

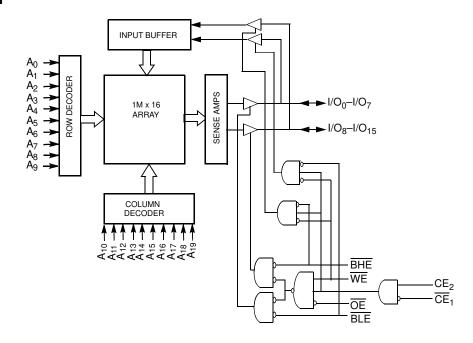
16-Mbit (1 M × 16) Static RAM

Features

- High Speed□ t_{AA} = 15 ns
- Low Active Power
 □ I_{CC} = 150 mA at 67 MHz
- Low complementary metal oxide semiconductor (CMOS) Standby Power
 - $\Box I_{SB2} = 25 \text{ mA}$
- Operating voltages of 1.7 V to 2.2 V
- 1.5 V data retention
- Automatic power-down when deselected
- Transistor-transistor logic (TTL) compatible inputs and outputs
- Easy memory expansion with CE₁ and CE₂ features
- Available in Pb-free 54-Pin thin small outline package (TSOP) II package

Functional Description

The CY7C1061DV18 is a high performance CMOS Static RAM (SRAM) organized as 1,048,576 words by 16 bits.


To write to the device, enable the <u>chip</u> (\overline{CE}_1 LOW and CE_2 HIGH) while forcing the Write Enable (\overline{WE}) input LOW. If Byte Low Enable (\overline{BLE}) is LOW, then data from I/O pins (I/O₀ through I/O₇), is written into the location specified on the address pins (A_0 through A_{19}). If Byte High Enable (\overline{BHE}) is LOW, then data from I/O pins (I/O₈ through I/O₁₅) is written into the location specified on the address pins (A_0 through A_{19}).

To read from the device, enable the chip by taking \overline{CE}_1 LOW and CE₂ HIGH while forcing the Output Enable (\overline{OE}) LOW and the Write Enable (WE) HIGH. If Byte Low Enable (BLE) is LOW, then data from the memory location specified by the address pins appears on I/O₀ to I/O₇. If Byte High Enable (BHE) is LOW, then data from memory appears on I/O₈ to I/O₁₅. See the Truth Table on page 9 for a complete description of Read and Write modes.

The input/output pins (I/O $_0$ through I/O $_{15}$) are placed in a high impedance state when the device is deselected (\overline{CE}_1 HIGH/ \overline{CE}_2 LOW), the outputs are disabled (\overline{OE} HIGH), the BHE and \overline{BLE} are disabled (BHE, BLE HIGH), or during a Write operation (\overline{CE}_1 LOW, \overline{CE}_2 HIGH, and \overline{WE} LOW).

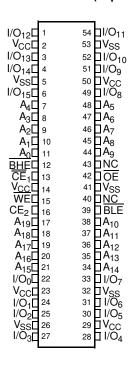
The CY7C1061DV18 is available in a 54-pin TSOP II package with center power and ground (revolutionary) pinout.

Logic Block Diagram

Contents

Pin Configurations	3
Maximum Ratings	
Operating Range	4
DC Electrical Characteristics	4
Capacitance	
Thermal Resistance	
AC Switching Characteristics	5
Data Retention Characteristics	6
Switching Waveforms	
Truth Table	

Ordering information	I U
Ordering Code Definitions	10
Package Diagram	11
Acronyms	12
Document Conventions	12
Units of Measure	12
Document History Page	13
Sales, Solutions, and Legal Information	14
Worldwide Sales and Design Support	14
Products	14
PSoC Solutions	14



Selection Guide

Description	–15	Unit
Maximum access time	15	ns
Maximum operating current	150	mA
Maximum CMOS standby current	25	mA

Pin Configurations

Figure 1. 54-Pin TSOP II (Top View)

Maximum Ratings

Exceeding maximum ratings may impair the useful life of the device. These user guidelines are not tested.

