24-Stage Frequency Divider

The MC14521B consists of a chain of 24 flip–flops with an input circuit that allows three modes of operation. The input will function as a crystal oscillator, an RC oscillator, or as an input buffer for an external oscillator. Each flip–flop divides the frequency of the previous flip–flop by two, consequently this part will count up to $2^{24} = 16,777,216$. The count advances on the negative going edge of the clock. The outputs of the last seven–stages are available for added flexibility.

Features

- All Stages are Resettable
- Reset Disables the RC Oscillator for Low Standby Power Drain
- RC and Crystal Oscillator Outputs Are Capable of Driving External Loads
- Test Mode to Reduce Test Time
- V_{DD}' and V_{SS}' Pins Brought Out on Crystal Oscillator Inverter to Allow the Connection of External Resistors for Low–Power Operation
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-Power TTL Loads or One Low-Power Schottky TTL Load over the Rated Temperature Range
- Pb-Free Packages are Available*

MAXIMUM RATINGS (Voltages Referenced to V_{SS})

Parameter	Symbol	Value	Unit
DC Supply Voltage Range	V_{DD}	-0.5 to +18.0	V
Input or Output Voltage Range (DC or Transient)	V _{in} , V _{out}	-0.5 to V _{DD} +0.5	٧
Input or Output Current (DC or Transient) per Pin	I _{in} , I _{out}	±10	mA
Power Dissipation, per Package (Note 1)	P _D	500	mW
Ambient Temperature Range	T _A	-55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Lead Temperature (8–Second Soldering)	TL	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

 Temperature Derating: Plastic "P and D/DW" Packages: – 7.0 mW/°C From 65°C To 125°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

ON Semiconductor®

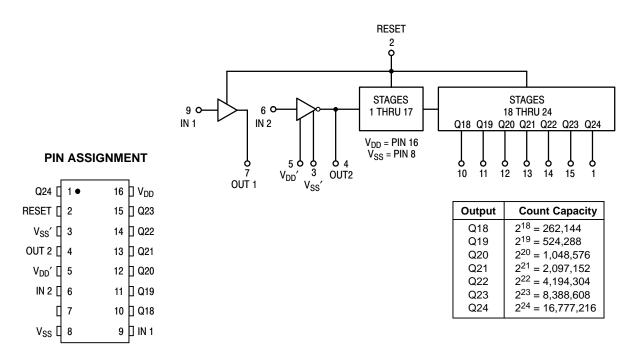
http://onsemi.com

MARKING DIAGRAMS

PDIP-16 P SUFFIX CASE 648

SOIC-16 D SUFFIX CASE 751B

SOEIAJ-16 F SUFFIX CASE 966 A = Assembly Location


WL, L = Wafer Lot
 YY, Y = Year
 WW, W = Work Week
 G = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

BLOCK DIAGRAM

ORDERING INFORMATION

Device	Package	Shipping [†]	
MC14521BCP	PDIP-16		
MC14521BCPG	PDIP-16 (Pb-Free)	25 Units / Rail	
MC14521BD	SOIC-16		
MC14521BDG	SOIC-16 (Pb-Free)	48 Units / Rail	
MC14521BDR2	SOIC-16		
MC14521BDR2G	SOIC-16 (Pb-Free)	2500 / Tape & Reel	
MC14521BF	SOEIAJ-16		
MC14521BFG	SOEIAJ-16 (Pb-Free)	50 Units / Rail	
MC14521BFEL	SOEIAJ-16		
MC14521BFELG	SOEIAJ-16 (Pb-Free)	2000 / Tape & Reel	

