Freescale Semiconductor

Technical Data

RF Power Field Effect Transistors

N-Channel Enhancement-Mode Lateral MOSFETs

Designed for N-CDMA base station applications with frequencies from 1930 to 1990 MHz. Suitable for TDMA, CDMA and multicarrier amplifier applications. To be used in Class AB for PCN-PCS/cellular radio and WLL applications.

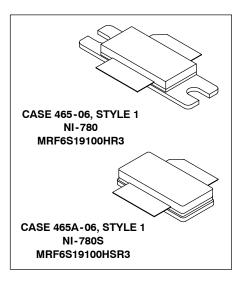
Typical 2-Carrier N-CDMA Performance: V_{DD} = 28 Volts, I_{DQ} = 900 mA, P_{out} = 22 Watts Avg., f = 1987 MHz, IS-95 (Pilot, Sync, Paging, Traffic Codes 8 Through 13) Channel Bandwidth = 1.2288 MHz. PAR = 9.8 dB @ 0.01% Probability on CCDF.

Power Gain — 16.1 dB Drain Efficiency — 28%

IM3 @ 2.5 MHz Offset — -37 dBc in 1.2288 MHz Channel Bandwidth ACPR @ 885 kHz Offset — -51 dBc in 30 kHz Channel Bandwidth

 Capable of Handling 10:1 VSWR, @ 28 Vdc, 1960 MHz, 100 Watts CW Output Power

Features


- Characterized with Series Equivalent Large-Signal Impedance Parameters
- · Internally Matched for Ease of Use
- Qualified Up to a Maximum of 32 V_{DD} Operation
- Integrated ESD Protection
- Designed for Lower Memory Effects and Wide Instantaneous Bandwidth Applications
- RoHS Compliant
- In Tape and Reel. R3 Suffix = 250 Units per 56 mm, 13 inch Reel.

Document Number: MRF6S19100H Rev. 5, 12/2008

VRoHS

MRF6S19100HR3 MRF6S19100HSR3

1930-1990 MHz, 22 W AVG., 28 V 2 x N-CDMA LATERAL N-CHANNEL RF POWER MOSFETs

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +68	Vdc
Gate-Source Voltage	V _{GS}	-0.5, +12	Vdc
Storage Temperature Range	T _{stg}	- 65 to +150	°C
Case Operating Temperature	T _C	150	°C
Operating Junction Temperature (1,2)	TJ	225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value (2,3)	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$		°C/W
Case Temperature 80°C, 100 W CW		0.44	
Case Temperature 77°C, 22 W CW		0.50	

- 1. Continuous use at maximum temperature will affect MTTF.
- MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.
- 3. Refer to AN1955, *Thermal Measurement Methodology of RF Power Amplifiers*. Go to http://www.freescale.com/rf. Select Documentation/Application Notes AN1955.

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22-A114)	3A (Minimum)
Machine Model (per EIA/JESD22-A115) B (Minimum)	
Charge Device Model (per JESD22-C101) IV (Minimum)	

Table 4. Electrical Characteristics ($T_C = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Off Characteristics					
Zero Gate Voltage Drain Leakage Current (V _{DS} = 68 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	10	μAdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 28 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	1	μAdc
Gate-Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_		1	μAdc
On Characteristics	<u> </u>				
Gate Threshold Voltage (V _{DS} = 10 Vdc, I _D = 250 μAdc)	V _{GS(th)}	1	2	3	Vdc
Gate Quiescent Voltage (V _{DD} = 28 Vdc, I _D = 900 mAdc, Measured in Functional Test)	V _{GS(Q)}	2	2.8	4	Vdc
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 2.2 Adc)	V _{DS(on)}	0.1	0.21	0.3	Vdc
Dynamic Characteristics ⁽¹⁾					
Reverse Transfer Capacitance (V _{DS} = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)	C _{rss}	_	1.5	_	pF

Functional Tests (In Freescale Test Fixture, 50 ohm system) V_{DD} = 28 Vdc, I_{DQ} = 900 mA, P_{out} = 22 W Avg., f = 1987 MHz, 2-carrier N-CDMA, 1.2288 MHz Channel Bandwidth Carriers. ACPR measured in 30 kHz Channel Bandwidth @ \pm 885 kHz Offset. IM3 measured in 1.2288 MHz Channel Bandwidth @ \pm 2.5 MHz Offset. PAR = 9.8 dB @ 0.01% Probability on CCDF.

Power Gain	G _{ps}	15	16.1	18	dB
Drain Efficiency	η_{D}	26	28	_	%
Intermodulation Distortion	IM3	_	-37	-35	dBc
Adjacent Channel Power Ratio	ACPR	_	-51	-48	dBc
Input Return Loss	IRL	_	-15	-9	dB

^{1.} Part is internally matched both on input and output.

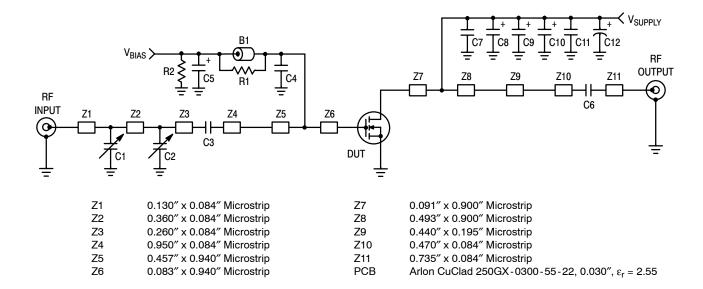
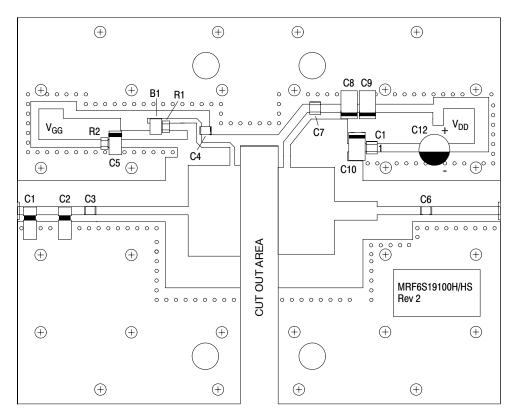



Figure 1. MRF6S19100HR3(HSR3) Test Circuit Schematic

Table 5. MRF6S19100HR3(HSR3) Test Circuit Component Designations and Values

Part	Description	Part Number	Manufacturer
B1	RF Bead	2743019447	Fair-Rite
C1, C2	0.6-4.5 pF Variable Capacitors, Gigatronics	27271SL	Johanson Dielectrics
C3	15 pF Chip Capacitor	ATC100B150CT500XT	ATC
C4, C7	5.6 pF Chip Capacitors	ATC100B5R6JT500XT	ATC
C5	1 μF, 50 V Tantalum Chip Capacitor	T491C105K050AT	Kemet
C6	43 pF Chip Capacitor	ATC100B430CT500XT	ATC
C8, C10	22 μF, 35 V Tantalum Chip Capacitors	T491X226K035AT	Kemet
C9	10 μF, 35 V Tantalum Chip Capacitor	T491C106K035AT	Kemet
C11	0.1 μF Chip Capacitor	C1825C14J5RAC	Kemet
C12	100 μF, 50 V Electrolytic Capacitor	MCHT101M1HB-1017-RH	Multicomp
R1	12 Ω, 1/4 W Chip Resistor	CRCW120612R0FKEA	Vishay
R2	2 kΩ, 1/4 W Chip Resistor	CRCW12062001FKEA	Vishay

Freescale has begun the transition of marking Printed Circuit Boards (PCBs) with the Freescale Semiconductor signature/logo. PCBs may have either Motorola or Freescale markings during the transition period. These changes will have no impact on form, fit or function of the current product.

Figure 2. MRF6S19100HR3(HSR3) Test Circuit Component Layout

TYPICAL CHARACTERISTICS

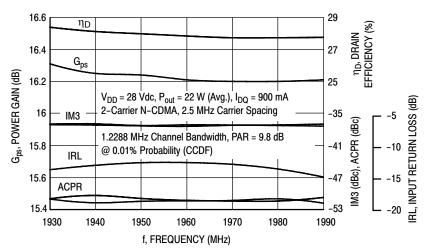


Figure 3. 2-Carrier N-CDMA Broadband Performance @ Pout = 22 Watts Avg.

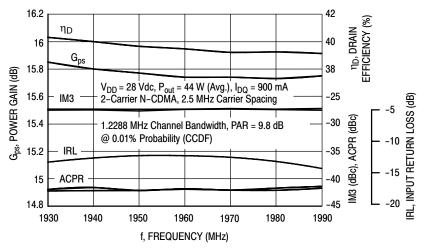


Figure 4. 2-Carrier N-CDMA Broadband Performance @ Pout = 44 Watts Avg.

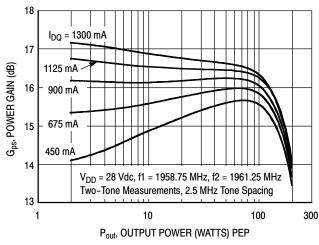


Figure 5. Two-Tone Power Gain versus
Output Power

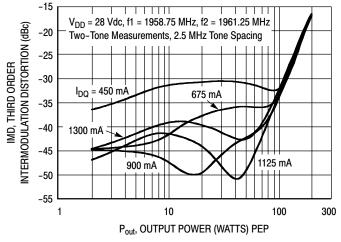


Figure 6. Third Order Intermodulation Distortion versus Output Power

TYPICAL CHARACTERISTICS

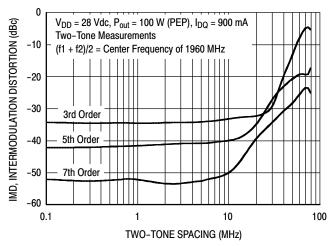


Figure 7. Intermodulation Distortion Products versus Tone Spacing

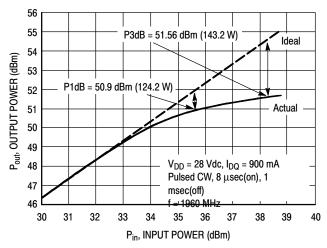


Figure 8. Pulsed CW Output Power versus Input Power

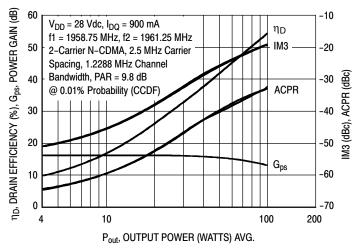


Figure 9. 2-Carrier N-CDMA ACPR, IM3, Power Gain and Drain Efficiency versus Output Power

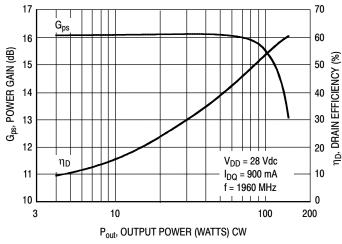


Figure 10. Power Gain and Drain Efficiency versus CW Output Power

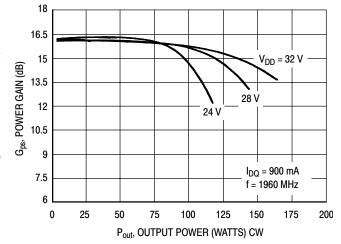
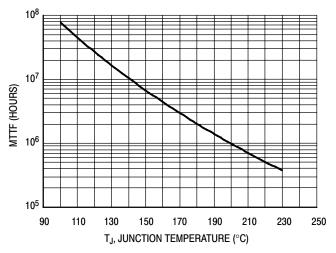



Figure 11. Power Gain versus Output Power

TYPICAL CHARACTERISTICS

This above graph displays calculated MTTF in hours when the device is operated at V_{DD} = 28 Vdc, P_{out} = 22 W Avg., and η_D = 28%.

MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.

Figure 12. MTTF Factor versus Junction Temperature

N-CDMA TEST SIGNAL

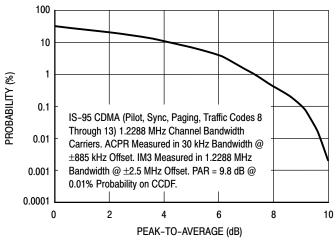


Figure 13. 2-Carrier CCDF N-CDMA

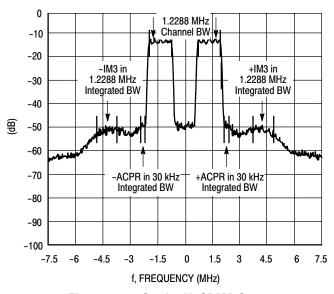


Figure 14. 2-Carrier N-CDMA Spectrum

 V_{DD} = 28 Vdc, I_{DQ} = 900 mA, P_{out} = 22 W Avg.

f MHz	$\mathbf{Z_{source}}_{\Omega}$	Z _{load} Ω
1930	1.57 - j3.50	2.26 - j2.31
1960	1.83 - j3.29	2.22 - j2.13
1990	2.34 - j3.71	2.14 - j2.00

 Z_{source} = Test circuit impedance as measured from gate to ground.

 $Z_{load} \quad \ = \quad \mbox{Test circuit impedance as measured} \\ \mbox{from drain to ground.}$

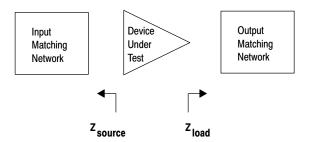
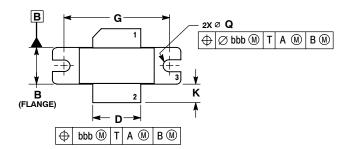
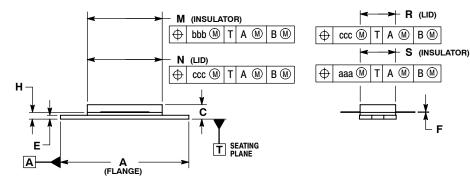
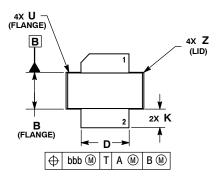
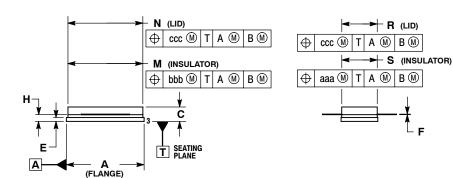




Figure 15. Series Equivalent Source and Load Impedance

PACKAGE DIMENSIONS


CASE 465-06 ISSUE G NI-780 MRF6S19100HR3


- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1994.
 2. CONTROLLING DIMENSION: INCH.
- 2. CONTROLLING DIMENSION: INCH.
 3. DELETED
 4. DIMENSION H IS MEASURED 0.030 (0.762) AWAY FROM PACKAGE BODY.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	1.335	1.345	33.91	34.16
В	0.380	0.390	9.65	9.91
С	0.125	0.170	3.18	4.32
D	0.495	0.505	12.57	12.83
Е	0.035	0.045	0.89	1.14
F	0.003	0.006	0.08	0.15
G	1.100	BSC	27.94 BSC	
Н	0.057	0.067	1.45	1.70
K	0.170	0.210	4.32	5.33
M	0.774	0.786	19.66	19.96
N	0.772	0.788	19.60	20.00
Q	Ø.118	Ø.138	Ø3.00	Ø 3.51
R	0.365	0.375	9.27	9.53
S	0.365	0.375	9.27	9.52
aaa	0.005 REF		0.127	REF
bbb	0.010 REF		0.254	REF
ccc	0.015 REF		0.381	REF

STYLE 1: PIN 1. DRAIN

2. GATE 3. SOURCE

CASE 465A-06 ISSUE H NI-780S MRF6S19100HSR3

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1994. 2. CONTROLLING DIMENSION: INCH.

- DELETED
 DIMENSION H IS MEASURED 0.030 (0.762) AWAY
 FROM PACKAGE BODY.

	INC	HES	MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.805	0.815	20.45	20.70	
В	0.380	0.390	9.65	9.91	
С	0.125	0.170	3.18	4.32	
D	0.495	0.505	12.57	12.83	
Ε	0.035	0.045	0.89	1.14	
F	0.003	0.006	0.08	0.15	
Н	0.057	0.067	1.45	1.70	
K	0.170	0.210	4.32	5.33	
M	0.774	0.786	19.61	20.02	
N	0.772	0.788	19.61	20.02	
R	0.365	0.375	9.27	9.53	
S	0.365	0.375	9.27	9.52	
U		0.040		1.02	
Z		0.030		0.76	
aaa	0.005 REF		0.127	'REF	
bbb	0.010 REF 0.254 REF		REF		
CCC	0.015	REF	0.381 REF		

STYLE 1:
PIN 1. DRAIN
2. GATE
5. SOURCE

MRF6S19100HR3 MRF6S19100HSR3

PRODUCT DOCUMENTATION

Refer to the following documents to aid your design process.

Application Notes

• AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
5	Dec. 2008	Modified data sheet to reflect RF Test Reduction described in Product and Process Change Notification number, PCN13232, p. 1, 2
		Removed Lower Thermal Resistance and Low Gold Plating bullets from Features section as functionality is standard, p. 1
		Removed Total Device Dissipation from Max Ratings table as data was redundant (information already provided in Thermal Characteristics table), p. 1
		Operating Junction Temperature increased from 200°C to 225°C in Maximum Ratings table, related "Continuous use at maximum temperature will affect MTTF" footnote added, p. 1
		 Corrected V_{DS} to V_{DD} in the RF test condition voltage callout for V_{GS(Q)}, and added "Measured in Functional Test", On Characteristics table, p. 2
		Removed Forward Transconductance from On Characteristics table as it no longer provided usable information, p. 2
		Updated PCB information to show more specific material details, Fig. 1, Test Circuit Schematic, p. 3
		Updated Part Numbers in Table 5, Component Designations and Values, to RoHS compliant part numbers, p. 3
		Removed lower voltage tests from Fig. 11, Power Gain versus Output Power, due to fixed tuned fixture limitations, p. 6
		Replaced Fig. 12, MTTF versus Junction Temperature with updated graph. Removed Amps ² and listed operating characteristics and location of MTTF calculator for device, p. 7
		Added Product Documentation and Revision History, p. 10

How to Reach Us:

Home Page:

www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or quarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale [™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2004-2006, 2008. All rights reserved.

Document Number: MRF6S19100H

Rev. 5, 12/2008