Storage temperature-65 °C to +15 °C

Ambient temperature with

power applied55 °C to +125 °C

Supply voltage on V_{CC} to relative $\mbox{GND}^{[1]}...-0.2$ V to +2.45 V

DC voltage applied to outputs in High Z state^[1].....-0.2 V to +2.45 V

DC input voltage^[1].....-0.2 V to +2.45 V

Current into outputs (LOW)	20 mA
Static discharge voltage	>2001 V
(per MIL-STD-883, method 3015)	
Latch-up current	>200 mA

Operating Range

Range	Ambient Temperature	V _{CC}
Industrial	–40 °C to +85 °C	1.7 V to 2.2 V

DC Electrical Characteristics Over the Operating Range

Doromotor	Description	Test Conditions	_	Unit	
Parameter	Description	rest Conditions	Min	Max	Unit
V _{OH}	Output HIGH voltage	Min V_{CC} , $I_{OH} = -0.1$ mA	1.4	_	V
V _{OL}	Output LOW voltage	Min V_{CC} , $I_{OL} = 0.1 \text{ mA}$	_	0.2	V
V _{IH}	Input HIGH voltage		1.4	V _{CC} + 0.2	V
V _{IL}	Input LOW voltage ^[1]		-0.2	0.4	V
I _{IX}	Input leakage current	$GND \leq V_{IN} \leq V_{CC}$	-1	+1	μΑ
I _{OZ}	Output leakage current	GND \leq V _{OUT} \leq V _{CC} , output disabled	-1	+1	μΑ
I _{CC}	V _{CC} operating supply current	$\begin{aligned} &\text{Max V}_{\text{CC}}, \text{f} = \text{f}_{\text{MAX}} = 1/\text{t}_{\text{RC}}, \\ &\text{I}_{\text{OUT}} = 0 \text{mA CMOS levels} \end{aligned}$	_	150	mA
I _{SB1}	Automatic CE power-down current – TTL inputs	$\label{eq:center_loss} \begin{split} \overline{CE}_1 &\geq V_{IH}, CE_2 <= V_{IL}, Max V_{CC}, \\ V_{IN} &\geq V_{IH} or V_{IN} \leq V_{IL}, f = f_{MAX} \end{split}$	_	30	mA
I _{SB2}	Automatic CE power-down current – CMOS inputs	$\overline{CE}_1 \ge V_{CC} - 0.2 \text{ V}, CE_2 \le 0.2 \text{ V}, \\ Max \ V_{CC}, V_{IN} \ge V_{CC} - 0.2 \text{ V}, or \\ V_{IN} \le 0.2 \text{ V}, f = 0$	_	25	mA

Capacitance^[2]

Parameter	Description	Test Conditions	TSOP II	Unit
C _{IN}	Input capacitance	$T_A = 25 ^{\circ}\text{C}$, $f = 1 \text{MHz}$, $V_{CC} = 1.8 \text{V}$.	6	pF
C _{OUT}	I/O capacitance		8	pF

Thermal Resistance

Parameter ^[2]	Description	Test Conditions	TSOP II	Unit
0/1	`	Still Air, soldered on a 3 × 4.5 inch, four-layer printed circuit board	24.18	°C/W
Θ _{JC}	Thermal resistance (Junction to case)		5.40	°C/W

Notes

- 1. $V_{\rm IL}$ (min) = -2.0 V for pulse durations of less than 20 ns.
- 2. Tested initially and after any design or process changes that may affect these parameters.