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

$\textbf{ELECTRICAL CHARACTERISTICS} \ (Voltages \ Referenced \ to \ V_{SS})$

			- 5	5°C		25°C		125	5°C	
Characteristic	Symbol	V _{DD} Vdc	Min	Max	Min	Typ (Note 2)	Max	Min	Max	Unit
Output Voltage "0" Level V _{in} = V _{DD} or 0	V _{OL}	5.0 10 15	- - -	0.05 0.05 0.05	- - -	0 0 0	0.05 0.05 0.05	- - -	0.05 0.05 0.05	Vdc
"1" Level	V _{OH}	5.0 10 15	4.95 9.95 14.95	- - -	4.95 9.95 14.95	5.0 10 15	- - -	4.95 9.95 14.95	- - -	Vdc
Input Voltage "0" Level $(V_O = 4.5 \text{ or } 0.5 \text{ Vdc})$ $(V_O = 9.0 \text{ or } 1.0 \text{ Vdc})$ $(V_O = 13.5 \text{ or } 1.5 \text{ Vdc})$	V _{IL}	5.0 10 15	- - -	1.5 3.0 4.0	- - -	2.25 4.50 6.75	1.5 3.0 4.0	- - -	1.5 3.0 4.0	Vdc
"1" Level ($V_O = 0.5 \text{ or } 4.5 \text{ Vdc}$) ($V_O = 1.0 \text{ or } 9.0 \text{ Vdc}$) ($V_O = 1.5 \text{ or } 13.5 \text{ Vdc}$)	V _{IH}	5.0 10 15	3.5 7.0 11	- - -	3.5 7.0 11	2.75 5.50 8.25	- - -	3.5 7.0 11	- - -	Vdc
Output Drive Current (V _{OH} = 2.5 Vdc) Source (V _{OH} = 4.6 Vdc) Pins 4 & 7 (V _{OH} = 9.5 Vdc) (V _{OH} = 13.5 Vdc)	I _{OH}	5.0 5.0 10 15	- 1.2 - 0.25 - 0.62 - 1.8	- - -	- 1.0 - 0.2 - 0.5 - 1.5	- 1.7 - 0.36 - 0.9 - 3.5		- 0.7 - 0.14 - 0.35 - 1.1		mAdc
(V _{OH} = 2.5 Vdc) Source (V _{OH} = 4.6 Vdc) Pins 1, 10, (V _{OH} = 9.5 Vdc) 11, 12, 13, 14 (V _{OH} = 13.5 Vdc) and 15 (V _{OL} = 0.4 Vdc) Sink		5.0 5.0 10 15	- 3.0 - 0.64 - 1.6 - 4.2	- - - -	- 2.4 - 0.51 - 1.3 - 3.4	- 4.2 - 0.88 - 2.25 - 8.8	- - - -	- 1.7 - 0.36 - 0.9 - 2.4	- - - -	mAdc
(V _{OL} = 0.5 Vdc) (V _{OL} = 1.5 Vdc)	I _{OL}	5.0 10 15	0.64 1.6 4.2	- - -	0.51 1.3 3.4	0.88 2.25 8.8	- - -	0.36 0.9 2.4	- - -	mAdc
Input Current	I _{in}	15	-	± 0.1	_	±0.00001	± 0.1	_	± 1.0	μAdc
Input Capacitance (V _{in} = 0)	C _{in}	-	-	-	-	5.0	7.5	-	-	pF
Quiescent Current (Per Package)	I _{DD}	5.0 10 15	- - -	5.0 10 20	- - -	0.005 0.010 0.015	5.0 10 20	- - -	150 300 600	μAdc
Total Supply Current (Note 3, 4) (Dynamic plus Quiescent, Per Package) (C _L = 50 pF on all outputs, all buffers switching)	IT	5.0 10 15			$I_{T} = (0$.42 μA/kHz) .85 μA/kHz) .40 μA/kHz)	f + I _{DD}			μAdc

Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
 The formulas given are for the typical characteristics only at 25°C.
 To calculate total supply current at loads other than 50 pF: I_T(C_L) = I_T(50 pF) + (C_L – 50) Vfk where: I_T is in μA (per package), C_L in pF, V = (V_{DD} – V_{SS}) in volts, f in kHz is input frequency, and k = 0.003.

SWITCHING CHARACTERISTICS (Note 5) ($C_L = 50 \text{ pF}, T_A = 25^{\circ}C$)

Characteristic	Symbol	V _{DD} Vdc	Min	Typ (Note 6)	Max	Unit
Output Rise and Fall Time (Counter Outputs) $t_{TLH},t_{THL}=(1.5\;\text{ns/pF})\;C_L+25\;\text{ns}\\ t_{TLH},t_{THL}=(0.75\;\text{ns/pF})\;C_L+12.5\;\text{ns}\\ t_{TLH},t_{THL}=(0.55\;\text{ns/pF})\;C_L+12.5\;\text{ns}$	t _{TLH} , t _{THL}	5.0 10 15	- - -	100 50 40	200 100 80	ns
Propagation Delay Time Clock to Q18 tphL, tpLH = (1.7 ns/pF) C _L + 4415 ns tphL, tpLH = (0.66 ns/pF) C _L + 1667 ns tphL, tpLH = (0.5 ns/pF) C _L + 1275 ns Clock to Q24	t _{PHL} , t _{PLH}	5.0 10 15	- - -	4.5 1.7 1.3	9.0 3.5 2.7	μs
total to $Q24$ t_{PHL} , $t_{PLH} = (1.7 \text{ ns/pF}) C_L + 5915 \text{ ns}$ t_{PHL} , $t_{PLH} = (0.66 \text{ ns/pF}) C_L + 2167 \text{ ns}$ t_{PHL} , $t_{PLH} = (0.5 \text{ ns/pF}) C_L + 1675 \text{ ns}$		5.0 10 15	- - -	6.0 2.2 1.7	12 4.5 3.5	
Propagation Delay Time Reset to Q_n $t_{PHL} = (1.7 \text{ ns/pF}) \text{ C}_L + 1215 \text{ ns}$ $t_{PHL} = (0.66 \text{ ns/pF}) \text{ C}_L + 467 \text{ ns}$ $t_{PHL} = (0.5 \text{ ns/pF}) \text{ C}_L + 350 \text{ ns}$	t _{PHL}	5.0 10 15	- - -	1300 500 375	2600 1000 750	ns
Clock Pulse Width	t _{WH(cl)}	5.0 10 15	385 150 120	140 55 40	- - -	ns
Clock Pulse Frequency	f _{cl}	5.0 10 15	- - -	3.5 9.0 12	2.0 5.0 6.5	MHz
Clock Rise and Fall Time	t _{TLH} , t _{THL}	5.0 10 15	- - -	- - -	15 5.0 4.0	μs
Reset Pulse Width	t _{WH(R)}	5.0 10 15	1400 600 450	700 300 225	- - -	ns
Reset Removal Time	t _{rem}	5.0 10 15	30 0 - 40	- 200 - 160 - 110	1 1 1	ns

^{5.} The formulas given are for the typical characteristics only at 25°C.6. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

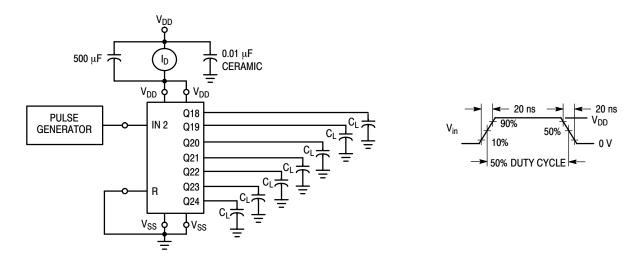


Figure 1. Power Dissipation Test Circuit and Waveform

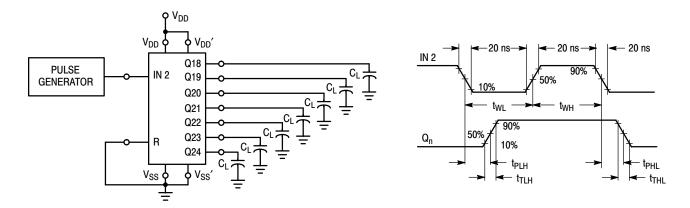
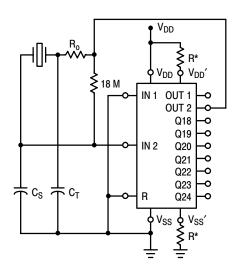



Figure 2. Switching Time Test Circuit and Waveforms

^{*}Optional for low power operation, $10 \text{ k}\Omega \leq R \leq 70 \text{ k}\Omega.$

