generated by the uIO-stick.
- Map the PWM to half-bridges 1-4.
- Set the HB state in either cascade or H bridge configuration.
- Select and disable the CSAs and see the current VCSOx output.
- See the General Status register and Gobal Status byte.
- Perform off-state diagnosis.

8 APPKIT setup

Detailed Settings

In this panel it is possible to:

- Enable and configure the charge pump and set OV and UV thresholds.
- Configure passive mode settings.
- Configure the CSAs and enable OC shutdown.
- Configure gate driver timings (cross-current-protection and blank time), hold and static currents.
- Configure DS overvoltage.
- Map gate drive timings and static currents to half-bridge.

PWM and Diagnostic

In this panel it is possible to:

- Enable adaptive MOSFET control, set filter, enable generator mode detection or deep adaption.
- Set dis/charge currents for active and free-wheeling MOSFET, configure adaptive currents, set target turnon delay and pre dis/charge time for PWM channel 1-3.
- Read PWM switching characteristics.
- Check Gobal Status Byte, General Status register, PWM mapping error and drain-source overvoltage.

9 How to use the GUI (examples)

9.1 Example - PWM DC motor control using half-bridge 1 and 2

In this example a DC motor will be controlled by half-bridge 1 and 2. The half-bridge 1 output will be configured for 20 kHz PWM with 50% DC and the load current can be monitored using CSA1.

Setup

Before you configure the GUI you will need to:

- Connect a DC motor to OUT1 and OUT2.
- Establish communication between the Appkit and the GUI as described in Establishing communication.

Configure the GUI

Figure 13 Control your first DC motor

To start the motor you will need to:

- 1. Set PWM1 to 20 kHz and 50% DC (default values).
- 2. Map PWM 1 to HB1.
- 3. CSA1/2 are on and CSA1 is selected by default. The PCB on-board jumper should connect CSO1 and CSO1/2 as described in Ourrent Sense Output (CSO) jumper setting. For correct current sensing the value of RSHUNT should be set to $5 \text{ m}\Omega$ to match the PCB hardware.
- 4. Set Motor 1 to HS1/LS2 on.

The motor should start running with 20 kHz HS PWM at 50%.

The output of CSO1 can be seen in the CSA window (3).

TLE92104 APPKIT

9 How to use the GUI (examples)

The load current can be calculated accordingly:

$$I_{Load} = \frac{V_{CSOx} - V_{REF}}{R_{SHUNT} \times GAIN}$$

CSA V _{REF}						
	Unidirection	onal mode	Bidirectional mode			
	VDD/5		VDD/2			
CSA GAIN						
GENCTRL1.CSAGx			GAIN			
b00			10			
b01			20			
b10			40			
b11			80			
	CSA V _{REF}	CSA V _{REF} Unidirection CSA GAIN CSA GAIN GENCTRL1.CSAGx b00 b01 b01 b10 b11	CSA V _{REF} Unidirectional mode VDD/5 CSA GAIN GENCTRL1.CSAGx b00 b01 b01 b10 b11 l			

The VCSO output depends on the CSA configuration (Uni- or Bidirectional) and the Gain setting. The CSA can be configured as follows:

- 1. Go to Detailed Settings.
- 2. Set CSA Level, Gain, Unidirectional Threshold, Bidirectional Threshold and Overcurrent Filter (overcurrent detection filter time). (See datasheet for overcurrent monitoring and protection details).

	and street stores	NCSCI	Bridge Driver active		DIAGNOSTIC READ	
lotor Control Detailed Settings	Diagnostic					
Interface Interface Interface Interface	Diagnostic Value Invert than 100pf I tigh side Shure 10 V/V Wesp > 1/2 V/D G us	2	Structure V Haf Bridge 1 Drain-source OVPrinesheld Calculation Drain-source Overoitage Thresheld CCP and Blank Time Selection Static ChargeOfficialize Carrient Selection CCP = Cross-Current Protection > Haf Bridge 2 Haf Bridge 3 > Haf Bridge 4	Value Vth = VCSIN1 - VSH1 0.20 V CCP Time 1 / Blank Time Current 1		

Figure 14

Γ

Configure CSA and overcurrent detection

9.2 Example - Enabling Adaptive MOSFET Control

One of the main features of the TLE92104 is Adaptive MOSFET Control. It can easily be configured as shown below. See the datasheet for a detailed description of operation and configuration options.

- 1. Go to PWM and Diagnostic.
- 2. Configure Adaptive Gate Control settings. Here features like deep adaption or generator mode detection can be enabled.
- 3. Set the desired turn-on/off delay and MOSFET gate drive characteristics.

Motor Control Detailed Settings PWM and Diagnostic 1						
ructure Value Adaption of Pre-Charge/Dischargs Current 1 Step Self-adaptive Pre-Charge/Discharge Current pre-discharge activated		PWM Switching Cha	aracteristics			
Adaptave Gale Control Filter Selection nona Generator model shalled Deep Adaptation enabled PVM Charget/Decharge Current Ture of Dolay Value and Time Ture-off Dalay Value and Time PVM Channel 2 PVM Channel 3	3	Cent PWM Ch.1 625 PWM Ch.2 625 PWM Ch.3 625 Global Status Global Status Fail Safe Thermal Error Neg. FOR Supply Error VOS Error Overcurrent SPI Error	Ig. IDON Config. IDOFF ns 625 ns ns 625 ns 625 ns 625 ns 625 ns 625 ns 6 PWM3 6 PWM43 6 PWM41 6 TDREG3 6 TDRES1 6 TW 6 OC1 7050V VSUV 6 CPUV	EIT.TDON EIT.TT Ons Ons Ons Ons Ons Ons PWM Mapping EI HB4 HB4 HB3 HB2 HB1	ons ons ons ons ons ons ons ons ons ons	EIR.TFALL 0 ns 0 ns 0 ns 1 s 1 s 4 HS4 HS3 HS3 HS2 HS2 HS1 HS1

Figure 15

Enable Adaptive MOSFET Control

9.3

Example - Setting blanking, cross-current protection and drainsource monitoring

The TLE92014 has several active protection features cross-current protection and VDS overvoltage protection.

- 1. Go to Detailed Settings.
- 2. Configure Active CCP and FW CCP and make sure it is mapped to the correct half-bridge.
- 3. Configure Active Blank Time and FW Blank Time and make sure it is mapped to the correct half-bridge.
- 4. Configure Drain-source Monitoring Filter Time and set the Drain-source Overvoltage Threshold for the addressed half-bridge.

Figure 16

TCCP, TBLANK and VDS monitoring

9.4 Example - Off-state diagnostics on half-bridge 1 and 2

Off-state diagnostics can be used to detect short to battery/ground or open wire without activating the motor.

- Note: The Drain-Source Overvoltage threshold (as shown in Example Setting blanking, cross-current protection and drain-source monitoring.) for the addressed half-bridge must be set to 2.0 V for proper detection.
- 1. Go to Motor Control.
- 2. Set Motor 1 to High Imped.
- 3. Enable pull-down current sources for HB1 and HB2

Refer to the Off-state diagnostics Application Note for a detailed description of diagnosis operation.

Figure 17

Off-state diagnostics

10 Schematics and layout

10.1 Schematics

Figure 18

Schematic page 1

Figure 19 Schematic page 2

Figure 20 Sc

Schematic page 3

Figure 21 Schematic page 4

Figure 22

Schematic page 5

Figure 23

Schematic page 6

10.2 Layout

Figure 24

Top layer

Layer 3

Bottom layer

11 Revision history

11 Revision history

Revision	Date	Changes
v1.0	2020-12-28	Initial creation.

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2020-12-28 Published by Infineon Technologies AG 81726 Munich, Germany

© 2020 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document? Email: erratum@infineon.com

Document reference IFXnyd1600680666936

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.