 50Ω R1 1667 Ω OUTPUT V_{TH} = V_{DD}/2 1.8V O OUTPUT O * Capacitive Load consists of all com-R2 ponents of the test environment. 1538Ω (a) INCLUDING JIG AND SCOPE **ALL INPUT PULSES** (b) 90% Fall time:

(c)

> 1 V/ns

Figure 2. AC Test Loads and Waveforms^[3]

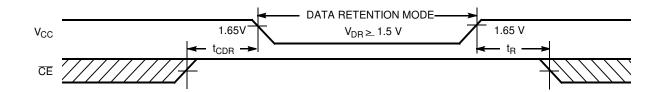
AC Switching Characteristics Over the Operating Range^[4]

Dovemeter	Description	-1	5	Unit
Parameter	Description	Min	Max	Unit
Read Cycle				
t _{power}	V _{CC} (typical) to the first access ^[5]	150	_	μS
t _{RC}	Read cycle time	15	_	ns
t _{AA}	Address to data valid	_	15	ns
t _{OHA}	Data hold from address change	3	_	ns
t _{ACE}	CE ₁ LOW/CE ₂ HIGH to data valid	_	15	ns
t _{DOE}	OE LOW to data valid	_	7	ns
t _{LZOE}	OE LOW to Low Z	1	_	ns
t _{HZOE}	OE HIGH to High Z ^[6]	_	7	ns
t _{LZCE}	CE ₁ LOW/CE ₂ HIGH to Low-Z ^[6]	3	_	ns
t _{HZCE}	CE ₁ HIGH/CE ₂ LOW to High-Z ^[6]	_	7	ns
t _{PU}	CE ₁ LOW/CE ₂ HIGH to Power-up ^[7]	0	-	ns
t _{PD}	CE ₁ HIGH/CE ₂ LOW to Power-down ^[7]	-	15	ns
t _{DBE}	Byte Enable to data valid	_	7	ns
t _{LZBE}	Byte Enable to Low Z	1	-	ns
t _{HZBE}	Byte Disable to High Z	_	7	ns
Write Cycle ^[8, 9]				
t _{WC}	Write cycle time	15	_	ns
t _{SCE}	CE ₁ LOW/CE ₂ HIGH to write end	10	-	ns
t _{AW}	Address setup to write end	10	10 –	
t _{HA}	Address hold from write end	0	_	ns

Notes

- Valid SRAM operation does not occur until the power supplies have reached the minimum operating V_{DD} (1.5 V). 150 µs (t_{power}) after reaching the minimum operating V_{DD}, normal SRAM operation can begin including reduction in V_{DD} to the data retention (V_{CCDR}, 1.5 V) voltage.
 Test conditions assume signal transition time of 3 ns or less, timing reference levels of 0.9 V, input pulse levels of 0 to 1.8 V. Test conditions for the Read cycle use output loading shown in part a) of the Figure 2, unless specified otherwise.
 t_{POWER} gives the minimum amount of time that the power supply should be at typical V_{CC} values until the first memory access can be performed.
- thzos, thzos, thzes, thzes, thzes, and tlzos, tlzcs, tlzcs
- These parameters are guaranteed by design and are not tested.

 The internal Write time of the memory is defined by the overlap of CE₁ LOW (CE₂ HIGH) and WE LOW. Chip enables must be active and WE and byte enables must be LOW to initiate a Write, and the transition of any of these signals can terminate the Write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the Write.
- The minimum Write cycle time for Write Cycle No. 3 ($\overline{\text{WE}}$ controlled, $\overline{\text{OE}}$ LOW) is the sum of t_{HZWE} and t_{SD} .


AC Switching Characteristics Over the Operating Range^[4](continued)

Parameter	Description	-1	Unit	
Parameter	Description	Min	Max	Offic
t _{SA}	Address setup to write start	0	_	ns
t _{PWE}	WE pulse width	10	_	ns
t _{SD}	Data setup to write end	7	_	ns
t _{HD}	Data hold from write end	0	_	ns
t _{LZWE}	WE HIGH to Low Z ^[10]	3	_	ns
t _{HZWE}	WE LOW to High Z ^[10]	_	7	ns
t _{BW}	Byte enable to end of write	10	-	ns

Data Retention Characteristics (Over the Operating Range)

Parameter	Description Conditions			Typ ^[11]	Max	Unit
V_{DR}	V _{CC} for data retention		1.5	_	_	V
ICCDR	Data retention current	$V_{CC} = 1.5 \text{ V}, \overline{CE}_{1} \ge V_{CC} - 0.2 \text{ V}, \\ CE_{2} \le 0.2 \text{ V}, V_{IN} \ge V_{CC} - 0.2 \text{ V}, \text{ or } \\ V_{IN} \le 0.2 \text{ V}$	-	_	25	mA
t _{CDR} ^[12]	Chip deselect to data retention time		0	_	1	ns
t _R ^[13]	Operation recovery time		t _{RC}	_	_	ns

Figure 3. Data Retention Waveform

^{10.} t_{HZOE}, t_{HZCE}, t_{HZWE}, t_{HZBE}, and t_{LZOE}, t_{LZCE}, t_{LZCE}, t_{LZCE}, are specified with a load capacitance of 5 pF as in (b) of Figure 2. Transition is measured ±200 mV from steady-state voltage

^{11.} Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC} (typ), TA = 25 °C.

^{12.} Tested initially and after any design or process changes that may affect these parameters 13. Full device operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min)} \ge 100~\mu s$ or stable at $V_{CC(min)} \ge 100~\mu s$.

Switching Waveforms

Figure 4. Read Cycle No. 1^[14,15]

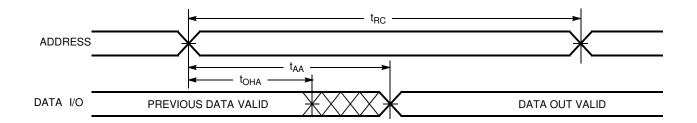
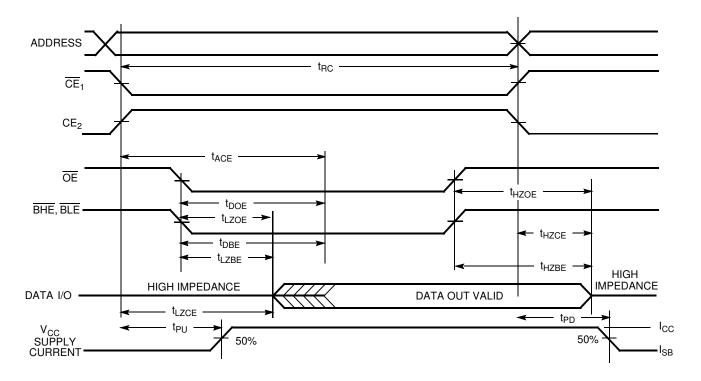



Figure 5. Read Cycle No. 2 (OE Controlled)[16,17]

^{14.} Full device operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min)} ≥ 100 μs or stable at V_{CC(min)} ≥ 100 μs. 15. Device is continuously selected. OE, CE, BHE and/or BHE = V_{IL}. CE₂ = V_{IH}.

^{16.} WE is HIGH for Read cycle.

^{17.} Address valid prior to or coincident with $\overline{CE_1}$ transition LOW and CE_2 transition HIGH.

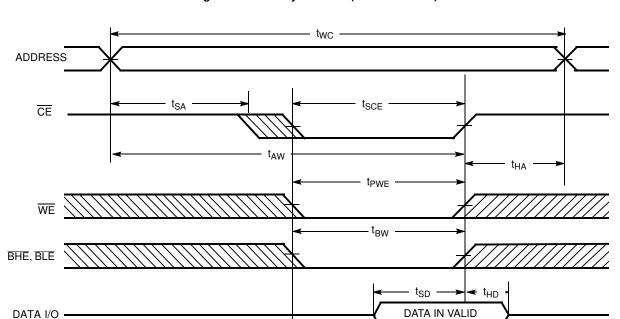
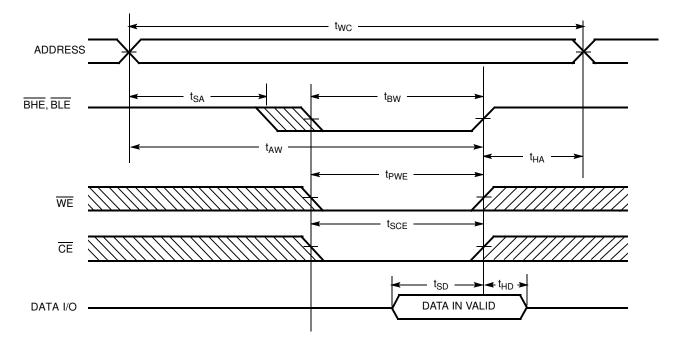



Figure 6. Write Cycle No. 1 (CE Controlled)[18,19,20]

Figure 7. Write Cycle No. 2 (BLE or BHE Controlled)

Notes

^{18.} Da<u>ta</u> I/O is high impedance if OE or B<u>HE</u> and/or BLE = V_{IH}.

19. If CE₁ goes HIGH simultaneously with WE going HIGH, the output remains in a high impedance state.

20. CE is the logical combination of CE1 and CE2. When CE1 is LOW and CE2 is HIGH, CE is LOW; when CE1 is HIGH or CE2 is LOW, CE is HIGH

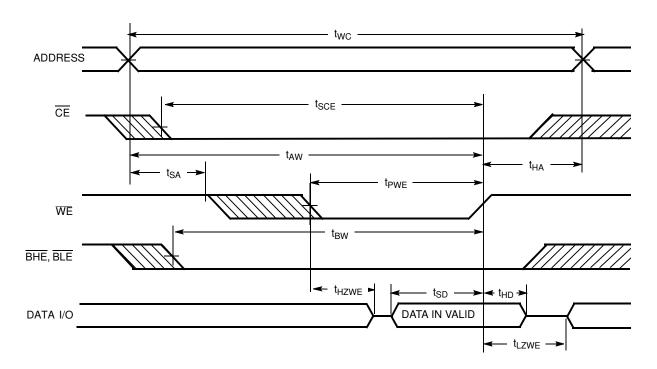


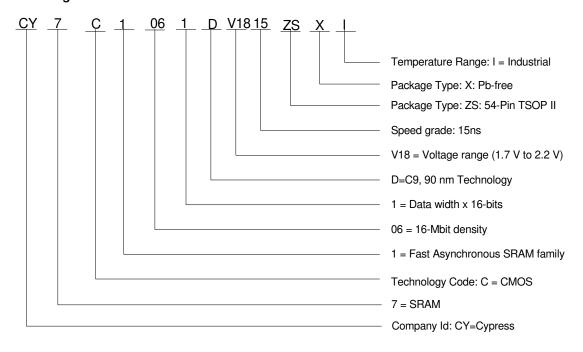
Figure 8. Write Cycle No. 3 (WE Controlled, OE Low) $^{[21,22,23]}$

Truth Table

CE ₁	CE ₂	OE	WE	BLE	BHE	I/O ₀ –I/O ₇	I/O ₈ –I/O ₁₅	Mode	Power
Н	Х	Х	Х	Х	Х	High Z	High Z	Power-down	Standby (I _{SB})
Х	L	Χ	Х	Х	Х	High Z	High Z	Power-down	Standby (I _{SB})
L	Н	L	Н	L	L	Data out	Data out	Read all bits	Active (I _{CC})
L	Н	L	Н	L	Н	Data out	High Z	Read lower bits only	Active (I _{CC})
L	Н	L	Н	Н	L	High -Z	Data out	Read upper bits only	Active (I _{CC})
L	Н	Χ	L	L	L	Data in	Data in	Write all bits	Active (I _{CC})
L	Н	Х	L	L	Н	Data in	High Z	Write lower bits only	Active (I _{CC})
L	Н	Χ	L	Н	L	High Z	Data in	Write upper bits only	Active (I _{CC})
L	Н	Н	Н	Х	Х	High Z	High Z	Selected, outputs disabled	Active (I _{CC})

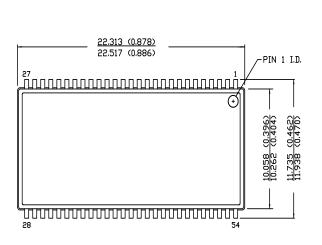
^{21.} Data I/O is high impedance if $\overline{\text{OE}}$ or $\overline{\text{BHE}}$ and/or $\overline{\text{BLE}} = \text{V}_{\text{IH}}$.

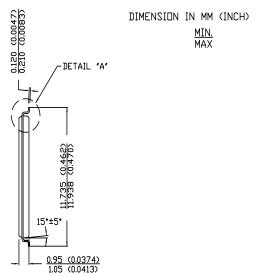
22. If $\overline{\text{CE}}_1$ goes HIGH simultaneously with $\overline{\text{WE}}$ going HIGH, the output remains in a high impedance state.

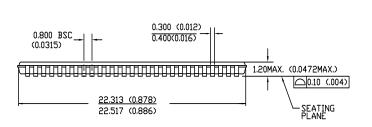

23. $\overline{\text{CE}}$ is a shorthand combination of both $\overline{\text{CE}}_1$ and $\overline{\text{CE}}_2$ combined. It is active LOW.

Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
15	CY7C1061DV18-15ZSXI	51-85160	54 pin TSOP II (Pb-free)	Industrial


Ordering Code Definitions





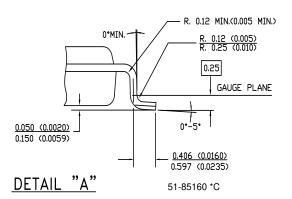

Package Diagram

Figure 9. 54-pin TSOP Type II

Acronyms

Acronym	Description	
CMOS	complementary metal oxide semiconductor	
I/O	input/output	
SRAM	static random access memory	
TSOP	thin small outline package	
TTL	Transistor-transistor logic	

Document Conventions

Units of Measure

Symbol	Unit of Measure		
°C	degrees Celsius		
μΑ	microamperes		
mA	milliamperes		
MHz	megahertz		
ns	nanoseconds		
pF	picofarads		
V	volts		
Ω	ohms		
W	watts		

Document History Page

Document Title: CY7C1061DV18 16-Mbit (1 M × 16) Static RAM Document Number: 001-08350						
REV.	ECN NO.	Submission Date	Orig. of Change	Description of Change		
**	469420	See ECN	NXR	New data sheet		
*A	2761557	09/09/2009	VKN	Updated package code		
*B	2800121	11/06/2009	VKN	Increased I_{CC} limit from 100mA to 150mA Changed V_{DR} from 1.2V to 1.5V Included Thermal specs Changed t_{LZOE} and t_{LZBE} from 0ns to 1ns Changed t_{LZCE} from 0ns to 3ns Replaced 6 x 8 x 1mm FBGA package with 8 x 9.5 x 1mm FBGA package Changed status from Final to Preliminary		
*C	2915361	04/16/2010	VKN	Converted from Preliminary to Final Removed 48-Ball FBGA package from the data sheet Updated links in Sales, Solutions, and Legal Information		
*D	2923463	04/27/2010	RAME	Post to external web		
*E	3109102	12/13/2010	PRAS	Added Ordering Code Definitions.		
*F	3147322	01/19/2011	PRAS	Updated all tables notes as per template Added Acronyms and Units of Measure table.		
*G	3387026	09/29/2011	TAVA	Minor technical edits. Updated Package Diagram.		

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive cypress.com/go/automotive cypress.com/go/clocks
Interface cypress.com/go/interface cypress.com/go/powerpsoc cypress.com/go/plc

Memory cypress.com/go/memory

cypress.com/go/plc
Memory cypress.com/go/memory
Optical & Image Sensing cypress.com/go/image
PSoC cypress.com/go/psoc
Touch Sensing cypress.com/go/touch
USB Controllers cypress.com/go/USB
Wireless/RF cypress.com/go/wireless

PSoC Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 5

© Cypress Semiconductor Corporation, 2010-2011. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.