Figure 3. Crystal Oscillator Circuit

Characteristic	500 kHz Circuit	50 kHz Circuit	Unit
Crystal Characteristics Resonant Frequency Equivalent Resistance, R _S	500 1.0	50 6.2	kHz kΩ
External Resistor/Capacitor Values R ₀ C _T C _S	47	750	kΩ
	82	82	pF
	20	20	pF
Frequency Stability Frequency Change as a Function of V _{DD} (T _A = 25°C) V _{DD} Change from 5.0 V to 10 V V _{DD} Change from 10 V to 15 V	+ 6.0	+ 2.0	ppm
	+ 2.0	+ 2.0	ppm
Frequency Change as a Function of Temperature (V _{DD} = 10 V) T _A Change from – 55°C to + 25°C MC14521 only Complete Oscillator*	- 4.0	- 2.0	ppm
	+ 100	+ 120	ppm
T _A Change from +25°C to+125°C MC14521 only Complete Oscillator*	- 2.0 - 160	- 2.0 - 560	ppm

^{*}Complete oscillator includes crystal, capacitors, and resistors.

Figure 4. Typical Data for Crystal Oscillator Circuit

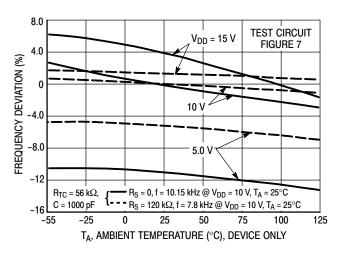
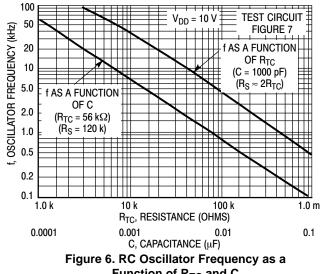



Figure 5. RC Oscillator Stability

Function of R_{TC} and C

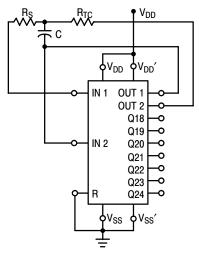


Figure 7. RC Oscillator Circuit

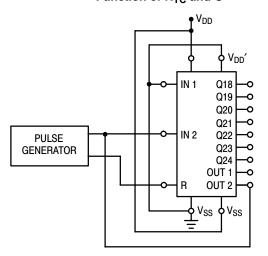
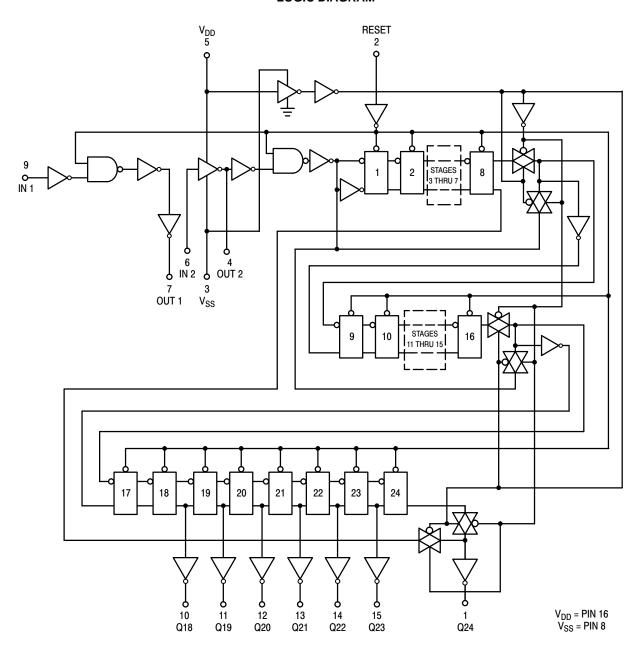
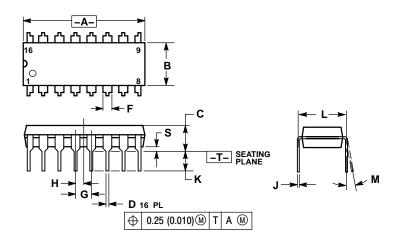



