SCBS223E - OCTOBER 1992 - REVISED MAY 1997

- Members of the Texas Instruments Widebus™ Family
- State-of-the-Art EPIC-IIB™ BiCMOS Design Significantly Reduces Power Dissipation
- Distributed V_{CC} and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Lavout
- High-Impedance State During Power Up and Power Down
- High-Drive Outputs (–32-mA I_{OH}, 64-mA I_{OL})
- Package Options Include Plastic Thin Shrink Small-Outline (DGG), 300-mil Shrink Small-Outline (DL) Packages and 380-mil Fine-Pitch Ceramic Flat (WD) Package Using 25-mil Center-to-Center Spacings

description

The 'ABT16843 18-bit bus-interface D-type latches are designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The 'ABT16843 can be used as two 9-bit latches or one 18-bit latch. The 18 latches are transparent D-type latches. The device provides true data at its outputs.

A buffered output-enable (\overline{OE}) input can be used to place the nine outputs in either a normal logic state (high or low logic levels) or a high-impedance state. The outputs are in the high-impedance state during power up and power down. The outputs remain in the high-impedance state while the device is powered down. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without need for interface or pullup components.

SN54ABT16843 . . . WD PACKAGE SN74ABT16843 . . . DGG OR DL PACKAGE (TOP VIEW)

			_		
1CLR	d 1	\cup	56	b	1LE
1OE	2		55	þ	1PRE
1Q1	3		54	þ	1D1
GND	4		53	þ	GND
1Q2	5		52	1	1D2
1Q3	6		51	1	1D3
V_{CC}	7		50		V_{CC}
1Q4	8		49	0	1D4
1Q5	9		48	0	1D5
1Q6	10		47	1	1D6
GND	11		46	0	GND
1Q7	12		45		1D7
1Q8	13		44	_	1D8
1Q9	14		43	0	1D9
2Q1	15		42	D	2D1
2Q2	16		41	P	2D2
- 00	17		40	P	2D3
GND	18		39	P	GND
2Q4	19		38	P	2D4
2Q5	20		37	Į	2D5
2Q6	21		36	Į	2D6
V_{CC}	22		35	ħ	V_{CC}
2Q7	23		34	ħ	2D7
2Q8	24			Į	2D8
GND	25		32	Ę	GND
2Q9	26		31	F	2D9
20E	27		30	Į	2PRE
2CLR	28		29	Ц	2LE

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

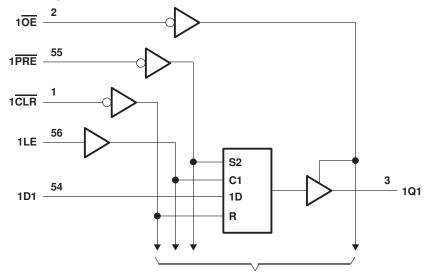
Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.

SCBS223E - OCTOBER 1992 - REVISED MAY 1997

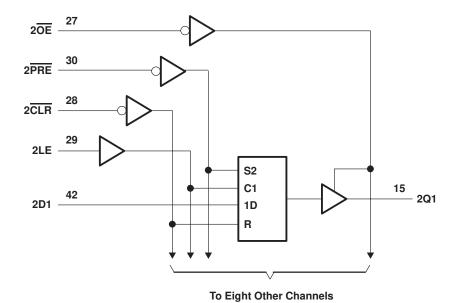
description (continued)

OE does not affect the internal operations of the latch. Previously stored data can be retained or new data can be entered while the outputs are in the high-impedance state.

When V_{CC} is between 0 and 2.1 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 2.1 V, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.


The SN54ABT16843 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74ABT16843 is characterized for operation from –40°C to 85°C.

FUNCTION TABLE (each 9-bit latch)


	(oddii o bit idtoii)								
	INPUTS								
PRE	CLR	ŌĒ	LE	D	Q				
L	Х	L	X	Χ	Н				
Н	L	L	X	Χ	L				
Н	Н	L	Н	L	L				
Н	Н	L	Н	Н	Н				
Н	Н	L	L	Χ	Q ₀				
Х	Χ	Н	Χ	Χ	Z				

logic diagram (positive logic)

To Eight Other Channels

SCBS223E - OCTOBER 1992 - REVISED MAY 1997

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	-0.5 V to 7 V
Input voltage range, V _I (see Note 1)	$-0.5\ V$ to $7\ V$
Voltage range applied to any output in the high or power-off state, VO	. $-0.5\ V$ to 5.5 V
Current into any output in the low state, IO: SN54ABT16843	96 mA
SN74ABT16843	128 mA
Input clamp current, $I_{IK}(V_I < 0)$	–18 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Package thermal impedance, θ _{JA} (see Note 2): DGG package	81°C/W
DL package	74°C/W
Storage temperature range, T _{sto}	-65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions (see Note 3)

			SN54AB1	16843	SN74AB1	Γ16843	UNIT
			MIN	MAX	MIN	MAX	UNIT
VCC	Supply voltage		4.5	5.5	4.5	5.5	V
VIH	High-level input voltage		2	Ż	2		V
V _{IL}	Low-level input voltage			0.8		0.8	V
VI	Input voltage			Vcc	0	VCC	V
loh	High-level output current		7	-24		-32	mA
loL	Low-level output current		3	48		64	mA
Δt/Δν	Input transition rise or fall rate	Outputs enabled	20/	10		10	ns/V
Δt/ΔV _{CC}	Power-up ramp rate		200		200		μs/V
TA	Operating free-air temperature		-55	125	-40	85	°C

NOTE 3: Unused inputs must be held high or low to prevent them from floating.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

^{2.} The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51.

SCBS223E - OCTOBER 1992 - REVISED MAY 1997

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		T,	Δ = 25°C	;	SN54ABT16843		SN74ABT16843		UNIT
PAF	AMETER	1231 0	ONDITIONS	MIN	TYP†	MAX	MIN	MAX	MIN	MAX	UNIT
VIK		$V_{CC} = 4.5 \text{ V},$	I _I = -18 mA			-1.2		-1.2		-1.2	V
		$V_{CC} = 4.5 \text{ V},$	$I_{OH} = -3 \text{ mA}$	2.5			2.5		2.5		
VOH		$V_{CC} = 5 V$,	I _{OH} = –3 mA	3			3		3		V
VOH		V _{CC} = 4.5 V	I _{OH} = -24 mA	2			2				V
		VCC = 4.5 V	$I_{OH} = -32 \text{ mA}$	2*					2		
VOL		V _{CC} = 4.5 V	I _{OL} = 48 mA			0.55		0.55			٧
VOL		VCC = 4.5 V	$I_{OL} = 64 \text{ mA}$			0.55*				0.55	V
V_{hys}					100						mV
lį		$V_{CC} = 0$ to 5.5 $V_{I} = V_{CC}$ or GN				±1		±1		±1	μΑ
l _{OZPU} ‡		$V_{CC} = 0 \text{ to } 2.1 \text{ V}_{O} = 0.5 \text{ V to } 2.1 \text{ V}_{O} = 0.5 \text{ V}_{$	V, 7 V, OE = X			±50		±50		±50	μΑ
l _{OZPD} ‡		$V_{CC} = 2.1 \text{ V to}$ $V_{O} = 0.5 \text{ V to } 2.1 \text{ V}$	0, 7 V, OE = X			±50	4	±50		±50	μΑ
lozh		V _{CC} = 2.1 V to V _O = 2.7 V, OE				10	3008	10		10	μΑ
lozL		$V_{CC} = 2.1 \text{ V} \text{ to}$ $V_{O} = 0.5 \text{ V}, \overline{\text{OE}}$	5.5 V, ≥ 2 V			-10	Q'	-10		-10	μΑ
loff		$V_{CC} = 0$,	V_I or $V_O \le 4.5 \text{ V}$			±100				±100	μΑ
ICEX C	Outputs high	$V_{CC} = 5.5 \text{ V},$	V _O = 5.5 V			50		50		50	μΑ
IO§		$V_{CC} = 5.5 \text{ V},$	V _O = 2.5 V	-50	-100	-180	-50	-180	-50	-180	mA
С	Outputs high	.,				0.5		0.5		0.5	
Icc C	Outputs low	$V_{CC} = 5.5 \text{ V, I}_{O}$ $V_{I} = V_{CC} \text{ or GN}$				85		85		85	mA
C	Outputs disabled					0.5		0.5		0.5	
ΔICC¶		V _{CC} = 5.5 V, Or Other inputs at V	ne input at 3.4 V, V _{CC} or GND			1.5		1.5		1.5	mA
Ci		V _I = 2.5 V or 0.5	5 V		3.5						рF
Co		$V_0 = 2.5 \text{ V or } 0.00$.5 V		8						pF

^{*} On products compliant to MIL-PRF-38535, this parameter does not apply.

[†] All typical values are at $V_{CC} = 5 \text{ V}$.

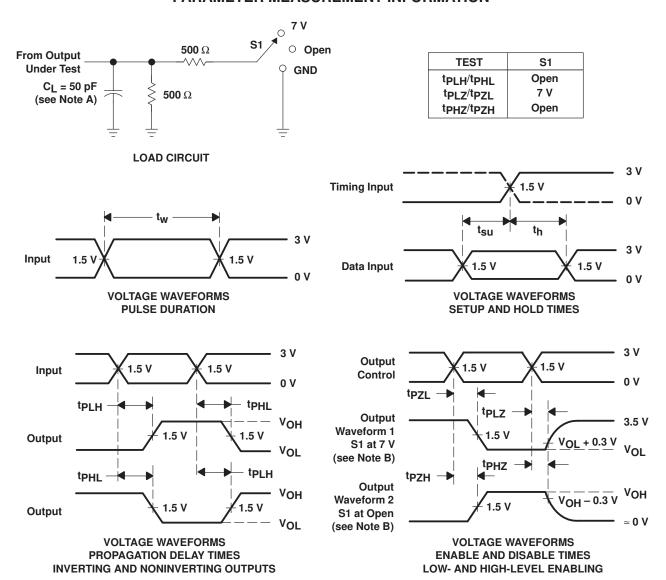
[‡] This parameter is characterized, but not production tested.

[§] Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.

SCBS223E - OCTOBER 1992 - REVISED MAY 1997

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)


			V _{CC} = 5 V, T _A = 25°C		SN54ABT16843		SN74ABT16843		UNIT	
			MIN	MAX	MIN	MAX	MIN	MAX		
		CLR low	3.3		3.3	À	3.3			
t _W	Pulse duration	PRE low	3.3		3.3	Z	3.3		ns	
		LE high	3.3		3.3	2	3.3			
	Setup time, data before LE↓	High	0.9		0.9	,	0.9		ns	
t _{Su} Setup time, o	Setup time, data before LEV	Low	0.6		0.6		0.6		115	
t. Hold time, data ofter LE	Hold time, data after LE↓	High	1.7		01.7		1.7		ns	
^t h	Hold liftle, data after LLV	Low	1.8		1.8		1.8		115	

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, C_L = 50 pF (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	1 1 1 2 2 3			5 V, 5°C SN54ABT1		SN74ABT16843		UNIT
	(INFOT)	(001701)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
^t PLH	D	Q	1.6	3.1	4.2	1.6	5.1	1.6	4.8	ne
^t PHL] "	ď	1.6	3.2	4.2	1.6	5	1.6	4.8	ns
[†] PLH	LE	Q	2.3	4	5	2.3	6.3	2.3	5.9	ns
[†] PHL]	l Q	2.5	3.9	4.8	2.5	5.6	2.5	5.3	115
^t PLH		Q	2.1	4	5.1	2.1	6.3	2.1	6.1	ns
^t PHL	PRE		2.2	3.7	4.6	2.2	5.3	2.2	5	113
[†] PLH	CLR	Q	1.9	3.7	4.8	1.9	5.7	1.9	5.4	no
[†] PHL	CLR	α	2.2	4.2	5.3	2.2	6.1	2.2	6	ns
^t PZH	<u></u>	0	1.6	3.3	4.3	2 1.6	5.5	1.6	5.4	no
^t PZL	ŌĒ	Q	2	3.2	4.6	2	5.9	2	5.8	ns
^t PHZ	OF.	0	1.7	4	5.5	1.7	6.4	1.7	6.3	
[†] PLZ	OE .	ŌE Q	1.7	3.7	4.4	1.7	5.3	1.7	5.2	ns

SCBS223E - OCTOBER 1992 - REVISED MAY 1997

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

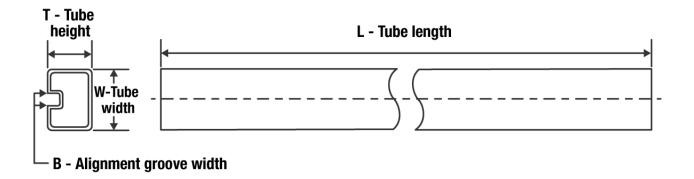

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq$ 2.5 ns, $t_f \leq$ 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGE MATERIALS INFORMATION

www.ti.com 5-Jan-2022

TUBE

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
SN74ABT16843DL	DL	SSOP	56	20	473.7	14.24	5110	7.87

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated