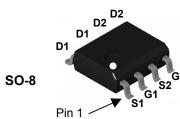
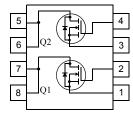
FAIRCHILD

SEMICONDUCTOR®

FDS8984 N-Channel PowerTrench[®] MOSFET

30V, 7A, 23m Ω


General Description


This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low $r_{\text{DS}(\text{ON})}$ and fast switching speed.

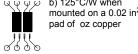
Features

- Max $r_{DS(on)}$ = 23mΩ, V_{GS} = 10V, I_D = 7A
- Max $r_{DS(on)}$ = 30mΩ, V_{GS} = 4.5V, I_D = 6A
- Low gate charge
- 100% R_G tested
- RoHS Compliant

MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V _{DS}	Drain to Source Voltage		30	V
V _{GS}	Gate to Source Voltage		±20	V
	Drain Current Continuous	(Note 1a)	7	А
D	Pulsed		30	А
E _{AS}	Single Pulse Avalache Energy	(Note 2)	32	mJ
D	Power Dissipation for Single Operation		1.6	W
P _D	Derate above 25°C		13	mW/°C
T _J , T _{STG}	Operating and Storage Temperature		-55 to 150	°C
Therma	I Characteristics			
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	78	°C/W
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction-to-Case	(Note 1)	40	°C/W

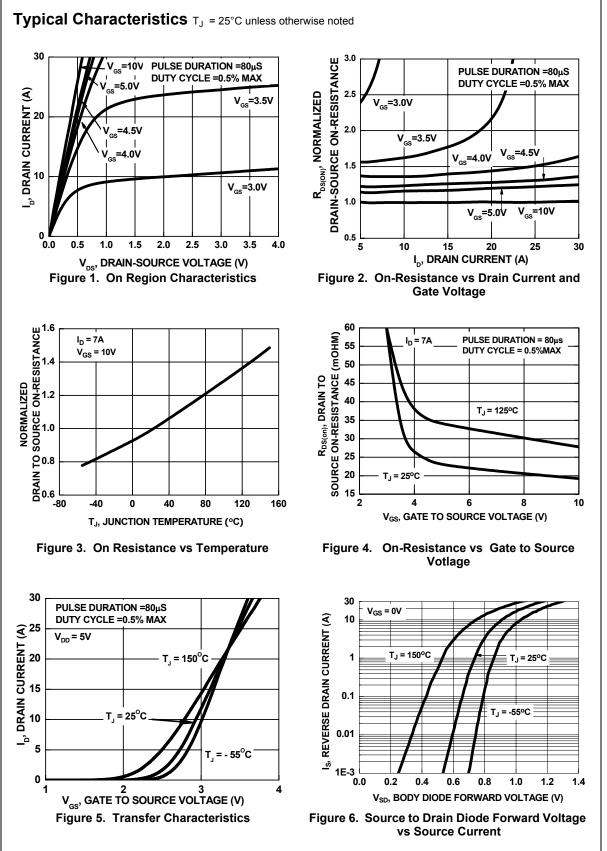
Package Marking and Ordering Information

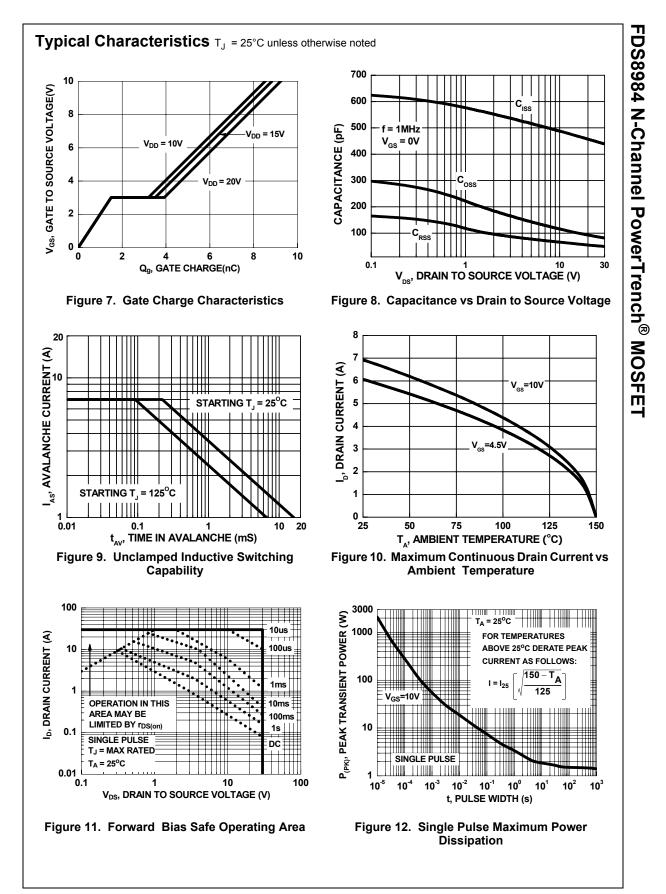

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDS8984	FDS8984	SO-8	330mm	12mm	2500 units

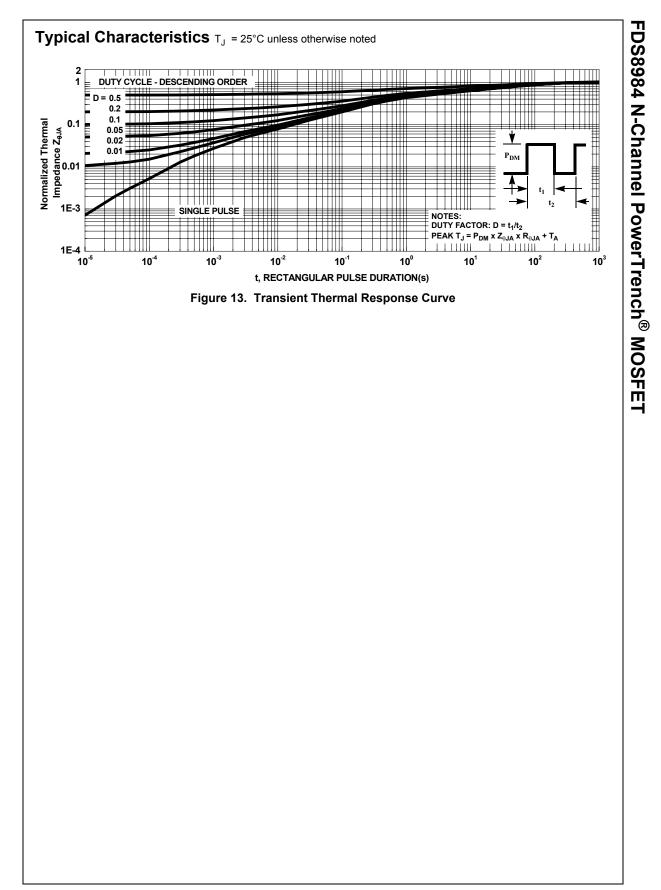
FDS8984 N-Channel PowerTrench[®] MOSFET

May 2007

	Parameter	Test Conditions	Min	Тур	Мах	Units	
Off Chara	octeristics						
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = 250μA, V _{GS} = 0V	30			V	
ΔBV _{DSS} ΔTJ	Breakdown Voltage Temperature Coefficient	$I_D = 250 \mu A$, referenced to $25^{\circ}C$		23		mV/°C	
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24V$ $V_{GS} = 0V$ $T_{J} = 125^{\circ}C$			1 250	μA	
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20 V, V_{DS} = 0 V$			±100	nA	
)n Chara	cteristics (Note 3)						
	Gate to Source Threshold Voltage	V - V I - 250uA	1.2	1.7	2.5	V	
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250\mu A$ $I_D = 250\mu A$, referenced to	1.2	1.7	2.5		
$\frac{\Delta V_{GS(th)}}{\Delta T_{.l}}$	Temperature Coefficient	1 _D = 250μA, referenced to 25°C		- 4.3		mV/°C	
		V _{GS} = 10V, I _D = 7A		19	23	_	
	Drain to Source On Resistance	$V_{GS} = 4.5V, I_D = 6A$		24	30	mΩ	
DS(on)		$V_{GS} = 10V, I_D = 7A,$ T _J = 125°C		26	32		
Dynamic C _{iss} C _{oss}	Characteristics Input Capacitance Output Capacitance	V _{DS} = 15V, V _{GS} = 0V,		475 100	635 135	pF pF	
C _{rss}	Reverse Transfer Capacitance	f = 1.0MHz		65	100	pF	
R _G	Gate Resistance	f = 1MHz		0.9	1.6	Ω	
	g Characteristics (Note 3)			5	10	ns	
t _{d(on)}	Turn-On Delay Time			5	10 18	ns	
d(on) r	Turn-On Delay Time Rise Time	$V_{DD} = 15V, I_D = 7A$ $V_{CS} = 10V, R_{CS} = 33\Omega$		9	18	ns	
d(on) r d(off)	Turn-On Delay Time Rise Time Turn-Off Delay Time	V _{DD} = 15V, I _D = 7A V _{GS} = 10V, R _{GS} = 33Ω		9 42	18 68	ns ns	
t _{d(on)} t _r t _{d(off)} t _f	Turn-On Delay Time Rise Time	V_{GS}^{-} = 10V, R_{GS}^{-} = 33Ω V_{DS}^{-} = 15V, V_{GS}^{-} = 10V,		9	18	ns	
t _{d(on)} t _r t _{d(off)} t _f Q _g	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time	V_{GS}^{-} = 10V, R_{GS}^{-} = 33Ω V_{DS}^{-} = 15V, V_{GS}^{-} = 10V, I_{D}^{-} = 7A		9 42 21	18 68 34	ns ns ns	
td(on) tr td(off) tf Qg Qg	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge	V_{GS}^{-} = 10V, R_{GS}^{-} = 33Ω V_{DS}^{-} = 15V, V_{GS}^{-} = 10V,		9 42 21 9.2	18 68 34 13	ns ns ns nC	
t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gs}	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge	$V_{GS} = 10V, R_{GS} = 33\Omega$ $V_{DS} = 15V, V_{GS} = 10V,$ $I_D = 7A$ $V_{DS} = 15V, V_{GS} = 5V,$		9 42 21 9.2 5.0	18 68 34 13	ns ns nC nC	
t _{d(on)} t _r t _{d(off)} t _f Q _g Q _g Q _{gs} Q _{gd}	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge Gate to Source Gate Charge	$V_{GS} = 10V, R_{GS} = 33\Omega$ $V_{DS} = 15V, V_{GS} = 10V,$ $I_D = 7A$ $V_{DS} = 15V, V_{GS} = 5V,$		9 42 21 9.2 5.0 1.5	18 68 34 13	ns ns nC nC nC	
t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gs} Q _{gd} Drain-So	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge Gate to Source Gate Charge Gate to Drain "Miller" Charge	$V_{GS}^{-} = 10V, R_{GS}^{-} = 33\Omega$ $V_{DS}^{-} = 15V, V_{GS}^{-} = 10V,$ $I_D^{-} = 7A$ $V_{DS}^{-} = 15V, V_{GS}^{-} = 5V,$ $I_D^{-} = 7A$ $I_{SD}^{-} = 7A$		9 42 21 9.2 5.0 1.5 2.0 0.9	18 68 34 13 7 1.25	ns ns nC nC nC nC v	
t _{d(on)} t _r Q _g Q _g Q _{gs} Q _{gd} Drain-So t	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate to Source Gate Charge Gate to Drain "Miller" Charge urce Diode Characteristics Source to Drain Diode Voltage	$V_{GS} = 10V, R_{GS} = 33\Omega$ $V_{DS} = 15V, V_{GS} = 10V,$ $I_{D} = 7A$ $V_{DS} = 15V, V_{GS} = 5V,$ $I_{D} = 7A$ $I_{SD} = 7A$ $I_{SD} = 2.1A$		9 42 21 9.2 5.0 1.5 2.0	18 68 34 13 7 1.25 1.0	ns ns nC nC nC nC v V	
t _{d(on)} t _r t _{d(off)} t _f Q _g Q _g Q _{gs} Q _{gd}	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge Gate to Source Gate Charge Gate to Drain "Miller" Charge urce Diode Characteristics	$V_{GS}^{-} = 10V, R_{GS}^{-} = 33\Omega$ $V_{DS}^{-} = 15V, V_{GS}^{-} = 10V,$ $I_D^{-} = 7A$ $V_{DS}^{-} = 15V, V_{GS}^{-} = 5V,$ $I_D^{-} = 7A$ $I_{SD}^{-} = 7A$		9 42 21 9.2 5.0 1.5 2.0 0.9	18 68 34 13 7 1.25	ns ns nC nC nC nC v	




~~~~


Scale 1 : 1 on letter size paper

2: Starting  $T_J$  = 25°C, L = 1mH,  $I_{AS}$  = 8A,  $V_{DD}$  = 27V,  $V_{GS}$  = 10V. 3: Pulse Test:Pulse Width <300 $\mu$ S, Duty Cycle <2%.









# AIRCHILD

SEMICONDUCTOR

#### TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

| ACEx®                               | HiSeC™                         |
|-------------------------------------|--------------------------------|
| Across the board. Around the world™ | i-Lo™                          |
| ActiveArray™                        | ImpliedDisconnect <sup>™</sup> |
| Bottomless™                         | IntelliMAX™                    |
| Build it Now™                       | ISOPLANAR™                     |
| CoolFET™                            | MICROCOUPLER™                  |
| CorePLUS™                           | MicroPak™                      |
| CROSSVOLT™                          | MICROWIRE™                     |
| CTL™                                | Motion-SPM™                    |
| Current Transfer Logic™             | MSX™                           |
| DOME™                               | MSXPro™                        |
| E <sup>2</sup> CMOS™                | OCX™                           |
| EcoSPARK <sup>®</sup>               | OCXPro™                        |
| EnSigna™                            | OPTOLOGIC®                     |
| FACT Quiet Series™                  | OPTOPLANAR <sup>®</sup>        |
| FACT®                               | PACMAN™                        |
| FAST <sup>®</sup>                   | PDP-SPM™                       |
| FASTr™                              | POP™                           |
| FPS™                                | Power220®                      |
| FRFET <sup>®</sup>                  | Power247 <sup>®</sup>          |
| GlobalOptoisolator™                 | PowerEdge™                     |
| GTO™                                | PowerSaver™                    |
|                                     |                                |

Power-SPM™ PowerTrench<sup>®</sup> Programmable Active Droop™ QFET® QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ RapidConnect<sup>™</sup> ScalarPump™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TCM™ The Power Franchise<sup>®</sup> TM

TinyBuck™ TinyLogic® TINYOPTO™ TinyPower™ TinyWire™ TruTranslation<sup>™</sup> µSerDes™ UHC® UniFET™ VCX™ Wire™

2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

#### DISCLAIMER

DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

TinyBoost™

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.

PRODUCT STATUS DEFINITIONS Definition of Terms

| Datasheet Identification | Product Status         | Definition                                                                                                                                                                                                        |
|--------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Advance Information      | Formative or In Design | This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.                                                                                |
| Preliminary              | First Production       | This datasheet contains preliminary data; supplementary data will<br>be published at a later date. Fairchild Semiconductor reserves the<br>right to make changes at any time without notice to improve<br>design. |
| No Identification Needed | Full Production        | This datasheet contains final specifications. Fairchild<br>Semiconductor reserves the right to make changes at any time<br>without notice to improve design.                                                      |
| Obsolete                 | Not In Production      | This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.                                               |

Rev. 127