Figure 8. Functional Test Circuit

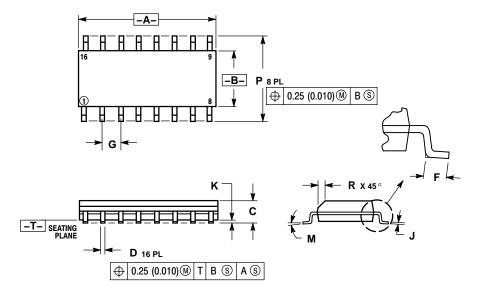
FUNCTIONAL TEST SEQUENCE


	Inpu	ıts	Outputs				Comments
	Reset	In 2	Out 2	V _{SS} ′	V _{DD} ′	Q18 thru Q24	Counter is in three 8–stage sections in parallel mode Counter is reset. In 2 and Out 2 are connected together.
	1	0	0	V_{DD}	GND	0	
A test function (see Figure 8) has been included	0	1	1				First "0" to "1" transition on In 2, Out 2 node.
for the reduction of test time required to exercise all 24 counter stages. This test function divides the counter into three 8–stage sections, and 255 counts are loaded in each of the 8–stage sections in parallel. All flip–flops are now at a logic "1". The counter is now returned to the normal 24–stages in		0 1 - -	0 1 - -				255 "0" to "1" transitions are clocked into this In 2, Out 2 node.
series configuration. One more pulse is entered into Input 2 (In 2) which will cause the counter to ripple		1	1			1	The 255th "0" to "1" transition.
from an all "1" state to an all "0" state.		0	0	↓		1	
		1	0	GND	V _{DD}	1	Counter converted back to 24-stages in series mode.
		1	0		1 100	1	Out 2 converts back to an output.
		0	1	↓	↓	0	Counter ripples from an all "1" state to an all "0" stage.

LOGIC DIAGRAM

PACKAGE DIMENSIONS

PDIP-16 CASE 648-08 **ISSUE T**



- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
 4. DIMENSION B DOES NOT INCLUDE
- MOLD FLASH.

 5. ROUNDED CORNERS OPTIONAL.

	INC	HES	MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.740	0.770	18.80	19.55	
В	0.250	0.270	6.35	6.85	
С	0.145	0.175	3.69	4.44	
D	0.015	0.021	0.39	0.53	
F	0.040	0.70	1.02	1.77	
G	0.100	BSC	2.54 BSC		
Н	0.050	BSC	1.27	BSC	
J	0.008	0.015	0.21	0.38	
K	0.110	0.130	2.80	3.30	
L	0.295	0.305	7.50	7.74	
М	0°	10 °	0°	10 °	
S	0.020	0.040	0.51	1.01	

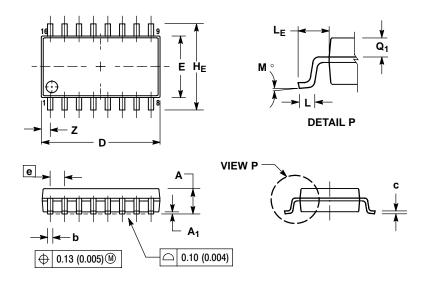
SOIC-16 CASE 751B-05 **ISSUE J**

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.


 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) DED SIGN.
- PER SIDE.

 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION A LLOWABLE DAMBAR
 PROTRUSION SHALL BE 0.127 (0.005) TOTAL
 IN EXCESS OF THE D DIMENSION AT
 MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	9.80	10.00	0.386	0.393
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27	BSC	0.050	BSC
7	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
M	0°	7°	0°	7°
P	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019

PACKAGE DIMENSIONS

SOEIAJ-16 CASE 966-01 ISSUE A

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI
 Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSIONS D AND E DO NOT INCLUDE
 MOLD FLASH OR PROTRUSIONS AND ARE
 MEASURED AT THE PARTING LINE. MOLD FLASH
 OR PROTRUSIONS SHALL NOT EXCEED 0.15
 (0.006) PER SIDE.

 TERMINAL NUMBERS ARE SHOWN FOR
- TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
 THE LEAD WIDTH DIMENSION (b) DOES NOT
- 5. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018).

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α		2.05		0.081
A ₁	0.05	0.20	0.002	0.008
b	0.35	0.50	0.014	0.020
C	0.10	0.20	0.007	0.011
D	9.90	10.50	0.390	0.413
Е	5.10	5.45	0.201	0.215
е	1.27 BSC		0.050	BSC
HE	7.40	8.20	0.291	0.323
L	0.50	0.85	0.020	0.033
LE	1.10	1.50	0.043	0.059
M	0 °	10°	0 °	10°
Q ₁	0.70	0.90	0.028	0.035
Z		0.78		0.031

ON Semiconductor and the registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Japan Customer Focus Center Phone: 81–3–5773–3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative