
SunFounder Thales Kit for Raspberry

Pi Pico
Release 1.0

Jimmy, SunFounder

Aug 02, 2022

CONTENTS

1 Introduction to Raspberry Pi Pico 3

1.1 Features . 3

1.2 Pico’s Pins . 4

2 What is Included in This Kit 7

2.1 Components List . 9

2.2 Components Introduction . 10

2.2.1 Breadboard . 10

2.2.2 LED . 11

2.2.3 RGB LED . 12

2.2.4 Resistor . 14

2.2.5 Potentiometer . 16

2.2.6 Photoresistor . 18

2.2.7 Thermistor . 19

2.2.8 Transistor . 20

2.2.9 Capacitor . 22

2.2.10 Button . 23

2.2.11 Tilt Switch . 25

2.2.12 Slide Switch . 26

2.2.13 PIR Motion Sensor . 27

2.2.14 Buzzer . 29

2.2.15 Servo . 30

2.2.16 WS2812 RGB 8 LEDs Strip . 31

2.2.17 74HC595 . 32

2.2.18 7-segment Display . 34

2.2.19 I2C LCD1602 . 37

3 For MicroPython User 39

3.1 Geting Started with MicroPython . 39

3.1.1 The Story Starts Here . 39

3.1.2 Why MicroPython . 39

3.1.3 Installing MicroPython . 40

3.2 Thonny Python IDE . 42

3.2.1 Download from Web . 42

3.2.2 Introducing Thonny IDE . 43

3.3 Your First MicroPython Program . 45

3.3.1 Interactive Mode . 45

3.3.2 Script Mode . 46

3.4 Projects . 49

3.4.1 Hello, LED! . 49

i

3.4.2 Hello, Breadboard! . 52

3.4.3 Reading Button Value . 54

3.4.4 Reaction Game . 60

3.4.5 Traffic Light . 66

3.4.6 Two Kinds of Transistors . 71

3.4.7 Intruder Alarm . 76

3.4.8 Fading LED . 80

3.4.9 Colorful Light . 83

3.4.10 Custom Tone . 87

3.4.11 Swinging Servo . 90

3.4.12 Turn the Knob . 93

3.4.13 Thermometer . 96

3.4.14 Light Theremin . 99

3.4.15 Microchip - 74HC595 . 102

3.4.16 LED Segment Display . 106

3.4.17 Liquid Crystal Display . 109

3.4.18 RGB LED Strip . 115

3.5 MicroPython Basic Syntax . 118

3.5.1 Indentation . 118

3.5.2 Comments . 119

3.5.3 Print() . 120

3.5.4 Variables . 120

3.5.5 If Else . 122

3.5.6 While Loops . 126

3.5.7 For Loops . 128

3.5.8 Functions . 131

3.5.9 Data Types . 136

3.5.10 Operators . 138

3.5.11 Lists . 142

4 For Arduino User 147

4.1 Getting Started with Arduino . 147

4.1.1 Install Arduino IDE . 147

4.1.2 Introduction the Arduino Software (IDE) . 148

4.1.3 Setup the Raspberry Pi Pico . 150

4.2 Projects . 153

4.2.1 Hello LED . 154

4.2.2 Fading LED . 156

4.2.3 Warning Light . 159

4.2.4 Table Lamp . 162

4.2.5 Measure Light Intensity . 167

4.2.6 Doorbell . 169

4.2.7 RGB LED . 173

4.2.8 Light Theremin . 176

4.2.9 74HC595 . 179

4.2.10 Digital Dice . 183

4.2.11 Flow LEDs . 186

4.2.12 WS2812 Strip Multi-Mode . 188

4.2.13 LUMI Piano . 190

5 For Piper Make 193

5.1 Quick Guide on Piper Make . 193

5.1.1 Set up the Pico . 193

5.1.2 How to use Piper Make . 196

ii

5.2 Blink LED . 203

5.3 Button . 204

5.4 Slide Switch . 206

5.5 Tilt Switch . 208

5.6 Active Buzzer . 210

5.7 PIR Module . 212

5.8 RGB LED . 214

5.9 Servo . 217

5.10 Neopixel . 219

6 FAQ 225

6.1 Q1: NO MicroPython(Raspberry Pi Pico) Interpreter Option on Thonny IDE? 225

6.2 Q2: Cannot open Pico code or save code to Pico via Thonny IDE? 226

6.3 Q3: Can Raspberry Pi Pico be used on Thonny and Arduino at the same time? 226

6.4 Q4: Code upload failed in Arduino IDE? . 226

6.5 Q5: If your computer is win7 and pico cannot be detected. 227

7 Thank You 229

8 Copyright Notice 231

iii

iv

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

SunFounder Thales Kit is a basic learning kit based on Raspberry Pi Pico.

The kit contains various types of components, such as displays, sounds, drivers, controllers, and sensors, allows you

to learn electronic devices comprehensively.

we have prepared many interesting and practical projects for you, and collected a lot of authoritative related informa-

tion, just turn on your computer and you can complete programming learning in one stop.

In addition, we provide 2 programming languages: MicroPython and Arduino (C/C++). You can view different

tutorials according to your needs

If you want to learn another projects which we don’t have, please feel free to send Email and we will update to our

online tutorials as soon as possible, any suggestions are welcomed.

Here is the Email: cs@sunfounder.com.

CONTENTS 1

mailto:cs@sunfounder.com

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

2 CONTENTS

CHAPTER

ONE

INTRODUCTION TO RASPBERRY PI PICO

The Raspberry Pi Pico is a microcontroller board based on the Raspberry Pi RP2040 microcontroller chip.

Whether you want to learn the MicroPython programming language, take the first step in physical computing, or want

to build a hardware project, Raspberry Pi Pico – and its amazing community – will support you every step of the way.

In the project, it can control anything, from LEDs and buttons to sensors, motors, and even other microcontrollers.

1.1 Features

• 21 mm × 51 mm form factor

• RP2040 microcontroller chip designed by Raspberry Pi in the UK

• Dual-core Arm Cortex-M0+ processor, flexible clock running up to 133 MHz

• 264KB on-chip SRAM

• 2MB on-board QSPI Flash

• 26 multifunction GPIO pins, including 3 analog inputs

• 2 × UART, 2 × SPI controllers, 2 × I2C controllers, 16 × PWM channels

• 1 × USB 1.1 controller and PHY, with host and device support

3

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

• 8 × Programmable I/O (PIO) state machines for custom peripheral support

• Supported input power 1.8–5.5V DC

• Operating temperature -20°C to +85°C

• Castellated module allows soldering direct to carrier boards

• Drag-and-drop programming using mass storage over USB

• Low-power sleep and dormant modes

• Accurate on-chip clock

• Temperature sensor

• Accelerated integer and floating-point libraries on-chip

1.2 Pico’s Pins

Name Description Function

GP0-GP28 General-purpose input/output

pins

Act as either input or output and have no fixed purpose of their

own

GND 0 volts ground Several GND pins around Pico to make wiring easier.

RUN Enables or diables your Pico Start and stop your Pico from another microcontroller.

GPxx_ADCx General-purpose input/output

or analog input

Used as an analog input as well as a digital input or output –

but not both at the same time.

ADC_VREF Analog-to-digital converter

(ADC) voltage reference

A special input pin which sets a reference voltage for any ana-

log inputs.

AGND Analog-to-digital converter

(ADC) 0 volts ground

A special ground connection for use with the ADC_VREF pin.

3V3(O) 3.3 volts power A source of 3.3V power, the same voltage your Pico runs at

internally, generated from the VSYS input.

3v3(E) Enables or disables the power Switch on or off the 3V3(O) power, can also switches your

Pico off.

VSYS 2-5 volts power A pin directly connected to your Pico’s internal power supply,

which cannot be switched off without also switching Pico off.

VBUS 5 volts power A source of 5V power taken from your Pico’s micro USB port,

and used to power hardware which needs more than 3.3V.

4 Chapter 1. Introduction to Raspberry Pi Pico

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

The best place to find everything you need to get started with your Raspberry Pi Pico.

Or you can click on the links below:

• Raspberry Pi Pico product brief

• Raspberry Pi Pico datasheet

• Getting started with Raspberry Pi Pico: C/C++ development

• Raspberry Pi Pico C/C++ SDK

• API-level Doxygen documentation for the Raspberry Pi Pico C/C++ SDK

• Raspberry Pi Pico Python SDK

• Raspberry Pi RP2040 datasheet

• Hardware design with RP2040

• Raspberry Pi Pico design files

• Raspberry Pi Pico STEP file

1.2. Pico’s Pins 5

https://www.raspberrypi.com/documentation/microcontrollers/raspberry-pi-pico.html
https://datasheets.raspberrypi.org/pico/pico-product-brief.pdf
https://datasheets.raspberrypi.org/pico/pico-datasheet.pdf
https://datasheets.raspberrypi.org/pico/getting-started-with-pico.pdf
https://datasheets.raspberrypi.org/pico/raspberry-pi-pico-c-sdk.pdf
https://raspberrypi.github.io/pico-sdk-doxygen/
https://datasheets.raspberrypi.org/pico/raspberry-pi-pico-python-sdk.pdf
https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf
https://datasheets.raspberrypi.org/rp2040/hardware-design-with-rp2040.pdf
https://datasheets.raspberrypi.org/pico/RPi-Pico-R3-PUBLIC-20200119.zip
https://datasheets.raspberrypi.org/pico/Pico-R3-step.zip

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

6 Chapter 1. Introduction to Raspberry Pi Pico

CHAPTER

TWO

WHAT IS INCLUDED IN THIS KIT

The following is a list of this kit, after you receive the goods, you can check the contents of the list first.

Some of the components on the kit are very small and look the same, the worker may omit or send it wrong when

packing. Please do not hesitate to send us the picture of the kit and the names of the missing or wrong components via

email.

Here is the Email: cs@sunfounder.com.

7

mailto:cs@sunfounder.com

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

8 Chapter 2. What is Included in This Kit

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

2.1 Components List

2.1. Components List 9

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

2.2 Components Introduction

2.2.1 Breadboard

A breadboard is a construction base for prototyping of electronics. Originally the word referred to a literal bread

board, a polished piece of wood used for slicing bread.[1] In the 1970s the solderless breadboard (a.k.a. plugboard, a

terminal array board) became available and nowadays the term “breadboard” is commonly used to refer to these.

It is used to build and test circuits quickly before finishing any circuit design. And it has many holes into which

components mentioned above can be inserted like ICs and resistors as well as jumper wires. The breadboard allows

you to plug in and remove components easily.

The picture shows the internal structure of a breadboard. Although these holes on the breadboard appear to be inde-

pendent of each other, they are actually connected to each other through metal strips internally.

If you want to know more about breadboard, refer to: How to Use a Breadboard - Science Buddies

Example

Hello, Breadboard! (For MicroPython User

10 Chapter 2. What is Included in This Kit

https://www.sciencebuddies.org/science-fair-projects/references/how-to-use-a-breadboard#pth-smd

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

2.2.2 LED

Semiconductor light-emitting diode is a type of component which can turn electric energy into light energy via PN

junctions. By wavelength, it can be categorized into laser diode, infrared light-emitting diode and visible light-emitting

diode which is usually known as light-emitting diode (LED).

Diode has unidirectional conductivity, so the current flow will be as the arrow indicates in figure circuit symbol. You

can only provide the anode with a positive power and the cathode with a negative. Thus the LED will light up.

An LED has two pins. The longer one is the anode, and shorter one, the cathode. Pay attention not to connect them

inversely. There is fixed forward voltage drop in the LED, so it cannot be connected with the circuit directly because

the supply voltage can outweigh this drop and cause the LED to be burnt. The forward voltage of the red, yellow, and

green LED is 1.8 V and that of the white one is 2.6 V. Most LEDs can withstand a maximum current of 20 mA, so we

need to connect a current limiting resistor in series.

The formula of the resistance value is as follows:

R = (Vsupply – VD)/I

R stands for the resistance value of the current limiting resistor, Vsupply for voltage supply, VD for voltage drop and

I for the working current of the LED.

Here is the detailed introduction for the LED: LED - Wikipedia.

Example

• Hello, Breadboard! (For MicroPython User

• Fading LED (For MicroPython User

2.2. Components Introduction 11

https://en.wikipedia.org/wiki/Light-emitting_diode

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

• Fading LED (For C/C++(Arduino) User

• Hello LED (For C/C++(Arduino) User

2.2.3 RGB LED

RGB LEDs emit light in various colors. An RGB LED packages three LEDs of red, green, and blue into a transparent

or semitransparent plastic shell. It can display various colors by changing the input voltage of the three pins and

superimpose them, which, according to statistics, can create 16,777,216 different colors.

RGB LEDs can be categorized into common anode and common cathode ones. In this kit, the latter is used. The

common cathode, or CC, means to connect the cathodes of the three LEDs. After you connect it with GND and plug

in the three pins, the LED will flash the corresponding color.

Its circuit symbol is shown as figure.

12 Chapter 2. What is Included in This Kit

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

An RGB LED has 4 pins: the longest one is GND; the others are Red, Green and Blue. Touch its plastic shell and you

will find a cut. The pin closest to the cut is the first pin, marked as Red, then GND, Green and Blue in turn.

Example

• Colorful Light (For MicroPython User

• RGB LED (For C/C++(Arduino) User

2.2. Components Introduction 13

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

2.2.4 Resistor

Resistor is an electronic element that can limit the branch current. A fixed resistor is a kind of resistor whose resistance

cannot be changed, while that of a potentiometer or a variable resistor can be adjusted.

Two generally used circuit symbols for resistor. Normally, the resistance is marked on it. So if you see these symbols

in a circuit, it stands for a resistor.

is the unit of resistance and the larger units include K, M, etc. Their relationship can be shown as follows: 1 M=1000

K, 1 K = 1000 . Normally, the value of resistance is marked on it.

When using a resistor, we need to know its resistance first. Here are two methods: you can observe the bands on the

resistor, or use a multimeter to measure the resistance. You are recommended to use the first method as it is more

convenient and faster.

14 Chapter 2. What is Included in This Kit

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

As shown in the card, each color stands for a number.

Black Brown Red Orange Yellow Green Blue Violet Grey White Gold Silver

0 1 2 3 4 5 6 7 8 9 0.1 0.01

The 4- and 5-band resistors are frequently used, on which there are 4 and 5 chromatic bands.

Normally, when you get a resistor, you may find it hard to decide which end to start for reading the color. The tip is

that the gap between the 4th and 5th band will be comparatively larger.

2.2. Components Introduction 15

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Therefore, you can observe the gap between the two chromatic bands at one end of the resistor; if it’s larger than any

other band gaps, then you can read from the opposite side.

Let’s see how to read the resistance value of a 5-band resistor as shown below.

So for this resistor, the resistance should be read from left to right. The value should be in this format: 1st Band 2nd

Band 3rd Band x 10^Multiplier () and the permissible error is ±Tolerance%. So the resistance value of this resistor is

2(red) 2(red) 0(black) x 10^0(black) = 220 , and the permissible error is ± 1% (brown).

You can learn more about resistor from Wiki: Resistor - Wikipedia.

2.2.5 Potentiometer

Potentiometer is also a resistance component with 3 terminals and its resistance value can be adjusted according to

some regular variation.

Potentiometers come in various shapes, sizes, and values, but they all have the following things in common:

• They have three terminals (or connection points).

• They have a knob, screw, or slider that can be moved to vary the resistance between the middle terminal and

either one of the outer terminals.

• The resistance between the middle terminal and either one of the outer terminals varies from 0 to the maximum

resistance of the pot as the knob, screw, or slider is moved.

Here is the circuit symbol of potentiometer.

16 Chapter 2. What is Included in This Kit

https://en.wikipedia.org/wiki/Resistor

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

The functions of the potentiometer in the circuit are as follows:

1. Serving as a voltage divider

Potentiometer is a continuously adjustable resistor. When you adjust the shaft or sliding handle of

the potentiometer, the movable contact will slide on the resistor. At this point, a voltage can be output

depending on the voltage applied onto the potentiometer and the angle the movable arm has rotated

to or the travel it has made.

2. Serving as a rheostat

When the potentiometer is used as a rheostat, connect the middle pin and one of the other 2 pins in

the circuit. Thus you can get a smoothly and continuously changed resistance value within the travel

of the moving contact.

3. Serving as a current controller

When the potentiometer acts as a current controller, the sliding contact terminal must be connected

as one of the output terminals.

If you want to know more about potentiometer, refer to: Potentiometer - Wikipedia

Example

• Turn the Knob (For MicroPython User

• Table Lamp (For C/C++(Arduino) User

2.2. Components Introduction 17

https://en.wikipedia.org/wiki/Potentiometer.

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

2.2.6 Photoresistor

A photoresistor or photocell is a light-controlled variable resistor. The resistance of a photoresistor decreases with

increasing incident light intensity; in other words, it exhibits photo conductivity.

A photoresistor can be applied in light-sensitive detector circuits and light-activated and dark-activated switching

circuits acting as a resistance semiconductor. In the dark, a photoresistor can have a resistance as high as several

megaohms (M), while in the light, a photoresistor can have a resistance as low as a few hundred ohms.

Here is the electronic symbol of photoresistor.

• Photoresistor - Wikipedia

Example

• Light Theremin (For MicroPython User

• Measure Light Intensity (For C/C++(Arduino) User

• Light Theremin (For C/C++(Arduino) User

18 Chapter 2. What is Included in This Kit

https://en.wikipedia.org/wiki/Photoresistor#:~:text=A%20photoresistor%20(also%20known%20as,on%20the%20component's%20sensitive%20surface

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

2.2.7 Thermistor

A thermistor is a type of resistor whose resistance is strongly dependent on temperature, more so than in standard

resistors. The word is a combination of thermal and resistor. Thermistors are widely used as inrush current limiters,

temperature sensors (negative temperature coefficient or NTC type typically), self-resetting overcurrent protectors,

and self-regulating heating elements (positive temperature coefficient or PTC type typically).

• Thermistor - Wikipedia

Here is the electronic symbol of thermistor.

Thermistors are of two opposite fundamental types:

• With NTC thermistors, resistance decreases as temperature rises usually due to an increase in conduction elec-

trons bumped up by thermal agitation from valency band. An NTC is commonly used as a temperature sensor,

or in series with a circuit as an inrush current limiter.

• With PTC thermistors, resistance increases as temperature rises usually due to increased thermal lattice agita-

tions particularly those of impurities and imperfections. PTC thermistors are commonly installed in series with

a circuit, and used to protect against overcurrent conditions, as resettable fuses.

In this kit we use an NTC one. Each thermistor has a normal resistance. Here it is 10k ohm, which is measured under

25 degree Celsius.

Here is the relation between the resistance and temperature:

RT = RN * expB(1/TK – 1/TN)

• RT is the resistance of the NTC thermistor when the temperature is TK.

2.2. Components Introduction 19

https://en.wikipedia.org/wiki/Thermistor

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

• RN is the resistance of the NTC thermistor under the rated temperature TN. Here, the numerical value of RN is

10k.

• TK is a Kelvin temperature and the unit is K. Here, the numerical value of TK is 273.15 + degree Celsius.

• TN is a rated Kelvin temperature; the unit is K too. Here, the numerical value of TN is 273.15+25.

• And B(beta), the material constant of NTC thermistor, is also called heat sensitivity index with a numerical

value 3950.

• exp is the abbreviation of exponential, and the base number e is a natural number and equals 2.7 approximately.

Convert this formula TK=1/(ln(RT/RN)/B+1/TN) to get Kelvin temperature that minus 273.15 equals degree Celsius.

This relation is an empirical formula. It is accurate only when the temperature and resistance are within the effective

range.

Example

• Thermometer (For MicroPython User

2.2.8 Transistor

Transistor is a semiconductor device that controls current by current. It functions by amplifying weak signal to larger

amplitude signal and is also used for non-contact switch.

A transistor is a three-layer structure composed of P-type and N-type semiconductors. They form the three regions

internally. The thinner in the middle is the base region; the other two are both N-type or P-type ones – the smaller

region with intense majority carriers is the emitter region, when the other one is the collector region. This composition

enables the transistor to be an amplifier. From these three regions, three poles are generated respectively, which are

base (b), emitter (e), and collector (c). They form two P-N junctions, namely, the emitter junction and collection

junction. The direction of the arrow in the transistor circuit symbol indicates that of the emitter junction.

• P–N junction - Wikipedia

Based on the semiconductor type, transistors can be divided into two groups, the NPN and PNP ones. From the

abbreviation, we can tell that the former is made of two N-type semiconductors and one P-type and that the latter is

the opposite. See the figure below.

Note: s8550 is PNP transistor and the s8050 is the NPN one, They look very similar, and we need to check carefully

to see their labels.

20 Chapter 2. What is Included in This Kit

https://en.wikipedia.org/wiki/P-n_junction

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

When a High level signal goes through an NPN transistor, it is energized. But a PNP one needs a Low level signal to

manage it. Both types of transistor are frequently used for contactless switches, just like in this experiment.

Put the label side facing us and the pins facing down. The pins from left to right are emitter(e), base(b), and collector(c).

2.2. Components Introduction 21

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

• S8050 Transistor Datasheet

• S8550 Transistor Datasheet

Example

• Two Kinds of Transistors (For MicroPython User

• Light Theremin (For C/C++(Arduino) User

• Doorbell (For C/C++(Arduino) User

2.2.9 Capacitor

Capacitance, refers to the amount of charge storage under a given potential difference, denoted as C, and the inter-

national unit is farad (F). Generally speaking, electric charges move under force in an electric field. When there is a

medium between conductors, the movement of electric charges is hindered and the electric charges accumulate on the

conductors, resulting in accumulation of electric charges.

The amount of stored electric charges is called capacitance. Because capacitors are one of the most widely used

electronic components in electronic equipment, they are widely used in direct current isolation, coupling, bypass,

filtering, tuning loops, energy conversion, and control circuits. Capacitors are divided into electrolytic capacitors,

solid capacitors, etc.

According to material characteristics, capacitors can be divided into: aluminum electrolytic capacitors, film capacitors,

tantalum capacitors, ceramic capacitors, super capacitors, etc.

• Ceramic Capacitor - Wikipedia

In this kit, ceramic capacitors are used. There are 103 or 104 label on the ceramic capacitors, which represent the

capacitance value, 103=10x10^3pF, 104=10x10^4pF

Unit Conversion 1F=10^3mF=10^6uF=10^9nF=10^12pF

22 Chapter 2. What is Included in This Kit

https://components101.com/asset/sites/default/files/component_datasheet/S8050%20Transistor%20Datasheet.pdf
https://www.mouser.com/datasheet/2/149/SS8550-118608.pdf
https://en.wikipedia.org/wiki/Ceramic_capacitor

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Example

• Reading Button Value (For MicroPython User

• Warning Light (For C/C++(Arduino) User

2.2.10 Button

Buttons are a common component used to control electronic devices. They are usually used as switches to connect

or break circuits. Although buttons come in a variety of sizes and shapes, the one used here is a 6mm mini-button as

shown in the following pictures. Pin 1 is connected to pin 2 and pin 3 to pin 4. So you just need to connect either of

pin 1 and pin 2 to pin 3 or pin 4.

2.2. Components Introduction 23

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

The following is the internal structure of a button. The symbol on the right below is usually used to represent a button

in circuits.

Since the pin 1 is connected to pin 2, and pin 3 to pin 4, when the button is pressed, the 4 pins are connected, thus

closing the circuit.

Examples

• Reading Button Value (For MicroPython User

• Doorbell (For C/C++(Arduino) User

• LUMI Piano (For C/C++(Arduino) User

24 Chapter 2. What is Included in This Kit

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

2.2.11 Tilt Switch

The tilt switch used here is a ball one with a metal ball inside. It is used to detect inclinations of a small angle.

The principle is very simple. When the switch is tilted in a certain angle, the ball inside rolls down and touches the two

contacts connected to the pins outside, thus triggering circuits. Otherwise the ball will stay away from the contacts,

thus breaking the circuits.

• SW520D Tilt Switch Datasheet

Examples

2.2. Components Introduction 25

https://www.tme.com/Document/f1e6cedd8cb7feeb250b353b6213ec6c/SW-520D.pdf

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

• Reading Button Value (For MicroPython User

• Flow LEDs (For C/C++(Arduino) User

2.2.12 Slide Switch

A slide switch, just as its name implies, is to slide the switch bar to connect or break the circuit, and further switch

circuits. The common-used types are SPDT, SPTT, DPDT, DPTT etc. The slide switch is commonly used in low-

voltage circuit. It has the features of flexibility and stability, and applies in electric instruments and electric toys

widely. How it works: Set the middle pin as the fixed one. When you pull the slide to the left, the two pins on the

left are connected; when you pull it to the right, the two pins on the right are connected. Thus, it works as a switch

connecting or disconnecting circuits. See the figure below:

The circuit symbol of the slide switch is shown as below. The pin2 in the figure refers to the middle pin.

Example

• Reading Button Value (For MicroPython User

• Warning Light (For C/C++(Arduino) User

26 Chapter 2. What is Included in This Kit

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

2.2.13 PIR Motion Sensor

The PIR sensor detects infrared heat radiation that can be used to detect the presence of organisms that emit infrared

heat radiation.

The PIR sensor is split into two slots that are connected to a differential amplifier. Whenever a stationary object is

in front of the sensor, the two slots receive the same amount of radiation and the output is zero. Whenever a moving

object is in front of the sensor, one of the slots receives more radiation than the other , which makes the output fluctuate

high or low. This change in output voltage is a result of detection of motion.

After the sensing module is wired, there is a one-minute initialization. During the initialization, module will output for

0~3 times at intervals. Then the module will be in the standby mode. Please keep the interference of light source and

other sources away from the surface of the module so as to avoid the misoperation caused by the interfering signal.

Even you’d better use the module without too much wind, because the wind can also interfere with the sensor.

2.2. Components Introduction 27

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Distance Adjustment

Turning the knob of the distance adjustment potentiometer clockwise, the range of sensing distance increases, and the

maximum sensing distance range is about 0-7 meters. If turn it anticlockwise, the range of sensing distance is reduced,

and the minimum sensing distance range is about 0-3 meters.

Delay adjustment

Rotate the knob of the delay adjustment potentiometer clockwise, you can also see the sensing delay increasing. The

maximum of the sensing delay can reach up to 300s. On the contrary, if rotate it anticlockwise, you can shorten the

delay with a minimum of 5s.

Two Trigger Modes

Choosing different modes by using the jumper cap.

• H: Repeatable trigger mode, after sensing the human body, the module outputs high level. During the subsequent

delay period, if somebody enters the sensing range,the output will keep being the high level.

• LNon-repeatable trigger mode, outputs high level when it senses the human body. After the delay, the output

will change from high level into low level automatically.

Example

Intruder Alarm (For MicroPython User

28 Chapter 2. What is Included in This Kit

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

2.2.14 Buzzer

As a type of electronic buzzer with an integrated structure, buzzers, which are supplied by DC power, are widely used

in computers, printers, photocopiers, alarms, electronic toys, automotive electronic devices, telephones, timers and

other electronic products or voice devices.

Buzzers can be categorized as active and passive ones (see the following picture). Turn the buzzer so that its pins are

facing up, and the buzzer with a green circuit board is a passive buzzer, while the one enclosed with a black tape is an

active one.

The difference between an active buzzer and a passive buzzer:

An active buzzer has a built-in oscillating source, so it will make sounds when electrified. But a passive buzzer does

not have such source, so it will not beep if DC signals are used; instead, you need to use square waves whose frequency

is between 2K and 5K to drive it. The active buzzer is often more expensive than the passive one because of multiple

built-in oscillating circuits.

The following is the electrical symbol of a buzzer. It has two pins with positive and negative poles. With a + in the

surface represents the anode and the other is the cathode.

You can check the pins of the buzzer, the longer one is the anode and the shorter one is the cathode. Please don’t mix

them up when connecting, otherwise the buzzer will not make sound.

Buzzer - Wikipedia

Example

• Intruder Alarm (For MicroPython User

• Custom Tone (For MicroPython User

• Doorbell (For C/C++(Arduino) User

2.2. Components Introduction 29

https://en.wikipedia.org/wiki/Buzzer

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

• LUMI Piano (For C/C++(Arduino) User

2.2.15 Servo

A servo is generally composed of the following parts: case, shaft, gear system, potentiometer, DC motor, and embed-

ded board.

It works like this: The microcontroller sends out PWM signals to the servo, and then the embedded board in the servo

receives the signals through the signal pin and controls the motor inside to turn. As a result, the motor drives the

gear system and then motivates the shaft after deceleration. The shaft and potentiometer of the servo are connected

together. When the shaft rotates, it drives the potentiometer, so the potentiometer outputs a voltage signal to the

embedded board. Then the board determines the direction and speed of rotation based on the current position, so it

can stop exactly at the right position as defined and hold there.

The angle is determined by the duration of a pulse that is applied to the control wire. This is called Pulse width

Modulation. The servo expects to see a pulse every 20 ms. The length of the pulse will determine how far the motor

turns. For example, a 1.5ms pulse will make the motor turn to the 90 degree position (neutral position). When a

pulse is sent to a servo that is less than 1.5 ms, the servo rotates to a position and holds its output shaft some number

of degrees counterclockwise from the neutral point. When the pulse is wider than 1.5 ms the opposite occurs. The

minimal width and the maximum width of pulse that will command the servo to turn to a valid position are functions

of each servo. Generally the minimum pulse will be about 0.5 ms wide and the maximum pulse will be 2.5 ms wide.

30 Chapter 2. What is Included in This Kit

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Example

Swinging Servo

2.2.16 WS2812 RGB 8 LEDs Strip

The WS2812 RGB 8 LEDs Strip is composed of 8 RGB LEDs. Only one pin is required to control all the LEDs. Each

RGB LED has a WS2812 chip, which can be controlled independently. It can realize 256-level brightness display and

complete true color display of 16,777,216 colors. At the same time, the pixel contains an intelligent digital interface

data latch signal shaping amplifier drive circuit, and a signal shaping circuit is built in to effectively ensure the color

height of the pixel point light Consistent.

It is flexible, can be docked, bent, and cut at will, and the back is equipped with adhesive tape, which can be fixed on

the uneven surface at will, and can be installed in a narrow space.

Features

• Work Voltage: DC5V

• IC: One IC drives one RGB LED

• Consumption: 0.3w each LED

• Working Temperature: -15-50

• Color: Full color RGB

• RGB Type5050RGBBuilt-in IC WS2812B

• Light Strip Thickness: 2mm

2.2. Components Introduction 31

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

• Each LED can be controlled individually

WS2812B Introdction

• WS2812B Datasheet

WS2812B is a intelligent control LED light source that the control circuit and RGB chip are integrated in a package of

5050 components. It internal include intelligent digital port data latch and signal reshaping ampli fication drive circuit.

Also include a precision internal oscillator and a 12V voltage programmable constant curr e-nt control part, effectively

ensuring the pixel point light color height consistent.

The data transfer protocol use single NZR communication mode. After the pixel power-on reset, the DIN port receive

data from controller, the first pixel collect initial 24bit data then sent to the internal data latch, the other data which

reshaping by the internal signal reshaping amplification circuit sent to the next cascade pixel through the DO port.

After transmission for each pixelthe signal to reduce 24bit. pixel adopt auto resha -ping transmit technology, making

the pixel cascade number is not limited the signal transmission, only depend on the speed of signal transmission.

LED with low driving voltage, environmental protection and energy saving, high brightness, scattering angl e is large,

good consistency, low power, long life and other advantages. The control chip integrated in LED above becoming

more simple circuit, small volume, convenient installation.

Example

• RGB LED Strip (For MicroPython User

• WS2812 Strip Multi-Mode (For C/C++(Arduino) User

• Flow LEDs (For C/C++(Arduino) User

• LUMI Piano (For C/C++(Arduino) User

2.2.17 74HC595

The 74HC595 consists of an 8bit shift register and a storage register with threestate parallel outputs. It converts serial

input into parallel output so you can save IO ports of an MCU. When MR (pin10) is high level and OE (pin13) is low

level, data is input in the rising edge of SHcp and goes to the memory register through the rising edge of SHcp. If the

two clocks are connected together, the shift register is always one pulse earlier than the memory register. There is a

serial shift input pin (Ds), a serial output pin (Q) and an asynchronous reset button (low level) in the memory register.

The memory register outputs a Bus with a parallel 8-bit and in three states. When OE is enabled (low level), the data

in memory register is output to the bus.

• 74HC595 Datasheet

32 Chapter 2. What is Included in This Kit

https://cdn-shop.adafruit.com/datasheets/WS2812B.pdf
https://www.ti.com/lit/ds/symlink/cd74hc595.pdf?ts=1617341564801

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Pins of 74HC595 and their functions:

• Q0-Q7: 8-bit parallel data output pins, able to control 8 LEDs or 8 pins of 7-segment display directly.

• Q7’: Series output pin, connected to DS of another 74HC595 to connect multiple 74HC595s in series

• MR: Reset pin, active at low level;

• SHcp: Time sequence input of shift register. On the rising edge, the data in shift register moves successively

one bit, i.e. data in Q1 moves to Q2, and so forth. While on the falling edge, the data in shift register remain

unchanged.

• STcp: Time sequence input of storage register. On the rising edge, data in the shift register moves into memory

register.

• CE: Output enable pin, active at low level.

• DS: Serial data input pin

• VCC: Positive supply voltage.

• GND: Ground.

Example

• Microchip - 74HC595 (For MicroPython User

• 74HC595 (For C/C++(Arduino) User

2.2. Components Introduction 33

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

2.2.18 7-segment Display

A 7-segment display is an 8-shaped component which packages 7 LEDs. Each LED is called a segment - when

energized, one segment forms part of a numeral to be displayed.

There are two types of pin connection: Common Cathode (CC) and Common Anode (CA). As the name suggests,

a CC display has all the cathodes of the 7 LEDs connected when a CA display has all the anodes of the 7 segments

connected.

In this kit, we use the Common Cathode 7-segment display, here is the electronic symbol.

34 Chapter 2. What is Included in This Kit

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Each of the LEDs in the display is given a positional segment with one of its connection pins led out from the rect-

angular plastic package. These LED pins are labeled from “a” through to “g” representing each individual LED. The

other LED pins are connected together forming a common pin. So by forward biasing the appropriate pins of the

LED segments in a particular order, some segments will brighten and others stay dim, thus showing the corresponding

character on the display.

Display Codes

To help you get to know how 7-segment displays(Common Cathode) display Numbers, we have drawn the following

table. Numbers are the number 0-F displayed on the 7-segment display; (DP) GFEDCBA refers to the corresponding

LED set to 0 or 1, For example, 00111111 means that DP and G are set to 0, while others are set to 1. Therefore, the

number 0 is displayed on the 7-segment display, while HEX Code corresponds to hexadecimal number.

2.2. Components Introduction 35

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Example

• LED Segment Display (For MicroPython User

• Digital Dice (For C/C++(Arduino) User

• 74HC595 (For C/C++(Arduino) User

36 Chapter 2. What is Included in This Kit

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

2.2.19 I2C LCD1602

As we all know, though LCD and some other displays greatly enrich the man-machine interaction, they share a com-

mon weakness. When they are connected to a controller, multiple IOs will be occupied of the controller which has

no so many outer ports. Also it restricts other functions of the controller. Therefore, LCD1602 with an I2C bus is

developed to solve the problem.

I2C communication

I2C(Inter-Integrated Circuit) bus is a very popular and powerful bus for communication between a master device (or

master devices) and a single or multiple slave devices. I2C main controller can be used to control IO expander, various

sensors, EEPROM, ADC/DAC and so on. All of these are controlled only by the two pins of host, the serial data

(SDA1) line and the serial clock line(SCL1).

Example

• Liquid Crystal Display (For MicroPython User

2.2. Components Introduction 37

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

38 Chapter 2. What is Included in This Kit

CHAPTER

THREE

FOR MICROPYTHON USER

This section contains the history of MicroPython, installing MicroPython in Pico, the basic syntax of MicroPython

and a dozen interesting and practical projects to help you learn MicroPython quickly.

We recommend that you read the chapters in order.

3.1 Geting Started with MicroPython

MicroPython is a full Python compiler and runtime that runs on the microcontroller’s hardware like Raspberry Pi Pico.

The user is presented with an interactive prompt (the REPL) to excute supported commands immediately. Included are

a selection of core Python libraries; MicroPython includes modules which give the programmer access to low-level

hardware.

• Reference: MicroPython - Wikipedia

3.1.1 The Story Starts Here

Everything changed in 2013 when Damien George launched a crowdfunding campaign (Kickstarter).

Damien was an undergraduate student at Cambridge University and an avid robotics programmer. He wanted to reduce

the world of Python from a gigabyte machine to a kilobyte. His Kickstarter campaign was to support his development

while he turned his proof of concept into a finished implementation.

MicroPython is supported by a diverse Pythonista community that has a keen interest in seeing the project succeed.

In addition to testing and supporting the code base, the developers provided tutorials, code libraries, and hardware

ports, making the project far more than Damien could have done alone.

• Reference: realpython

3.1.2 Why MicroPython

Although the original Kickstarter campaign released MicroPython as a development board “pyboard” with STM32F4,

MicroPython supports many ARM-based product architectures. The mainline supported ports are ARM Cortex-M

(many STM32 boards, TI CC3200/WiPy, Teensy boards, Nordic nRF series, SAMD21 and SAMD51), ESP8266,

ESP32, 16bit PIC, Unix, Windows, Zephyr and JavaScript. Second, MicroPython allows for fast feedback. This is

because you can use REPL to enter commands interactively and get responses. You can even tweak code and run it

immediately instead of traversing the code-compile-upload-execute cycle.

While Python has the same advantages, for some Microcontroller boards like the Raspberry Pi Pico, they are small,

simple and have little memory to run the Python language at all. That’s why MicroPython has evolved, keeping the

main Python features and adding a bunch of new ones to work with these Microcontroller boards.

39

https://en.wikipedia.org/wiki/MicroPython
https://realpython.com/micropython/

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Next you will learn to install MicroPython into the Raspberry Pi Pico.

• Reference: MicroPython - Wikipedia

• Reference: realpython

3.1.3 Installing MicroPython

1. Press and hold the BOOTSEL button and then connect the Pico to computer via a Micro USB cable.

2. Release the BOOTSEL button after your Pico is mount as a Mass Storage Device called RPI-RP2.

3. Open the drive, you’ll see two files on your Pico: INDEX.HTM and INFO_UF2.TXT. Double click the first

file, INDEX.HTM, to open it in your browser.

• INDEX.HTM : This is a welcome page telling you all about your Pico.

• INFO_UF2.TXT : Contains the version of the bootloader it’s currently running.

4. When the browser opens, click Getting started with MicroPython .

40 Chapter 3. For MicroPython User

https://en.wikipedia.org/wiki/MicroPython
https://realpython.com/micropython/

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

5. Download the MicroPython firmware by clicking the Download UF2 file button.

6. Open the Downloads folder and find the file you just downloaded - it will be called

‘pico_micropython_xxxx.uf2’, then drag it to RPI-RP2 storage drive. Your Pico will reboot and disap-

pear from the File Manager.

3.1. Geting Started with MicroPython 41

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Note: Please ignore the warning that a drive was removed without being ejected, that’s supposed to happen!

When you dragged the MicroPython firmware file onto your Pico, you told it to flash the firmware onto its internal

storage. To do that, your pico switches out of the special mode you put it in with the ‘BOOTSEL’ button, flashes the

new firmware, and then load it (meaning that your Pico is now running MicroPython).

Congratulations: your’re now ready to get started with MicroPython on your Raspberry Pi Pico!

3.2 Thonny Python IDE

Before you can start to program Pico with MicroPython, you need an integrated development environment (IDE), here

we recommend Thonny. Thonny comes with Python 3.7 built in, just one simple installer is needed and you’re ready

to learn programming.

3.2.1 Download from Web

You can download it by visiting the Thonny website: https://thonny.org/. Once open the page, you will see a light gray

box in the upper right corner, click on the link that applies to your operating system.

42 Chapter 3. For MicroPython User

https://thonny.org/

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

3.2.2 Introducing Thonny IDE

• Ref: realpython

3.2. Thonny Python IDE 43

https://realpython.com/micropython/

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

•

• A: The menu bar that contains the file New, Save, Edit, View, Run, Debug, etc.

• B: This paper icon allows you to create a new file.

• C: The folder icon allows you to open files that already exist in your computer or Raspberry Pi Pico, if your

Pico is already plugged into your computer.

• D: Click on the floppy disk icon to save the code. Similarly, you can choose whether to save the code to your

computer or to the Raspberry Pi Pico.

• E: The play icon allows you to run the code. If you have not saved the code, save the code before it can run.

• F: The Debug icon allows you to debug your code. Inevitably, you will encounter errors when writing code.

Errors can take many forms, sometimes using incorrect syntax, sometimes incorrect logic. Debugging is the

tool for finding and investigating errors.

Note: The Debug tool cannot be used when MicroPython (Raspberry Pi Pico) is selected as the interpreter.

If you want to debug your code, you need to select the interpreter as the default interpreter and save as to your computer

after debugging.

Finally, select the MicroPython (Raspberry Pi Pico) interpreter again, click the save as button, and re-save the debugged

code to your Raspberry Pi Pico.

• The G, H and I arrow icons allow you to run the program step by step, but can only be started after clicking on

the Degug icon. As you click on each arrow, you will notice that the yellow highlighted bar will indicate the

line or section of Python that is currently evaluating.

44 Chapter 3. For MicroPython User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

– G: Take a big step, which means jumping to the next line or block of code.

– H: Take a small step means expressing each component in depth.

– I: Exit out of the debugger.

• JClick it to return from debug mode to play mode.

• KUse the stop icon to stop running code.

• LScript Area, where you can write your Python code.

• MPython Shell, where you can type a single command, and when you press the Enter key, the single command

will run and provide information about the running program. This is also known as REPL, which means “Read,

Evaluate, Print, and Loop.”

• NInterpreter, where the current version of Python used to run your program is displayed, can be changed manu-

ally to another version by clicking on it.

Note: NO MicroPython(Raspberry Pi Pico) Interpreter Option ?

• Check that your Pico is plugged into your computer via a USB cable.

• The Raspberry Pi Pico interpreter is only available in version 3.3.3 or higher version of Thonny. If you are

running an older version, please update.

3.3 Your First MicroPython Program

In MicroPython, there are two options/methods for running code:

• Interactive Mode

• Script Mode

Interactive mode involves running your code directly from the Python shell, which can be accessed from the operating

system’s terminal. In script mode, you must create a file, save it with .py extension, and then run your code. Interactive

mode is suitable when you are running a few lines of code. Script mode is recommended when you need to create

large codes and save them for next time.

3.3.1 Interactive Mode

Interactive mode, also known as the REPL provides us with a quick way to run blocks or a single line of MicroPython

code via the Python shell.

Click the Python Shell area, type the following command after >>>, and then Enter.

print("Hello, World!")

3.3. Your First MicroPython Program 45

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Note: If your program does not run, but prints a “syntax error” message to the Shell area, then there is an error in

what you have written.

MicroPython needs to write its instructions in a very specific way: miss parentheses or quotation marks, spell print

errors, or give it a capital P, or add extra symbols somewhere in the instruction, and it won’t run . Try to type the

command again and make sure it is the same as this one, and then press Enter.

You will find that the message hello world will be printed out immediately in the Shell area.

3.3.2 Script Mode

Interactive mode is not recommended if you need to write a long piece of Python code, or if your Python script spans

multiple files. In this case, script mode can be used. In script mode, you write your code and save it with a .py

extension, which stands for “Python”.

Enter the same command print("Hello, World!") in the script area, when you press the ENTER key, the

program will not run, only one more blank line in the script area.

46 Chapter 3. For MicroPython User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

You need click Run Current Script or simply press F5 to run it. If your code has not been saved, a window will pop

up asking to save to This computer or Raspberry Pi Pico (if your Pico is already plugged into the computer)? Also

you will see MicroPython (Raspberry Pi Pico) displayed in the bottom right corner, this is the interpreter you need to

select, if yours is not this one you can click on it to switch.

Note: When you tell Thonny to save your program on the Raspberry Pi Pico, if you unplug the Pico and plug it into

someone else’s computer, your program is still saved on the Pico.

Choose the location you want to save, then enter the file name hello_world and the extension .py, and then click

OK.

3.3. Your First MicroPython Program 47

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Note: You can save your code under any name, but it’s best to describe what kind of code it is, and don’t name it with

meaningless names such as abc.py. It is important to note that if you save the code file name as main.py, it will

run automatically when the power is turned on.

When your program is saved, it will run automatically and you will see 2 lines of information in the Shell area.

>>> %Run -c $EDITOR_CONTENT

Hello, World!

The first of these lines is an instruction from Thonny telling the MicroPython interpreter on your Pico to run the

contents of the script area – the ‘EDITOR_CONTENT’. The second is the output of the program – the message you

told MicroPython to print.

In Script mode, it is very easy for you to open the previously saved code again, but the code entered in Interactive

Mode will not be saved and can only be re-entered.

Click the open icon in the Thonny toolbar, just like when you save the program, you will be asked whether you want

to save it to This Computer or Raspberry Pi Pico, for example, click Raspberry Pi Pico and you will see a list of

all programs you save to your Pico.

Find hello_world.py in the list, if your Pico is new, it will be the only file there, and click it to select it, then click OK.

Your program will be loaded into Thonny, ready to edit or run it again for you.

48 Chapter 3. For MicroPython User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

3.4 Projects

3.4.1 Hello, LED!

Just as printing “Hello, world!” is the first step in learning programming, letting the LED light up is the traditional

entry to learning physical programming.

There is a small LED on the top of the Pico. Like other LEDs, it will glow when power is on and go out when power

is off.

Code

Let’s copy this code into Thonny and click “Run Current Script” or simply press F5 to run it to make the LED blink!

Don’t forget to left click on the bottom right corner and switch the python version name to MicroPython (Raspberry

Pi Pico).

import machine

import utime

led_onboard = machine.Pin(25, machine.Pin.OUT)

while True:

led_onboard.value(1)

utime.sleep(2)

led_onboard.value(0)

utime.sleep(2)

3.4. Projects 49

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

How it works?

The onboard LED is connected to the GP25 pin, if you carefully observe the Pico pinout, you will find that GP25 is

one of the hidden pins, which means that we cannot use this pin (even if GP25 is used in exactly the same way as other

pins). The advantage of this design is that even if you don’t connect any external components, you can still have an

OUTPUT to test the program.

The machine library is required to use GPIO.

import machine

This library contains all the instructions needed to communicate between MicroPython and Pico. Without this line of

code, we will not be able to control any GPIOs (Of course including GP25).

The next thing to notice is this line:

led_onboard = machine.Pin(25, machine.Pin.OUT)

An object named led_onboard is defined here. Technically, it can be any name, it can be x, y, banana,

Micheal_Jackson, or any character, but it is best to use a name that describes the purpose to ensure that the program is

easy to read.

The second part of this line (the part after the equal sign) calls the Pin function in the machine library. It is used to tell

Pico’s GPIO pins what to do. The Pin function has two parameters: the first parameter (25) means the pin you want to

set; the second parameter (machine.Pin.OUT) tells that the pin should be used as an output instead of an input.

The above code has “set” the pin, but it will not light up the LED. To do this, we also need to “use” the pin.

led_onboard.value(1)

We have set up the GP25 pin before and named it led_onboard. The function of this statement is to set the value of

led_onboard to 1 to turn the on-board LED on.

All in all, to use GPIO, these steps are necessary:

• import machine library: This is necessary, and it is only executed once in the entire program.

• Set GPIO: Each pin should be set before use.

• Use: Assign a value to the pin, each assignment will change the working state of the pin.

If we follow the above steps to write an example, then you will get code like this:

import machine

led_onboard = machine.Pin(25, machine.Pin.OUT)

led_onboard.value(1)

Run it and you will be able to light up the onboard LED.

Next, we try to add the “extinguished” statement:

import machine

led_onboard = machine.Pin(25, machine.Pin.OUT)

led_onboard.value(1)

led_onboard.value(0)

According to the code line, this program will make the onboard LED turn on first and then turn off. But when you use

it, you will find that this is not the case. The onboard LED never seems to light up. This is because the execution speed

between the two lines is very fast, much faster than the reaction time of the human eye. The moment the onboard LED

lights up is not enough to make us perceive the light. To fix that, we need to slow down the program.

50 Chapter 3. For MicroPython User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Insert the following statement into the second line of the program:

import utime

Like machine, the utime library is introduced here, which handles all time-related things, including the delay we

need to use. Let’s insert a delay sentence between led_onboard.value(1) and led_onboard.value(0),

let them be separated by 2 seconds:

utime.sleep(2)

Now, the code should look like this. Run it, we will be able to see that the onboard LED turns on first and then turns

off:

import machine

import utime

led_onboard = machine.Pin(25, machine.Pin.OUT)

led_onboard.value(1)

utime.sleep(2)

led_onboard.value(0)

Finally, we should make the LED blink. Create a loop, rewrite the program, and it will be what you saw at the

beginning of this chapter.

import machine

import utime

led_onboard = machine.Pin(25, machine.Pin.OUT)

while True:

led_onboard.value(1)

utime.sleep(2)

led_onboard.value(0)

utime.sleep(2)

What More?

Usually, the library will have a corresponding API (Application Programming Interface) file. This is a concise ref-

erence manual that contains all the information needed to use this library, detailed introduction to functions, classes,

return types, parameters, etc., and even comes with a tutorial.

In this article, we used MicroPython’s machine and utime libraries, we can find more ways to use them here.

• machine.Pin

• utime

The following is also an example of making the LED blink, please try to read the API file to understand it!

import machine

import utime

led_onboard = machine.Pin(25, machine.Pin.OUT)

while True:

led_onboard.toggle()

utime.sleep(1)

3.4. Projects 51

https://docs.micropython.org/en/latest/library/machine.Pin.html
https://docs.micropython.org/en/latest/library/utime.html

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

3.4.2 Hello, Breadboard!

To use extended electronic components, a solderless breadboard will be the most powerful partner for novice users.

The breadboard is a rectangular plastic plate with a bunch of small holes in it. These holes allow us to easily insert elec-

tronic components and build electronic circuits. The breadboard does not permanently fix the electronic components,

which makes it easy for us to repair the circuit and start over when we make a mistake.

Note: We can use the breadboard without using special tools. But many electronic components are very small. A pair

of tweezers can help us pick up small parts better.

There are many detailed breadboard knowledge on the Internet, let us use it wisely.

• How to Use a Breadboard - Science Buddies

• What is a BREADBOARD? - Makezine

For breadboards, what you need to know clearly is:

1. Each group of half rows inside the breadboard (such as column A-E in row 1 or column F-J in row 3) is

connected. This means that when an electrical signal flows in from A1, it can flow from B1, C1, D1, E1, but not

from F1 or A2.

2. Both sides of the breadboard are usually used as power buses, and the holes in each column (about 50 holes) are

connected. Generally speaking, the hole near the red wire is used to connect the positive power supply, and the

hole near the blue wire is used to connect the negative power supply.

3. When building a circuit, the current flows from the positive pole and must first flow through the consumer before

it can flow into the negative pole. Otherwise, a short circuit may occur.

Now we should have a general impression of the breadboard circuit, why not try to build a “Hello, LED!” expansion

circuit?

Schematic

52 Chapter 3. For MicroPython User

https://www.sciencebuddies.org/science-fair-projects/references/how-to-use-a-breadboard#pth-smd
https://cdn.makezine.com/uploads/2012/10/breadboardworkshop.pdf

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Wiring

Let us follow the direction of the current to build the circuit!

1. Here we use the electrical signal from the GP15 pin of the Pico board to make the LED work, and the circuit

starts from here.

2. The current needs to pass through a 220 ohm resistor (used to protect the LED). Insert one end (either end) of

the resistor into the same row as the Pico GP15 pin (row 20 in my circuit), and insert the other end into the free

row of the breadboard (row 24 in my circuit).

Note: The color ring of the 220 ohm resistor is red, red, black, black and brown.

3. Pick up the LED, you will see that one of its leads is longer than the other. Insert the longer lead into the same

row as the end of the resistor, and connect the shorter lead across the middle gap of the breadboard to the same

row.

Note: The longer lead is known as the anode, and represents the positive side of the circuit; the

shorter lead is the cathode, and represents the negative side.

The anode needs to be connected to the GPIO pin through a resistor; the cathode needs to be con-

nected to the GND pin.

4. Insert the male-to-male (M2M) jumper wire into the same row as the LED short pin, and then connect it to the

negative power bus of the breadboard.

5. Use a jumper to connect the negative power bus to the GND pin of Pico.

3.4. Projects 53

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Code

The method of controlling the extended LED is the same as the method of controlling the on-board LED, the only

difference is that the operating pin is changed to 15.

import machine

import utime

led = machine.Pin(15, machine.Pin.OUT)

while True:

led.toggle()

utime.sleep(1)

toggle() can switch the pin between high level and low level, and you can see the LED blinking.

Also see reference here:

• machine.Pin

3.4.3 Reading Button Value

From the name of GPIO (General-purpose input/output), we can see that these pins have both input and output func-

tions. In the previous two projects, we used the output function, in this chapter we will use the input function to input

read the button value.

Schematic

54 Chapter 3. For MicroPython User

https://docs.micropython.org/en/latest/library/machine.Pin.html

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Wiring

Let’s follow the direction of the circuit to build the circuit!

1. Connect the 3V3 pin of Pico to the positive power bus of the breadboard.

2. Insert the button into the breadboard and straddle the central dividing line.

Note: We can think of the four-legged button as an H-shaped button. Its left (right) two feet

are connected, which means that after it straddles the central dividing line, it will connect the two

half rows of the same row number together. (For example, in my circuit, E23 and F23 have been

connected, as are E25 and F25).

Before the button is pressed, the left and right sides are independent of each other, and current cannot

flow from one side to the other.

3. Use a jumper wire to connect one of the button pins to the positive bus (mine is the pin on the upper right).

4. Connect the other pin (upper left or lower left) to GP14 with a jumper wire.

5. Use a 10K resistor to connect the pin on the upper left corner of the button and the negative bus.

Note: The color ring of the 10k resistor is brown, black, black, red, brown.

3.4. Projects 55

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Buttons require pull-up resistors or pull-down resistors. If there is no pull-up or pull-down resistor,

the main controller may receive a ‘noisy’ signal which can trigger even when you’re not pushing the

button.

6. Connect the negative power bus of the breadboard to Pico’s GND.

Code

When the button is pressed, the current will flow from 3V3 through the button to GP14, in other words, GP14 will

read a high-level signal ‘1’; otherwise, it will read a low-level signal ‘0’.

import machine

import utime

button = machine.Pin(14, machine.Pin.IN)

while True:

if button.value() == 1:

print("You pressed the button!")

utime.sleep(1)

Pull-up Working Mode

Next is the wiring and code when the button in the pull-up working mode, please try it.

56 Chapter 3. For MicroPython User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

1. Connect the 3V3 pin of Pico to the positive power bus of the breadboard.

2. Insert the button into the breadboard and straddle the central dividing line.

3. Use a jumper wire to connect one of the button pins to the negative bus (mine is the pin on the upper right).

4. Connect the other pin (upper left or lower left) to GP14 with a jumper wire.

5. Use a 10K resistor to connect the pin on the upper left corner of the button and the positive bus.

6. Connect the negative power bus of the breadboard to Pico’s GND.

import machine

import utime

button = machine.Pin(14, machine.Pin.IN)

while True:

if button.value() == 0:

When the button is pressed, GPIO will be connected to GND.

print("You pressed the button!")

utime.sleep(1)

Also see the reference here:

• machine.Pin

3.4. Projects 57

https://docs.micropython.org/en/latest/library/machine.Pin.html

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

What more?

There are two components in this kit that work on the same principle as buttons, they are tilt switch and slide switch.

These components can use the same code as the button. Their wiring is as follows:

Tilt switch

1. Connect the 3V3 pin of Pico to the positive power bus of the breadboard.

2. Insert the tilt switch into the breadboard.

3. Use a jumper wire to connect one end of tilt switch pin to the positive bus.

58 Chapter 3. For MicroPython User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

4. Connect the other pin to GP14 with a jumper wire.

5. Use a 10K resistor to connect the second pin (which connected to GP14) and the negative bus.

6. Connect the negative power bus of the breadboard to Pico’s GND.

When you put a flat breadboard, the circuit will be closed. When you tilt the breadboard, the circuit is open.

• Tilt Switch

Slide switch

1. Connect the 3V3 pin of Pico to the positive power bus of the breadboard.

2. Insert the slide switch into the breadboard.

3.4. Projects 59

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

3. Use a jumper wire to connect one end of slide switch pin to the negative bus.

4. Connect the middle pin to GP14 with a jumper wire.

5. Use a jumper wire to connect last end of slide switch pin to the positive bus

6. Use a 10K resistor to connect the middle pin of the slide switch and the negative bus.

7. Use a 104 capacitor to connect the middle pin of the slide switch and the negative bus to realize debounce that

may arise from your toggle of switch.

8. Connect the negative power bus of the breadboard to Pico’s GND.

When you toggle the slide switch, the circuit will switch between closed and open.

• Slide Switch

• Capacitor

3.4.4 Reaction Game

Microcontrollers not only appear in industrial equipment, they are also used to control a large number of electronic

devices in the home, including toys and games. In this chapter, we will use “button” and “LED” to build a simple

reaction timing game.

The study of reaction time is called mental chronometry, it is a hard science, and it is also the basis of many games

(Including the games you are about to make).

Reaction time is the time that elapses between a person being presented with a stimulus and the person initiating a

motor response to the stimulus, in milliseconds, the average reaction time of a person is about 200-250 milliseconds.

People with quick reaction time have a huge advantage in the game!

Schematic

60 Chapter 3. For MicroPython User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Wiring

1. In general, this circuit is a combination of the circuits in the previous two projects.

2. Confirm again that the breadboard power bus is not connected wrongly or short-circuited!

Code

When the program starts, the LED will turn off within 5 to 10 seconds. You need to press the button as fast as possible,

and the program will tell you what your reaction time is.

import machine

import utime

import urandom

led = machine.Pin(15, machine.Pin.OUT)

button = machine.Pin(14, machine.Pin.IN)

def button_press(pin):

button.irq(handler=None)

rection_time = utime.ticks_diff(utime.ticks_ms(), timer_light_off)

print("Your reaction time was " + str(rection_time) + " milliseconds!")

led.value(1)

utime.sleep(urandom.uniform(5, 10))

led.value(0)

timer_light_off = utime.ticks_ms()

button.irq(trigger=machine.Pin.IRQ_RISING, handler=button_press)

3.4. Projects 61

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

How it works?

In the previous project, we simply read the button value. This time, we tried a flexible way of using buttons: interrupt

requests, or IRQs.

For example, you are reading a book page by page, as if a program is executing a thread. At this time, someone came

to you to ask a question and interrupted your reading. Then the person is executing the interrupt request: asking you

to stop what you are doing, answer his questions, and then let you return to reading the book after the end.

MicroPython interrupt request also works in the same way, it allows certain operations to interrupt the main program.

It is achieved through the following two statements (the highlighted 2 lines):

import machine

import utime

import urandom

led = machine.Pin(15, machine.Pin.OUT)

button = machine.Pin(14, machine.Pin.IN)

def button_press(pin):

button.irq(handler=None)

rection_time = utime.ticks_diff(utime.ticks_ms(), timer_light_off)

print("Your reaction time was " + str(rection_time) + " milliseconds!")

led.value(1)

utime.sleep(urandom.uniform(5, 10))

led.value(0)

timer_light_off = utime.ticks_ms()

button.irq(trigger=machine.Pin.IRQ_RISING, handler=button_press)

Here, a callback function (button_press) is first defined, which is called an interrupt handler. It will be executed when

an interrupt request is triggered. Then, set up an interrupt request in the main program, it contains two parts: trigger

and handler.

• In this program, the trigger is IRQ_RISING, which means that the value of the pin rises from low level to

high level (That is, pressing the button).

• handler is the callback function button_press we defined before.

In this example, you will find a statement button.irq(handler=None) in the callback function, which is equiv-

alent to canceling the interrupt.

In order to better understand the interrupt request, we change the above code to the following (Use the same circuit):

import machine

import utime

button = machine.Pin(14, machine.Pin.IN)

count = 0

def button_press(pin):

print("You press the button!")

utime.sleep(1)

button.irq(trigger=machine.Pin.IRQ_RISING, handler=button_press)

while True:

count+=1

print(count)

utime.sleep(1)

62 Chapter 3. For MicroPython User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

When the program runs, it will start counting and print the numbers in the shell. When we press the button, it will stop

counting and enter the callback function to print “You press the button!”.

Go back to the original example. We need to make the LED turn off in a random time of 5 to 10 seconds, which is

achieved by the following two lines:

import machine

import utime

import urandom

led = machine.Pin(15, machine.Pin.OUT)

button = machine.Pin(14, machine.Pin.IN)

def button_press(pin):

button.irq(handler=None)

rection_time = utime.ticks_diff(utime.ticks_ms(), timer_light_off)

print("Your reaction time was " + str(rection_time) + " milliseconds!")

led.value(1)

utime.sleep(urandom.uniform(5, 10))

led.value(0)

timer_light_off = utime.ticks_ms()

button.irq(trigger=machine.Pin.IRQ_RISING, handler=button_press)

The urandom library is loaded here. Use the urandom.uniform(5,10) function to generate a random number,

the ‘uniform’ part referring to a uniform distribution between those two numbers.

If needed, try running the following example of random number generation:

import machine

import utime

import urandom

while True:

print(urandom.uniform(1, 20))

utime.sleep(1)

The last two statements you need to understand are utime.ticks_ms() and utime.ticks_diff().

import machine

import utime

import urandom

led = machine.Pin(15, machine.Pin.OUT)

button = machine.Pin(14, machine.Pin.IN)

def button_press(pin):

button.irq(handler=None)

rection_time = utime.ticks_diff(utime.ticks_ms(), timer_light_off)

print("Your reaction time was " + str(rection_time) + " milliseconds!")

led.value(1)

utime.sleep(urandom.uniform(5, 10))

led.value(0)

timer_light_off = utime.ticks_ms()

button.irq(trigger=machine.Pin.IRQ_RISING, handler=button_press)

• The utime.ticks_ms() function will output the number of milliseconds that have passed since the utime

library started counting and store it in the variable timer_light_off.

3.4. Projects 63

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

• utime.ticks_diff() is used to output the time difference between two time nodes. The two time nodes

in this function are utime.ticks_ms(), the current program time (press the button) and the reference time

(light off) stored in the variable timer_light_off.

These two functions are usually used together to calculate the execution time of the program. Here we use it to

calculate the time from when the light turns off to when the button is pressed.

Finally, this time will be printed out.

print("Your reaction time was " + str(rection_time) + " milliseconds!")

Also see the reference here:

• machine.Pin

• urandom

• utime

What more?

Playing with your friends will be more fun, why not add buttons and see who can press the buttons the fastest?

Please try it.

64 Chapter 3. For MicroPython User

https://docs.micropython.org/en/latest/library/machine.Pin.html
https://www.sutron.com/micropython/html/library/urandom.html
https://docs.micropython.org/en/latest/library/utime.html

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

import machine

import utime

import urandom

led = machine.Pin(15, machine.Pin.OUT)

left_button = machine.Pin(14, machine.Pin.IN)

right_button = machine.Pin(16, machine.Pin.IN)

def button_press(pin):

left_button.irq(handler=None)

right_button.irq(handler=None)

rection_time = utime.ticks_diff(utime.ticks_ms(), timer_light_off)

if pin == left_button:

print("Left player is winner!")

elif pin == right_button:

print("Right player is winner!")

print("Your reaction time was " + str(rection_time) + " milliseconds!")

led.value(1)

utime.sleep(urandom.uniform(5, 10))

led.value(0)

timer_light_off = utime.ticks_ms()

right_button.irq(trigger=machine.Pin.IRQ_RISING, handler=button_press)

left_button.irq(trigger=machine.Pin.IRQ_RISING, handler=button_press)

3.4. Projects 65

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

3.4.5 Traffic Light

In addition to home electronic devices, many microcontrollers can also be found in the social environment, including

traffic lights. Traffic lights are used to direct traffic operation and are generally composed of red, green, and yellow

lights. Building a huge traffic management system is a fairly advanced project, but using Pico to drive a miniature

traffic light is a project we can try.

Let’s make a mini pedestrian crossing system with a few LEDs and a button!

Schematic

66 Chapter 3. For MicroPython User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Wiring

1. Connect 3V3 and GND of Pico to the breadboard power bus.

2. Insert the green, yellow and red LEDs on the breadboard.

3. GP13, GP14, GP15 are each connected to a 220 resistor and then connected to the anode of the LED.

4. Connect the cathodes of the LEDs to the negative power bus of the breadboard.

5. Insert the Button, connect one side of it to the GP16 pin, then use a 10K resistor to connect the same side and

the negative bus. Do not forget to connect the other side to the positive power bus.

Note: The color ring of 220 ohm resistor is red, red, black, black and brown.

The color ring of the 10k ohm resistor is brown, black, black, red and brown.

Code

When the program is started, the traffic light will switch in the order of red for 5 seconds, yellow for 2 seconds, green

for 5 seconds, and yellow for 2 seconds. If we (pedestrians) press the button, the red LED will be extended to 15

seconds, which will give us more time to cross the road.

import machine

import utime

import _thread

led_red = machine.Pin(15, machine.Pin.OUT)

led_yellow = machine.Pin(14, machine.Pin.OUT)

led_green = machine.Pin(13, machine.Pin.OUT)

button = machine.Pin(16, machine.Pin.IN)

global button_status

(continues on next page)

3.4. Projects 67

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

(continued from previous page)

button_status = 0

def button_thread():

global button_status

while True:

if button.value() == 1:

button_status = 1

_thread.start_new_thread(button_thread, ())

while True:

if button_status == 1:

led_red.value(1)

utime.sleep(10)

global button_status

button_status = 0

led_red.value(1)

utime.sleep(5)

led_red.value(0)

led_yellow.value(1)

utime.sleep(2)

led_yellow.value(0)

led_green.value(1)

utime.sleep(5)

led_green.value(0)

led_yellow.value(1)

utime.sleep(2)

led_yellow.value(0)

How it works?

In the previous projects, we have successfully made the LED blink. In other words, it is very simple for us to write

a code that makes the traffic light cycle color. What we need to do is to add a judgment on the state of the button.

But if we directly write the statement that reads the button value into the main program, we will find that it doesn’t fit

anywhere. Even if it is written in, it is difficult for us to read this value. This is because the program is stuck when

executing utime.sleep(), and the statement to read the button value is not executed at this time.

Of course, we can read the button value through the IRQ in the previous project. But this time we take another

approach-multithreading.

Multi-threading can be simply understood as dividing a thing into multiple parts, which are executed by different

people (or processors). Just like when the chef is frying the steak, the assistant chef makes the sauce so that the newly

prepared sauce can be poured on the properly prepared steak to make the best cooking.

Look at these lines:

import machine

import utime

import _thread

led_red = machine.Pin(15, machine.Pin.OUT)

led_yellow = machine.Pin(14, machine.Pin.OUT)

(continues on next page)

68 Chapter 3. For MicroPython User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

(continued from previous page)

led_green = machine.Pin(13, machine.Pin.OUT)

button = machine.Pin(16, machine.Pin.IN)

global button_status

button_status = 0

def button_thread():

global button_status

while True:

if button.value() == 1:

button_status = 1

_thread.start_new_thread(button_thread, ())

while True:

if button_status == 1:

led_red.value(1)

utime.sleep(10)

global button_status

button_status = 0

led_red.value(1)

utime.sleep(5)

led_red.value(0)

led_yellow.value(1)

utime.sleep(2)

led_yellow.value(0)

led_green.value(1)

utime.sleep(5)

led_green.value(0)

led_yellow.value(1)

utime.sleep(2)

led_yellow.value(0)

Here, the _thread library is imported first. This module implements multithreading support. Then define a thread

button_thread(), which is independent of the main thread. It is used here to read the state of the button. Finally

use _thread.start_new_thread(button_thread, ()) to start the thread.

The following sample code can help you better understand multithreading:

import machine

import utime

import _thread

led_red = machine.Pin(15, machine.Pin.OUT)

led_yellow = machine.Pin(14, machine.Pin.OUT)

button = machine.Pin(16, machine.Pin.IN)

def led_yellow_thread():

while True:

led_yellow.toggle()

utime.sleep(2)

_thread.start_new_thread(led_yellow_thread, ())

(continues on next page)

3.4. Projects 69

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

(continued from previous page)

while True:

button_status = button.value()

if button_status == 1:

led_red.value(1)

elif button_status == 0:

led_red.value(0)

In the main thread, the button is used to control the red LED on and off. In the new thread (led_yellow_thread()), the

yellow LED will change every 2 seconds. The two threads work independently of each other.

Let’s go back to the traffic signal program. We let the main thread change the light and let the new thread read the

button value. However, the threads are independent of each other, and we need a way for the new thread to pass

information to the main thread, which requires the use of global variable.

The variables we have used before are all local variables, acting only in a certain part of the program (Variables

declared in the main function cannot be used in sub-functions, and variables declared in the main thread cannot be

used in the new thread). The global variable can be used anywhere, we change it in one thread, and the other can get

its updated value.

Global variables are in these places:

import machine

import utime

import _thread

led_red = machine.Pin(15, machine.Pin.OUT)

led_yellow = machine.Pin(14, machine.Pin.OUT)

led_green = machine.Pin(13, machine.Pin.OUT)

button = machine.Pin(16, machine.Pin.IN)

global button_status

button_status = 0

def button_thread():

global button_status

while True:

if button.value() == 1:

button_status = 1

_thread.start_new_thread(button_thread, ())

while True:

if button_status == 1:

led_red.value(1)

utime.sleep(10)

global button_status

button_status = 0

led_red.value(1)

utime.sleep(5)

led_red.value(0)

led_yellow.value(1)

utime.sleep(2)

led_yellow.value(0)

(continues on next page)

70 Chapter 3. For MicroPython User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

(continued from previous page)

led_green.value(1)

utime.sleep(5)

led_green.value(0)

led_yellow.value(1)

utime.sleep(2)

led_yellow.value(0)

• When the program is just running, button_status is assigned a value of 0, which means that the button has

not been pressed.

• In the new thread–button_thread, when the program detects that the button is pressed, button_status is

assigned the value 1.

• At the beginning of each cycle, it will detect whether the button has been pressed, if the button is pressed

(button_status == 1), the red light will be on for 10 seconds. Then button_status switch to 0, and wait for

the next button press.

The function of global button_status is to tell the program that we are going to modify the value of

button_status, but if we just want to read the variable value, this line is not needed.

3.4.6 Two Kinds of Transistors

Transistor is a semiconductor device that controls a large current through a small current. Its function is to amplify

weak signals into larger amplitude signals, and can also be used as a non-contact switch. It is the core component of

electronic circuits.

This sounds a bit complicated. In simple words, some components use high-current (such as Buzzer). If the power

is directly supplied from the GPIO of the microcontroller, the power may be insufficient or the microcontroller may

be damaged. Then, the transistor has played a “dam” role here. Transistor receives the weak electrical signal from

the GPIO pin to control the turn-on and turn-off of the large current (from VCC to GND). In this way, high-current

components can be driven and the microcontroller can be protected.

Transistor

This kit is equipped with two types of transistors, S8550 and S8050, the former is PNP and the latter is NPN. They

look very similar, and we need to check carefully to see their labels. When a High level signal goes through an NPN

transistor, it is energized. But a PNP one needs a Low level signal to manage it. Both types of transistor are frequently

used for contactless switches, just like in this experiment.

Let’s use LED and button to understand how to use transistor!

3.4. Projects 71

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Wiring

Put the label side facing us and the pins facing down. The pins from left to right are emitter(e), base(b), and collector(c).

Note:

• The base is the gate controller device for the larger electrical supply.

• In the NPN transistor, the collector is the larger electrical supply and the emitter is the outlet for that supply, the

PNP transistor is just the opposite.

1. Way to connect NPN (S8050) transistor.

72 Chapter 3. For MicroPython User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

1. Connect 3V3 and GND of Pico to the power bus of the breadboard.

2. Connect the anode lead of the LED to the positive power bus via a 220 resistor.

3. Connect the cathode lead of the LED to the collector lead of the transistor.

4. Connect the base lead of the transistor to the GP15 pin through a 1k resistor.

5. Connect the emitter lead of the transistor to the negative power bus.

6. Connect one side of the button to the GP14 pin, and use a 10k resistor connect the same side and

3.4. Projects 73

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

negative power bus. The other side to the positive power bus.

Note:

• The color ring of 220 resistor is red, red, black, black and brown.

• The color ring of the 1k resistor is brown, black, black, brown and brown.

• The color ring of the 10k resistor is brown, black, black, red and brown.

1. Way to connect PNP(S8550) transistor.

74 Chapter 3. For MicroPython User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

1. Connect 3V3 and GND of Pico to the power bus of the breadboard.

2. Connect the anode lead of the LED to the positive power bus via a 220 resistor.

3. Connect the cathode lead of the LED to the emitter lead of the transistor.

4. Connect the base lead of the transistor to the GP15 pin through a 1k resistor.

5. Connect the collector lead of the transistor to the negative power bus.

6. Connect one side of the button to the GP14 pin, and use a 10k resistor connect the same side and

negative power bus. The other side to the positive power bus.

Code

Two kinds of transistors can be controlled with the same code. When we press the button, Pico will send a high-level

signal to the transistor; when we release it, it will send a low-level signal. We can see that diametrically opposite

phenomena have occurred in the two circuits. The circuit using the NPN transistor will light up when the button is

pressed, which means it is receiving a high-level conduction circuit; The circuit that uses the PNP transistor will light

up when it is released, which means it is receiving a low-level conduction circuit.

import machine

button = machine.Pin(14, machine.Pin.IN)

signal = machine.Pin(15, machine.Pin.OUT)

while True:

button_status = button.value()

if button_status== 1:

signal.value(1)

elif button_status == 0:

signal.value(0)

3.4. Projects 75

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

3.4.7 Intruder Alarm

In the previous chapters, we used simple electronic components (such as LED, button). This time we will use the

sensor module - PIR.

Passive infrared sensor (PIR sensor) is a common sensor that can measure infrared (IR) light emitted by objects in its

field of view. Simply put, it will receive infrared radiation emitted from the body, thereby detecting the movement of

people and other animals. More specifically, it tells the main control board that someone has entered your room.

PIR Motion Sensor

Now, let’s use PIR and active buzzer to build an Intruder Alarm.

Schematic

Wiring

Two types of buzzers are included in the kit. We need to use active buzzer. Turn them around, the sealed back (not the

exposed PCB) is the one we want.

76 Chapter 3. For MicroPython User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

The buzzer needs to use a transistor when working, here we use S8050.

1. Connect 3V3 and GND of Pico to the power bus of the breadboard.

2. Connect the positive pin of the buzzer to the positive power bus.

3. Connect the cathode pin of the buzzer to the collector lead of the transistor.

3.4. Projects 77

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

4. Connect the base lead of the transistor to the GP15 pin through a 1k resistor.

5. Connect the emitter lead of the transistor to the negative power bus.

6. Connect the OUT of PIR to the GP14 pin, VCC to the positive power bus, and GND to the negative power bus.

Note: The color ring of the 1k resistor is brown, black, black, brown and brown.

Code

When the program is executed, if someone walks into the PIR detection range, the buzzer will be’BEEP BEEP’ for 5

seconds!

import machine

import utime

pir_sensor = machine.Pin(14, machine.Pin.IN)

buzzer = machine.Pin(15, machine.Pin.OUT)

def motion_detected(pin):

for i in range(50):

buzzer.toggle()

utime.sleep_ms(100)

pir_sensor.irq(trigger=machine.Pin.IRQ_RISING, handler=motion_detected)

print("Intruder Alarm Start!")

What more?

PIR is a very sensitive sensor. In order to adapt it to the environment of use, it needs to be adjusted. Let the side with

the 2 potentiometers facing you, turn both potentiometers counterclockwise to the end and insert the jumper cap on

the pin with L and the middle pin.

Copy the following code into Thonny and run it, let us analyze its adjustment method along with the experimental

results.

import machine

import utime

pir_sensor = machine.Pin(14, machine.Pin.IN)

global timer_delay

timer_delay = utime.ticks_ms()

print("start")

def pir_in_high_level(pin):

global timer_delay

pir_sensor.irq(trigger=machine.Pin.IRQ_FALLING, handler=pir_in_low_level)

intervals = utime.ticks_diff(utime.ticks_ms(), timer_delay)

timer_delay = utime.ticks_ms()

print("the dormancy duration is " + str(intervals) + "ms")

def pir_in_low_level(pin):

global timer_delay

(continues on next page)

78 Chapter 3. For MicroPython User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

(continued from previous page)

pir_sensor.irq(trigger=machine.Pin.IRQ_RISING, handler=pir_in_high_level)

intervals2 = utime.ticks_diff(utime.ticks_ms(), timer_delay)

timer_delay = utime.ticks_ms()

print("the duration of work is " + str(intervals2) + "ms")

pir_sensor.irq(trigger=machine.Pin.IRQ_RISING, handler=pir_in_high_level)

1. Trigger Mode

Let’s take a look at the pins with jumper cap at the corner. It allows PIR to enter Repeatable trigger

mode or Non-repeatable trigger mode

At present, our jumper cap connects the middle Pin and L Pin, which makes the PIR in non-repeatable

trigger mode. In this mode, when the PIR detects the movement of the organism, it will send a high-

level signal for about 2.8 seconds to the main control board. We can see in the printed data that the

duration of work will always be around 2800ms.

Next, we modify the position of the lower jumper cap and connect it to the middle Pin and H Pin to

make the PIR in repeatable trigger mode. In this mode, when the PIR detects the movement of the

organism (note that it is movement, not static in front of the sensor), as long as the organism keeps

moving within the detection range, the PIR will continue to send a high-level signal to the main

control board. We can see in the printed data that the duration of work is an uncertain value.

2. Delay Adjustment

The potentiometer on the left is used to adjust the interval between two jobs.

3.4. Projects 79

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

At present, we screw it counterclockwise to the end, which makes the PIR need to enter a sleep

time of about 5 seconds after finishing sending the high level work. During this time, the PIR will no

longer detect the infrared radiation in the target area. We can see in the printed data that the dormancy

duration is always no less than 5000ms.

If we turn the potentiometer clockwise, the sleep time will also increase. When it is turned clockwise

to the end, the sleep time will be as high as 300s.

3. Distance Adjustment

The centered potentiometer is used to adjust the sensing distance range of the PIR.

Turn the knob of the distance adjustment potentiometer clockwise to increase the sensing distance

range, and the maximum sensing distance range is about 0-7 meters. If it rotates counterclockwise,

the sensing distance range is reduced, and the minimum sensing distance range is about 0-3 meters.

3.4.8 Fading LED

So far, we have used only two output signals: high level and low level (or called 1 & 0, ON & OFF), which is called

digital output. However, in actual use, many devices do not simply ON/OFF to work, for example, adjusting the speed

of the motor, adjusting the brightness of the desk lamp, and so on. In the past, a slider that can adjust the resistance

was used to achieve this goal, but this is always unreliable and inefficient. Therefore, Pulse width modulation (PWM)

has emerged as a feasible solution to such complex problems.

A digital output composed of a high level and a low level is called a pulse. The pulse width of these pins can be

adjusted by changing the ON/OFF speed.

Simply put, when we are in a short period (such as 20ms, most people’s visual retention time), Let the LED turn on,

turn off, and turn on again, we won’t see it has been turned off, but the brightness of the light will be slightly weaker.

During this period, the more time the LED is turned on, the higher the brightness of the LED. In other words, in the

cycle, the wider the pulse, the greater the “electric signal strength” output by the microcontroller. This is how PWM

controls LED brightness (or motor speed).

• Pulse-width modulation - Wikipedia

There are some points to pay attention to when Pico uses PWM. Let’s take a look at this picture.

80 Chapter 3. For MicroPython User

https://en.wikipedia.org/wiki/Pulse-width_modulation

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Each GPIO pin of Pico supports PWM, but it actually has a total of 16 independent PWM outputs (instead of 30),

distributed between GP0 to GP15 on the left, and the PWM output of the right GPIO is equivalent to the left copy.

What we need to pay attention to is to avoid setting the same PWM channel for different purposes during programming.

(For example, GP0 and GP16 are both PWM_0A)

After understanding this knowledge, let us try to achieve the effect of Fading LED.

Schematic

3.4. Projects 81

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Wiring

1. Here we use the GP15 pin of the Pico board.

2. Connect one end (either end) of the 220 ohm resistor to GP15, and insert the other end into the free row of the

breadboard.

3. Insert the anode lead of the LED into the same row as the end of the 220 resistor, and connect the cathode lead

across the middle gap of the breadboard to the same row.

4. Connect the LED cathode to the negative power bus of the breadboard.

5. Connect the negative power bus to the GND pin of Pico.

Note: The color ring of the 220 ohm resistor is red, red, black, black and brown.

Code

The LED will gradually become brighter as the program runs.

import machine

import utime

led = machine.PWM(machine.Pin(15))

led.freq(1000)

(continues on next page)

82 Chapter 3. For MicroPython User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

(continued from previous page)

for brightness in range(0,65535,50):

led.duty_u16(brightness)

utime.sleep_ms(10)

led.duty_u16(0)

How it works?

Here, we change the brightness of the LED by changing the duty cycle of the GP15’s PWM output. Let’s take a look

at these lines.

import machine

import utime

led = machine.PWM(machine.Pin(15))

led.freq(1000)

for brightness in range(0,65535,50):

led.duty_u16(brightness)

utime.sleep_ms(10)

led.duty_u16(0)

• led = machine.PWM(machine.Pin(15)) sets the GP15 pin as PWM output.

• The line led.freq(1000) is used to set the PWM frequency, here it is set to 1000Hz, which means 1ms

(1/1000) is a cycle. The PWM frequency can be adjusted, for example, the steering wheel needs to work at

50Hz, the passive buzzer can change the tone by changing the PWM frequency. However, there is no limit when

using LEDs alone, we set it to 1000Hz.

• The led.duty_u16() line is used to set the duty cycle, which is a 16-bit interger(2^16=65536). When we

assign a 0 to this function, the duty cycle is 0%, and each cycle has 0% of the time to output a high level, in

other words, turn off all pulses. When the value is 65535, the duty cycle is 100%, that is, the complete pulse

is turned on, and the result is equal to ‘1’ as a digital output. If it is 32768, it will turn on half a pulse, and the

brightness of the LED will be half of that when it is fully turned on.

3.4.9 Colorful Light

As we know, light can be superimposed. For example, mix blue light and green light give cyan light, red light and

green light give yellow light. This is called “The additive method of color mixing”.

• Additive color - Wikipedia

Based on this method, we can use the three primary colors to mix the visible light of any color according to different

specific gravity. For example, orange can be produced by more red and less green.

In this chapter, we will use RGB LED to explore the mystery of additive color mixing!

RGB LED is equivalent to encapsulating Red LED, Green LED, Blue LED under one lamp cap, and the three LEDs

share one cathode pin. Since the electric signal is provided for each anode pin, the light of the corresponding color

can be displayed. By changing the electrical signal intensity of each anode, it can be made to produce various colors.

3.4. Projects 83

https://en.wikipedia.org/wiki/Additive_color

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Schematic

Wiring

Put the RGB LED flat on the table, we can see that it has 4 leads of different lengths. Find the longest one (GND) and

turn it sideways to the left. Now, the order of the four leads is Red, GND, Green, Blue from left to right.

84 Chapter 3. For MicroPython User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

1. Connect the GND pin of the Pico to the negative power bus of the breadboard.

2. Insert the RGB LED into the breadboard so that its four pins are in different rows.

3. Connect the red lead to the GP13 pin via a 330 resistor. When using the same power supply intensity, the Red

LED will be brighter than the other two, and a slightly larger resistor needs to be used to reduce its brightness.

4. Connect the Green lead to the GP14 pin via a 220 resistor.

5. Connect the Blue lead to the GP15 pin via a 220 resistor.

6. Connect the GND lead to the negative power bus.

7. Connect the negative power bus to Pico’s GND.

Note:

• The color ring of the 220 resistor is red, red, black, black and brown.

• The color ring of the 330 resistor is orange, orange, black, black and brown.

3.4. Projects 85

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Code

Here, we can choose our favorite color in drawing software (such as paint) and display it with RGB LED.

import machine

import utime

red = machine.PWM(machine.Pin(13))

green = machine.PWM(machine.Pin(14))

blue = machine.PWM(machine.Pin(15))

red.freq(1000)

green.freq(1000)

blue.freq(1000)

def interval_mapping(x, in_min, in_max, out_min, out_max):

return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min

def color_to_duty(rgb_value):

rgb_value = int(interval_mapping(rgb_value,0,255,0,65535))

return rgb_value

def color_set(red_value,green_value,blue_value):

red.duty_u16(color_to_duty(red_value))

green.duty_u16(color_to_duty(green_value))

blue.duty_u16(color_to_duty(blue_value))

color_set(255,128,0)

Write the RGB value into color_set(), you will be able to see the RGB light up the colors you want.

86 Chapter 3. For MicroPython User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

How it works?

We defined a color_set() function to let the three primary colors work together.

At present, pixels in computer hardware usually adopt a 24-bit representation method. The three primary colors are

divided into 8 bits, and the color value range is 0 to 255. With 256 possible values for each of the three primary colors

(don’t forget to count 0!), that 256 x 256 x 256 = 16,777,216 colors can be combined in this way. The color_set()

function also follows the 24-bit notation, which makes it easier for us to select the desired color.

And since the value range of duty_u16() is 0~65535 (instead of 0 to 255) when the output signals to RGB LED

through PWM, we have defined color_to_duty() and interval_mapping () function to map the color

values to the duty values.

3.4.10 Custom Tone

We have used active buzzer in the previous project, this time we will use passive buzzer.

Like the active buzzer, the passive buzzer also uses the phenomenon of electromagnetic induction to work. The

difference is that a passive buzzer does not have oscillating source, so it will not beep if DC signals are used. But this

allows the passive buzzer to adjust its own oscillation frequency and can emit different notes such as “doh, re, mi, fa,

sol, la, ti”.

Let the passive buzzer emit a melody!

Schematic

3.4. Projects 87

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Wiring

Two buzzers are included in the kit, we use the one with exposed PCB behind.

The buzzer needs a transistor to work, and here we use S8050.

1. Connect 3V3 and GND of Pico to the power bus of the breadboard.

2. Connect the positive pin of the buzzer to the positive power bus.

3. Connect the cathode pin of the buzzer to the collector lead of the transistor.

4. Connect the base lead of the transistor to the GP15 pin through a 1k resistor.

5. Connect the emitter lead of the transistor to the negative power bus.

88 Chapter 3. For MicroPython User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Note: The color ring of the 1k ohm resistor is brown, black, black, brown and brown.

Code

import machine

import utime

buzzer = machine.PWM(machine.Pin(15))

def tone(pin,frequency,duration):

pin.freq(frequency)

pin.duty_u16(30000)

utime.sleep_ms(duration)

pin.duty_u16(0)

tone(buzzer,440,250)

utime.sleep_ms(500)

tone(buzzer,494,250)

utime.sleep_ms(500)

tone(buzzer,523,250)

How it works?

If the passive buzzer given a digital signal, it can only keep pushing the diaphragm without producing sound.

Therefore, we use the tone() function to generate the PWM signal to make the passive buzzer sound.

This function has three parameters:

• pin, the GPIO pin that controls the buzzer.

• frequency, the pitch of the buzzer is determined by the frequency, the higher the frequency, the higher the pitch.

• Duration, the duration of the tone.

We use the duty_u16() function to set the duty cycle to 30000(about 50%). It can be other numbers, and it only

needs to generate a discontinuous electrical signal to oscillate.

What more

We can simulate the specific tone according to the fundamental frequency of the piano, so as to play a complete piece

of music.

• Piano key frequencies - Wikipedia

import machine

import utime

NOTE_C4 = 262

NOTE_G3 = 196

NOTE_A3 = 220

NOTE_B3 = 247

melody =[NOTE_C4,NOTE_G3,NOTE_G3,NOTE_A3,NOTE_G3,NOTE_B3,NOTE_C4]

(continues on next page)

3.4. Projects 89

https://en.wikipedia.org/wiki/Piano_key_frequencies

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

(continued from previous page)

buzzer = machine.PWM(machine.Pin(15))

def tone(pin,frequency,duration):

pin.freq(frequency)

pin.duty_u16(30000)

utime.sleep_ms(duration)

pin.duty_u16(0)

for note in melody:

tone(buzzer,note,250)

utime.sleep_ms(150)

3.4.11 Swinging Servo

In this kit, in addition to LED and passive buzzer, there is also a device controlled by PWM signal, Servo.

Servo is a position (angle) servo device, which is suitable for those control systems that require constant angle changes

and can be maintained. It has been widely used in high-end remote control toys, such as airplanes, submarine models,

and remote control robots.

Now, try to make the servo sway!

Schematic

90 Chapter 3. For MicroPython User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Wiring

1. Press the Servo Arm into the Servo output shaft. If necessary, fix it with screws.

2. Connect VBUS (not 3V3) and GND of Pico to the power bus of the breadboard.

3. Connect the red lead of the servo to the positive power bus with a jumper.

3.4. Projects 91

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

4. Connect the yellow lead of the servo to the GP15 pin with a jumper wire.

5. Connect the brawn lead of the servo to the negative power bus with a jumper wire.

Code

When the program is running, we can see the Servo Arm swinging back and forth from 0° to 180°. The program will

always run because of the while True loop, we need to press the Stop key to end the program.

import machine

import utime

servo = machine.PWM(machine.Pin(15))

servo.freq(50)

def interval_mapping(x, in_min, in_max, out_min, out_max):

return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min

def servo_write(pin,angle):

pulse_width=interval_mapping(angle, 0, 180, 0.5,2.5)

duty=int(interval_mapping(pulse_width, 0, 20, 0,65535))

pin.duty_u16(duty)

while True:

for angle in range(180):

servo_write(servo,angle)

utime.sleep_ms(20)

for angle in range(180,-1,-1):

servo_write(servo,angle)

utime.sleep_ms(20)

How it works?

We defined the servo_write() function to make the servo run.

This function has two parameters:

• pin, the GPIO pin that controls the servo.

• Angle, the angle of the shaft output.

In this function, interval_mapping() is called to map the angle range 0 ~ 180 to the pulse width range 0.5 ~

2.5ms.

pulse_width=interval_mapping(angle, 0, 180, 0.5,2.5)

Why is it 0.5~2.5? This is determined by the working mode of the Servo.

Servo

Next, convert the pulse width from period to duty. Since duty_u16() cannot have decimals when used (the value cannot

be a float type), we used int() to force the duty to be converted to an int type.

duty=int(interval_mapping(pulse_width, 0, 20, 0,65535))

Finally, write the duty value into duty_u16().

92 Chapter 3. For MicroPython User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

3.4.12 Turn the Knob

In the previous projects, we have used the digital input on the Pico. For example, a button can change the pin from

low level (off) to high level (on). This is a binary working state.

However, Pico can receive another type of input signal: analog input. It can be in any state from fully closed to fully

open, and has a range of possible values. The analog input allows the microcontroller to sense the light intensity, sound

intensity, temperature, humidity, etc. of the physical world.

Usually, a microcontroller needs an additional hardware to implement analog input-the analogue-to-digital converter

(ADC). But Pico itself has a built-in ADC for us to use directly.

Pico has three GPIO pins that can use analog input, GP26, GP27, GP28. That is, analog channels 0, 1, and 2.

In addition, there is a fourth analog channel, which is connected to the built-in temperature sensor and will not be

introduced here.

In this project, we try to read the analog value of potentiometer.

3.4. Projects 93

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Schematic

Wiring

1. Connect 3V3 and GND of Pico to the power bus of the breadboard.

94 Chapter 3. For MicroPython User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

2. Insert the potentiometer into the breadboard, its three pins should be in different rows.

3. Use jumper wires to connect the pins on both sides of the potentiometer to the positive and negative power bus

respectively.

4. Connect the middle pin of the potentiometer to GP28 with a jumper wire.

5. Connect the anode of the LED to the GP15 pin through a 220 resistor, and connect the cathode to the negative

power bus.

Code

When the program is running, we can see the analog value currently read by the GP28 pin in the shell. Turn the knob,

and the value will change from 0 to 65535. At the same time, the brightness of the LED will increase as the analog

value increases.

import machine

import utime

potentiometer = machine.ADC(28)

led = machine.PWM(machine.Pin(15))

led.freq(1000)

while True:

value=potentiometer.read_u16()

print(value)

led.duty_u16(value)

utime.sleep_ms(200)

What more?

Let’s use the potentiometer to swing the servo from left to right!

3.4. Projects 95

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

import machine

import utime

potentiometer = machine.ADC(28)

servo = machine.PWM(machine.Pin(15))

servo.freq(50)

def interval_mapping(x, in_min, in_max, out_min, out_max):

return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min

def servo_write(pin,angle):

pulse_width=interval_mapping(angle, 0, 180, 0.5,2.5)

duty=int(interval_mapping(pulse_width, 0, 20, 0,65535))

pin.duty_u16(duty)

while True:

value=potentiometer.read_u16()

angle=interval_mapping(value,0,65535,0,180)

servo_write(servo,angle)

utime.sleep_ms(200)

3.4.13 Thermometer

A thermistor is a type of resistor whose resistance is strongly dependent on temperature, and it has two types: Nega-

tive Temperature Coefficient (NTC) and Positive Temperature Coefficient (PTC), also known as NTC and PTC. The

resistance of PTC thermistor increases with temperature, while the condition of NTC is opposite to the former.

In this experiment we use an NTC thermistor to make a thermometer.

96 Chapter 3. For MicroPython User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Schematic

Wiring

1. Connect 3V3 and GND of Pico to the power bus of the breadboard.

2. Connect one lead of the thermistor to the GP28 pin, then connect the same lead to the positive power bus with a

10K ohm resistor.

3. Connect another lead of thermistor to the negative power bus.

Note:

• The thermistor is black and marked 103.

• The color ring of the 10K ohm resistor is red, black, black, red and brown.

3.4. Projects 97

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

import machine

import utime

import math

thermistor = machine.ADC(28)

while True:

temperature_value = thermistor.read_u16()

Vr = 3.3 * float(temperature_value) / 65535

Rt = 10000 * Vr / (3.3 - Vr)

temp = 1/(((math.log(Rt / 10000)) / 3950) + (1 / (273.15+25)))

Cel = temp - 273.15

Fah = Cel * 1.8 + 32

print ('Celsius: %.2f C Fahrenheit: %.2f F' % (Cel, Fah))

utime.sleep_ms(200)

How it works?

Each thermistor has a normal resistance. Here it is 10k ohm, which is measured under 25 degree Celsius. When

the temperature gets higher, the resistance of the thermistor decreases. Then the voltage data is converted to digital

quantities by the A/D adapter.

The temperature in Celsius or Fahrenheit is output via programming.

import math

There is a numerics library which declares a set of functions to compute common mathematical operations and trans-

formations.

• math

temperature_value = thermistor.read_u16()

This function is used to read the value of the thermistor.

Vr = 3.3 * float(temperature_value) / 65535

Rt = 10000 * Vr / (3.3 - Vr)

temp = 1/(((math.log(Rt / 10000)) / 3950) + (1 / (273.15+25)))

Cel = temp - 273.15

Fah = Cel * 1.8 + 32

print ('Celsius: %.2f C Fahrenheit: %.2f F' % (Cel, Fah))

utime.sleep_ms(200)

These calculations convert the thermistor values into centigrade degree and Fahrenheit degree.

Vr = 3.3 * float(temperature_value) / 65535

Rt = 10000 * Vr / (3.3 - Vr)

In the two lines of code above, the voltage is first calculated using the read analoge value, and then get Rt (the resistance

of the thermistor).

temp = 1/(((math.log(Rt / 10000)) / 3950) + (1 / (273.15+25)))

Note: Here is the relation between the resistance and temperature:

RT =RN expB(1/TK – 1/TN)

98 Chapter 3. For MicroPython User

https://docs.micropython.org/en/latest/library/math.html

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

• RT is the resistance of the NTC thermistor when the temperature is TK.

• RN is the resistance of the NTC thermistor under the rated temperature TN. Here, the numerical value of RN is

10k.

• TK is a Kelvin temperature and the unit is K. Here, the numerical value of TK is 273.15 + degree Celsius.

• TN is a rated Kelvin temperature; the unit is K too. Here, the numerical value of TN is 273.15+25.

• And B(beta), the material constant of NTC thermistor, is also called heat sensitivity index with a numerical

value 3950.

• exp is the abbreviation of exponential, and the base number e is a natural number and equals 2.7 approximately.

Convert this formula TK=1/(ln(RT/RN)/B+1/TN) to get Kelvin temperature that minus 273.15 equals degree Celsius.

This relation is an empirical formula. It is accurate only when the temperature and resistance are within the effective

range.

This code refers to plugging Rt into the formula TK=1/(ln(RT/RN)/B+1/TN) to get Kelvin temperature.

temp = temp - 273.15

Convert Kelvin temperature into centigrade degree.

Fah = Cel * 1.8 + 32

Convert the centigrade degree into Fahrenheit degree.

print ('Celsius: %.2f °C Fahrenheit: %.2f ' % (Cel, Fah))

Print centigrade degree, Fahrenheit degree and their units in the shell.

3.4.14 Light Theremin

Theremin is an electronic musical instrument that does not require physical contact. It produces different tones by

sensing the position of the player’s hand.

The instrument’s controlling section usually consists of two metal antennas that sense the relative position of the

thereminist’s hands and control oscillators for frequency with one hand, and amplitude (volume) with the other. The

electric signals from the theremin are amplified and sent to a loudspeaker.

We cannot reproduce the same instrument through Pico, but we can use photoresistor and passive buzzer to achieve

similar gameplay.

• Theremin - Wikipedia

3.4. Projects 99

https://en.wikipedia.org/wiki/Theremin

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Schematic

100 Chapter 3. For MicroPython User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Wiring

1. Connect 3V3 and GND of Pico to the power bus of the breadboard.

2. Connect one lead of the photoresistor to the GP28 pin, then connect the same lead to the positive power bus with

a 10K ohm resistor.

3. Connect another lead of photoresistor to the negative power bus.

4. Insert the LED into the breadboard, connect its anode pin to the GP16 in series with a 220 resistor, and connect

its cathode pin to the negative power bus.

5. Insert the passive buzzer and S8050 transistor into the breadboard. The anode pin of the buzzer is connected

to the positive power bus, the cathode pin is connected to the collector lead of the transistor, and the base lead

of the transistor is connected to the GP15 pin through a 1k resistor. emitter lead is connected to the negative

power bus.

Note:

• The color ring of the 22 resistor is red, red, black, black and brown.

• The color ring of the 10k resistor is brown, black, black, red and brown.

Code

import machine

import utime

led = machine.Pin(16, machine.Pin.OUT)

photoresistor = machine.ADC(28)

buzzer = machine.PWM(machine.Pin(15))

(continues on next page)

3.4. Projects 101

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

(continued from previous page)

light_low=65535

light_high=0

def interval_mapping(x, in_min, in_max, out_min, out_max):

return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min

def tone(pin,frequency,duration):

pin.freq(frequency)

pin.duty_u16(30000)

utime.sleep_ms(duration)

pin.duty_u16(0)

calibrate the photoresistor max & min values.

timer_init_start = utime.ticks_ms()

led.value(1)

while utime.ticks_diff(utime.ticks_ms(), timer_init_start)<5000:

light_value = photoresistor.read_u16()

if light_value > light_high:

light_high = light_value

if light_value < light_low:

light_low = light_value

led.value(0)

play

while True:

light_value = photoresistor.read_u16()

pitch = int(interval_mapping(light_value,light_low,light_high,50,6000))

if pitch > 50 :

tone(buzzer,pitch,20)

utime.sleep_ms(10)

When the program runs, the LED will light up, and we will have five seconds to calibrate the detection range of the

photoresistor. This is because we may be in a different light environment each time we use it (e.g. the light intensity

is different between midday and dusk).

At this time, we need to swing our hands up and down on top of the photoresistor, and the movement range of the hand

will be calibrated to the playing range of this instrument.

After five seconds, the LED will go out and we can wave our hands on the photoresistor to play.

3.4.15 Microchip - 74HC595

Integrated circuit (integrated circuit) is a kind of miniature electronic device or component, which is represented by

the letter “IC” in the circuit.

A certain process is used to interconnect the transistors, resistors, capacitors, inductors and other components and

wiring required in a circuit, fabricate on a small or several small semiconductor wafers or dielectric substrates, and

then package them in a package , it has become a micro-structure with the required circuit functions; all of the

components have been structured as a whole, making electronic components a big step towards micro-miniaturization,

low power consumption, intelligence and high reliability.

The inventors of integrated circuits are Jack Kilby (integrated circuits based on germanium (Ge)) and Robert Norton

Noyce (integrated circuits based on silicon (Si)).

This kit is equipped with an IC, 74HC595, which can greatly save the use of GPIO pins. Specifically, it can replace 8

pins for digital signal output by writing an 8-bit binary number.

102 Chapter 3. For MicroPython User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

• Binary number - Wikipedia

• 74HC595

Let’s use it.

Schematic

3.4. Projects 103

https://en.wikipedia.org/wiki/Binary_number

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Wiring

The 74HC595 is a 16-pin IC with a semi-circular notch on one side (usually the left side of the label). With the notch

facing upwards, its pins are shown in the diagram below.

Refer to the figure below to build the circuit.

1. Connect 3V3 and GND of Pico to the power bus of the breadboard.

2. Insert 74HC595 across the middle gap into the breadboard.

3. Connect the GP0 pin of Pico to the DS pin (pin 14) of 74HC595 with a jumper wire.

4. Connect the GP1 pin of Pico to the STcp pin (12-pin) of 74HC595.

5. Connect the GP2 pin of Pico to the SHcp pin (pin 11) of 74HC595.

104 Chapter 3. For MicroPython User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

6. Connect the VCC pin (16 pin) and MR pin (10 pin) on the 74HC595 to the positive power bus.

7. Connect the GND pin (8-pin) and CE pin (13-pin) on the 74HC595 to the negative power bus.

8. Insert 8 LEDs on the breadboard, and their anode leads are respectively connected to the Q0~Q1 pins (15, 1, 2,

3, 4, 5, 6, 7) of 74HC595.

9. Connect the cathode leads of the LEDs with a 220 resistor in series to the negative power bus.

Code

import machine

import time

sdi = machine.Pin(0,machine.Pin.OUT)

rclk = machine.Pin(1,machine.Pin.OUT)

srclk = machine.Pin(2,machine.Pin.OUT)

def hc595_shift(dat):

rclk.low()

time.sleep_ms(5)

for bit in range(7, -1, -1):

srclk.low()

time.sleep_ms(5)

value = 1 & (dat >> bit)

sdi.value(value)

time.sleep_ms(5)

srclk.high()

time.sleep_ms(5)

time.sleep_ms(5)

rclk.high()

time.sleep_ms(5)

num = 0

for i in range(16):

if i < 8:

num = (num<<1) + 1

elif i>=8:

num = (num & 0b01111111)<<1

hc595_shift(num)

print("{:0>8b}".format(num))

time.sleep_ms(200)

When the program is running, num will be written into the 74HC595 chip as an eight-bit binary number to control the

on and off of the 8 LEDs. We can see the current value of num in the shell.

3.4. Projects 105

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

How it works?

hc595_shift() will make 74HC595 output 8 digital signals. It outputs the last bit of the binary number to Q0,

and the output of the first bit to Q7. In other words, writing the binary number “00000001” will make Q0 output high

level and Q1~Q7 output low level.

3.4.16 LED Segment Display

LED Segment Display can be seen everywhere in life. For example, on an air conditioner, it can be used to display

temperature; on a traffic indicator, it can be used to display a timer.

The LED Segment Display is essentially a device packaged by 8 LEDs, of which 7 strip-shaped LEDs form an “8”

shape, and there is a slightly smaller dotted LED as a decimal point. These LEDs are marked as a, b, c, d, e, f, g, and

dp. They have their own anode pins and share cathodes. Their pin locations are shown in the figure below.

This means that it needs to be controlled by 8 digital signals at the same time to fully work and the 74HC595 can do

this.

106 Chapter 3. For MicroPython User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Schematic

Wiring

1. Connect 3V3 and GND of Pico to the power bus of the breadboard.

3.4. Projects 107

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

2. Insert 74HC595 across the middle gap into the breadboard.

3. Connect the GP0 pin of Pico to the DS pin (pin 14) of 74HC595 with a jumper wire.

4. Connect the GP1 pin of Pico to the STcp pin (12-pin) of 74HC595.

5. Connect the GP2 pin of Pico to the SHcp pin (pin 11) of 74HC595.

6. Connect the VCC pin (16 pin) and MR pin (10 pin) on the 74HC595 to the positive power bus.

7. Connect the GND pin (8-pin) and CE pin (13-pin) on the 74HC595 to the negative power bus.

8. Insert the LED Segment Display into the breadboard, and connect a 220 resistor in series with the GND pin to

the negative power bus.

Note: The color ring of the 220 ohm resistor is red, red, black, black and brown.

9. Follow the table below to connect the 74hc595 and LED Segment Display.

Table 1: Wiring

74HC595 LED Segment Display

Q0 a

Q1 b

Q2 c

Q3 d

Q4 e

Q5 f

Q6 g

Q7 dp

Code

import machine

import time

SEGCODE = [0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f]

sdi = machine.Pin(0,machine.Pin.OUT)

rclk = machine.Pin(1,machine.Pin.OUT)

srclk = machine.Pin(2,machine.Pin.OUT)

def hc595_shift(dat):

rclk.low()

time.sleep_ms(5)

for bit in range(7, -1, -1):

srclk.low()

time.sleep_ms(5)

value = 1 & (dat >> bit)

sdi.value(value)

time.sleep_ms(5)

srclk.high()

time.sleep_ms(5)

time.sleep_ms(5)

rclk.high()

time.sleep_ms(5)

(continues on next page)

108 Chapter 3. For MicroPython User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

(continued from previous page)

while True:

for num in range(10):

hc595_shift(SEGCODE[num])

time.sleep_ms(500)

When the program is running, you will be able to see the LED Segment Display display 0~9 in sequence.

How it works?

hc595_shift() will make 74HC595 output 8 digital signals. It outputs the last bit of the binary number to Q0,

and the output of the first bit to Q7. In other words, writing the binary number “00000001” will make Q0 output high

level and Q1~Q7 output low level.

Suppose that the 7-segment Display display the number “1”, we need to write a high level for b, c, and write a low

level for a, d, e, f, g, and dg. That is, the binary number “00000110” needs to be written. For readability, we will use

hexadecimal notation as “0x06”.

• Hexadecimal

• BinaryHex Converter

Similarly, we can also make the LED Segment Display display other numbers in the same way. The following table

shows the codes corresponding to these numbers.

Table 2: Glyph Code

Numbers Binary Code Hex Code

0 00111111 0x3f

1 00000110 0x06

2 01011011 0x5b

3 01001111 0x4f

4 01100110 0x66

5 01101101 0x6d

6 01111101 0x7d

7 00000111 0x07

8 01111111 0x7f

9 01101111 0x6f

Write these codes into hc595_shift() to make the LED Segment Display display the corresponding numbers.

3.4.17 Liquid Crystal Display

LCD1602 is a character type liquid crystal display, which can display 32 (16*2) characters at the same time.

As we all know, though LCD and some other displays greatly enrich the man-machine interaction, they share a com-

mon weakness. When they are connected to a controller, multiple IOs will be occupied of the controller which has

no so many outer ports. Also it restricts other functions of the controller. Therefore, LCD1602 with an I2C bus is

developed to solve the problem.

• Inter-Integrated Circuit - Wikipedia

I2C(Inter-Integrated Circuit) bus is a very popular and powerful bus for communication between a master device (or

master devices) and a single or multiple slave devices. I2C main controller can be used to control IO expander, various

3.4. Projects 109

https://en.wikipedia.org/wiki/Hexadecimal
https://www.binaryhexconverter.com/binary-to-hex-converter
https://en.wikipedia.org/wiki/I2C

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

sensors, EEPROM, ADC/DAC and so on. All of these are controlled only by the two pins of host, the serial data

(SDA) line and the serial clock line(SCL).

These two pins must be connected to specific pins of the microcontroller. There are two pairs of I2C communication

interfaces in Pico, which are marked as I2C0 and I2C1, as shown in the figure below.

Here we will use the I2C0 interface to control the LCD1602 and display text.

Schematic

110 Chapter 3. For MicroPython User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Wiring

1. Connect VCC of LCD to VBUS of Pico.

2. Connect the GND of LCD to the GND of Pico.

3. Connect SDA of LCD to GP0 of Pico, which is I2C0 SDA.

4. Connect SCL of LCD to GP1 of Pico, which is I2C0 SCL.

Code

The following is the library of lcd1602 packaged by Sunfounder.

You need to save it in Pico, name it lcd1602.py and use it as a library.

import machine

import time

class LCD():

def __init__(self, addr=0x27, blen=1):

sda = machine.Pin(0)

scl = machine.Pin(1)

self.bus = machine.I2C(0,sda=sda, scl=scl, freq=400000)

#print(self.bus.scan())

self.addr = addr

self.blen = blen

self.send_command(0x33) # Must initialize to 8-line mode at first

time.sleep(0.005)

self.send_command(0x32) # Then initialize to 4-line mode

time.sleep(0.005)

self.send_command(0x28) # 2 Lines & 5*7 dots

time.sleep(0.005)

self.send_command(0x0C) # Enable display without cursor

time.sleep(0.005)

self.send_command(0x01) # Clear Screen

(continues on next page)

3.4. Projects 111

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

(continued from previous page)

self.bus.writeto(self.addr, bytearray([0x08]))

def write_word(self, data):

temp = data

if self.blen == 1:

temp |= 0x08

else:

temp &= 0xF7

self.bus.writeto(self.addr, bytearray([temp]))

def send_command(self, cmd):

Send bit7-4 firstly

buf = cmd & 0xF0

buf |= 0x04 # RS = 0, RW = 0, EN = 1

self.write_word(buf)

time.sleep(0.002)

buf &= 0xFB # Make EN = 0

self.write_word(buf)

Send bit3-0 secondly

buf = (cmd & 0x0F) << 4

buf |= 0x04 # RS = 0, RW = 0, EN = 1

self.write_word(buf)

time.sleep(0.002)

buf &= 0xFB # Make EN = 0

self.write_word(buf)

def send_data(self, data):

Send bit7-4 firstly

buf = data & 0xF0

buf |= 0x05 # RS = 1, RW = 0, EN = 1

self.write_word(buf)

time.sleep(0.002)

buf &= 0xFB # Make EN = 0

self.write_word(buf)

Send bit3-0 secondly

buf = (data & 0x0F) << 4

buf |= 0x05 # RS = 1, RW = 0, EN = 1

self.write_word(buf)

time.sleep(0.002)

buf &= 0xFB # Make EN = 0

self.write_word(buf)

def clear(self):

self.send_command(0x01) # Clear Screen

def openlight(self): # Enable the backlight

self.bus.writeto(self.addr,bytearray([0x08]))

self.bus.close()

def write(self, x, y, str):

if x < 0:

x = 0

if x > 15:

x = 15

if y < 0:
(continues on next page)

112 Chapter 3. For MicroPython User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

(continued from previous page)

y = 0

if y > 1:

y = 1

Move cursor

addr = 0x80 + 0x40 * y + x

self.send_command(addr)

for chr in str:

self.send_data(ord(chr))

def message(self, text):

#print("message: %s"%text)

for char in text:

if char == '\n':

self.send_command(0xC0) # next line

else:

self.send_data(ord(char))

Then, create a new file, and call the lcd1602 library stored before in this file.

from lcd1602 import LCD

import utime

lcd = LCD()

string = " Hello!\n"

lcd.message(string)

utime.sleep(2)

string = " Sunfounder!"

lcd.message(string)

utime.sleep(2)

lcd.clear()

After the program runs, you will be able to see two lines of text appear on the LCD in turn, and then disappear.

How it works?

In the lcd1602 library, we integrate the relevant functions of lcd1602 into the LCD class.

Import lcd1602 library

from lcd1602 import LCD

Declare an object of the LCD class and name it lcd.

lcd = LCD()

This statement will display the text on the LCD. It should be noted that the argument must be a string type. If we want

to pass an integer or float, we must use the forced conversion statement str().

lcd.message(string)

If you call this statement multiple times, lcd will superimpose the texts. This requires the use of the following statement

to clear the display.

3.4. Projects 113

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

lcd.clear()

What more?

We can combine thermistor and I2C LCD1602 to make a room temperature meter.

from lcd1602 import LCD

import machine

import utime

import math

thermistor = machine.ADC(28)

lcd = LCD()

while True:

temperature_value = thermistor.read_u16()

Vr = 3.3 * float(temperature_value) / 65535

Rt = 10000 * Vr / (3.3 - Vr)

temp = 1/(((math.log(Rt / 10000)) / 3950) + (1 / (273.15+25)))

Cel = temp - 273.15

#Fah = Cel * 1.8 + 32

#print ('Celsius: %.2f C Fahrenheit: %.2f F' % (Cel, Fah))

#utime.sleep_ms(200)

string = " Temperature is \n " + str('{:.2f}'.format(Cel))+ " C"

lcd.message(string)

utime.sleep(1)

lcd.clear()

114 Chapter 3. For MicroPython User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

3.4.18 RGB LED Strip

WS2812 is a intelligent control LED light source that the control circuit and RGB chip are integrated in a package of

5050 components. It internal include intelligent digital port data latch and signal reshaping amplification drive circuit.

Also include a precision internal oscillator and a 12V voltage programmable constant current control part, effectively

ensuring the pixel point light color height consistent.

The data transfer protocol use single NZR communication mode. After the pixel power-on reset, the DIN port receive

data from controller, the first pixel collect initial 24bit data then sent to the internal data latch, the other data which

reshaping by the internal signal reshaping amplification circuit sent to the next cascade pixel through the DO port.

After transmission for each pixelthe signal to reduce 24bit. pixel adopt auto reshaping transmit technology, making

the pixel cascade number is not limited the signal transmission, only depend on the speed of signal transmission.

Schematic

Wiring

1. Connect the +5V of the LED Strip to the VBUS of the Pico.

2. Connect the GND of the LED Strip to the GND of the Pico.

3. Connect the DIN of the LED Strip to the GP0 of Pico.

Warning: One thing you need to pay attention to is current.

Although the LED Strip with any number of LEDs can be used in Pico, the power of its VBUS pin is limited. Here,

we will use eight LEDs, which are safe. But if you want to use more LEDs, you need to add a separate power

supply.

3.4. Projects 115

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Code

The following is the library of ws2812 packaged by Sunfounder. You need to save it in Pico and name it as ws2812.py

for use as a library.

import array, time

import rp2

from rp2 import PIO, StateMachine, asm_pio

@asm_pio(sideset_init=PIO.OUT_LOW, out_shiftdir=PIO.SHIFT_LEFT, autopull=True, pull_

→˓thresh=24)

def ws2812():

T1 = 2

T2 = 5

T3 = 3

label("bitloop")

out(x, 1).side(0)[T3 - 1]

jmp(not_x, "do_zero").side(1)[T1 - 1]

jmp("bitloop").side(1)[T2 - 1]

label("do_zero")

nop().side(0)[T2 - 1]

class WS2812():

def __init__(self, pin, num):

Configure the number of WS2812 LEDs.

self.led_nums = num

self.pin = pin

self.sm = StateMachine(0, ws2812, freq=8000000, sideset_base=self.pin)

Start the StateMachine, it will wait for data on its FIFO.

self.sm.active(1)

self.buf = array.array("I", [0 for _ in range(self.led_nums)])

def write(self):

self.sm.put(self.buf, 8)

def write_all(self, value):

for i in range(self.led_nums):

self.__setitem__(i, value)

self.write()

def list_to_hex(self, color):

if isinstance(color, list) and len(color) == 3:

c = (color[0] << 8) + (color[1] << 16) + (color[2])

return c

elif isinstance(color, int):

value = (color & 0xFF0000)>>8 | (color & 0x00FF00)<<8 | (color & 0x0000FF)

return value

else:

raise ValueError("Color must be 24-bit RGB hex or list of 3 8-bit RGB")

def hex_to_list(self, color):

if isinstance(color, list) and len(color) == 3:

return color

elif isinstance(color, int):

r = color >> 8 & 0xFF

g = color >> 16 & 0xFF

(continues on next page)

116 Chapter 3. For MicroPython User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

(continued from previous page)

b = color >> 0 & 0xFF

return [r, g, b]

else:

raise ValueError("Color must be 24-bit RGB hex or list of 3 8-bit RGB")

def __getitem__(self, i):

return self.hex_to_list(self.buf[i])

def __setitem__(self, i, value):

value = self.list_to_hex(value)

self.buf[i] = value

Then, create a new file, and call the stored ws2812 library here.

import machine

from ws2812 import WS2812

ws = WS2812(machine.Pin(0),8)

ws[0] = [64,154,227]

ws[1] = [128,0,128]

ws[2] = [50,150,50]

ws[3] = [255,30,30]

ws[4] = [0,128,255]

ws[5] = [99,199,0]

ws[6] = [128,128,128]

ws[7] = [255,100,0]

ws.write()

Let’s select some favorite colors and display them on the RGB LED Strip!

How it works?

In the ws2812 library, we have integrated related functions into the WS2812 class.

You can use the RGB LED Strip with the following statement.

from ws2812 import WS2812

Declare a WS2812 type object, named “ws”, it is connected to “pin”, there are “number” RGB LEDs on the WS2812

strip.

ws = WS2812(pin,number)

ws is an array object, each element corresponds to one RGB LED on the WS2812 strip, for example, ws[0] is the first

one, ws[7] is the eighth.

We can assign color values to each RGB LED, these values must be 24-bit color (represented with six hexadecimal

digits) or list of 3 8-bit RGB.

For example, the red value is “0xFF0000” or “[255,0,0]”.

ws[i] = color value

Then use this statement to write the color for the LED Strip and light it up.

3.4. Projects 117

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

ws.write()

You can also directly use the following statement to make all LEDs light up the same color.

ws.write_all(color value)

What more?

We can randomly generate colors and make a colorful flowing light.

import machine

from ws2812 import WS2812

import utime

import urandom

ws = WS2812(machine.Pin(0),8)

def flowing_light():

for i in range(7,0,-1):

ws[i] = ws[i-1]

ws[0] = int(urandom.uniform(0, 0xFFFFFF))

ws.write()

utime.sleep_ms(80)

while True:

flowing_light()

print(ws[0])

3.5 MicroPython Basic Syntax

3.5.1 Indentation

Indentation refers to the spaces at the beginning of a code line. Like standard Python programs, MicroPython programs

usually run from top to bottom: It traverses each line in turn, runs it in the interpreter, and then continues to the next

line, Just like you type them line by line in the Shell. A program that just browses the instruction list line by line is

not very smart, though – so MicroPython, just like Python, has its own method to control the sequence of its program

execution: indentation.

You must put at least one space before print(), otherwise an error message “Invalid syntax” will appear. It is usually

recommended to standardise spaces by pressing the Tab key uniformly.

if 8 > 5:

print("Eight is greater than Five!")

>>> %Run -c $EDITOR_CONTENT

Traceback (most recent call last):

File "<stdin>", line 2

SyntaxError: invalid syntax

You must use the same number of spaces in the same block of code, or Python will give you an error.

118 Chapter 3. For MicroPython User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

if 8 > 5:

print("Eight is greater than Five!")

print("Eight is greater than Five")

>>> %Run -c $EDITOR_CONTENT

Traceback (most recent call last):

File "<stdin>", line 2

SyntaxError: invalid syntax

3.5.2 Comments

The comments in the code help us understand the code, make the entire code more readable and comment out part of

the code during testing, so that this part of the code does not run.

Single-line Comment

Single-line comments in MicroPython begin with #, and the following text is considered a comment until the end of

the line. Comments can be placed before or after the code.

print("hello world") #This is a annotationhello world

>>> %Run -c $EDITOR_CONTENT

hello world

Comments are not necessarily text used to explain the code. You can also comment out part of the code to prevent

micropython from running the code.

#print("Can't run it")

print("hello world") #This is a annotationhello world

>>> %Run -c $EDITOR_CONTENT

hello world

Multi-line comment

If you want to comment on multiple lines, you can use multiple # signs.

#This is a comment

#written in

#more than just one line

print("Hello, World!")

>>> %Run -c $EDITOR_CONTENT

Hello, World!

Or, you can use multi-line strings instead of expected.

Since MicroPython ignores string literals that are not assigned to variables, you can add multiple lines of strings (triple

quotes) to the code and put comments in them:

3.5. MicroPython Basic Syntax 119

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

"""

This is a comment

written in

more than just one line

"""

print("Hello, World!")

>>> %Run -c $EDITOR_CONTENT

Hello, World!

As long as the string is not assigned to a variable, MicroPython will ignore it after reading the code and treat it as if

you made a multi-line comment.

3.5.3 Print()

The print() function prints the specified message to the screen, or other standard output device. The message can

be a string, or any other object, the object will be converted into a string before written to the screen.

Print multiple objects:

print("Welcome!", "Enjoy yourself!")

>>> %Run -c $EDITOR_CONTENT

Welcome! Enjoy yourself!

Print tuples:

x = ("pear", "apple", "grape")

print(x)

>>> %Run -c $EDITOR_CONTENT

('pear', 'apple', 'grape')

Print two messages and specify the separator:

print("Hello", "how are you?", sep="---")

>>> %Run -c $EDITOR_CONTENT

Hello---how are you?

3.5.4 Variables

Variables are containers used to store data values.

Creating a variable is very simple. You only need to name it and assign it a value. You don’t need to specify the data

type of the variable when assigning it, because the variable is a reference, and it accesses objects of different data types

through assignment.

Naming variables must follow the following rules:

• Variable names can only contain numbers, letters, and underscores

• The first character of the variable name must be a letter or underscore

• Variable names are case sensitive

120 Chapter 3. For MicroPython User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Create Variable

There is no command for declaring variables in MicroPython. Variables are created when you assign a value to it for

the first time. It does not need to use any specific type declaration, and you can even change the type after setting the

variable.

x = 8 # x is of type int

x = "lily" # x is now of type str

print(x)

>>> %Run -c $EDITOR_CONTENT

lily

Casting

If you want to specify the data type for the variable, you can do it by casting.

x = int(5) # y will be 5

y = str(5) # x will be '5'

z = float(5) # z will be 5.0

print(x,y,z)

>>> %Run -c $EDITOR_CONTENT

5 5 5.0

Get the Type

You can get the data type of a variable with the type() function.

x = 5

y = "hello"

z = 5.0

print(type(x),type(y),type(z))

>>> %Run -c $EDITOR_CONTENT

<class 'int'> <class 'str'> <class 'float'>

Single or Double Quotes?

In MicroPython, single quotes or double quotes can be used to define string variables.

x = "hello"

is the same as

x = 'hello'

3.5. MicroPython Basic Syntax 121

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Case-Sensitive

Variable names are case-sensitive.

a = 5

A = "lily"

#A will not overwrite a

print(a, A)

>>> %Run -c $EDITOR_CONTENT

5 lily

3.5.5 If Else

Decision making is required when we want to execute a code only if a certain condition is satisfied.

if

if test expression:

statement(s)

Here, the program evaluates the test expression and executes the statement only when the test expression is True.

If test expression is False, then statement(s) will not be executed.

In MicroPython, indentation means the body of the if statement. The body starts with an indentation and ends with

the first unindented line.

Python interprets non-zero values as “True”. None and 0 are interpreted as “False”.

if Statement Flowchart

122 Chapter 3. For MicroPython User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Example

num = 8

if num > 0:

print(num, "is a positive number.")

print("End with this line")

>>> %Run -c $EDITOR_CONTENT

8 is a positive number.

End with this line

if. . . else

if test expression:

Body of if

else:

Body of else

The if..else statement evaluates test expression and will execute the body of if only when the test condition is True.

If the condition is False, the body of else is executed. Indentation is used to separate the blocks.

if. . . else Statement Flowchart

3.5. MicroPython Basic Syntax 123

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Example

num = -8

if num > 0:

print(num, "is a positive number.")

else:

print(num, "is a negative number.")

>>> %Run -c $EDITOR_CONTENT

-8 is a negative number.

if. . . elif. . . else

if test expression:

Body of if

elif test expression:

Body of elif

else:

Body of else

Elif is short for else if. It allows us to check multiple expressions.

If the condition of the if is False, the condition of the next elif block is checked, and so on.

If all conditions are False, the body of else is executed.

Only one of several if. . . elif. . . else blocks is executed according to the conditions.

The if block can only have one else block. But it can have multiple elif blocks.

if. . . elif. . . else Statement Flowchart

124 Chapter 3. For MicroPython User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Example

if x > y:

print("x is greater than y")

elif x == y:

print("x and y are equal")

else:

print("x is greater than y")

>>> %Run -c $EDITOR_CONTENT

x is greater than y

Nested if

We can embed an if statement into another if statement, and then call it a nested if statement.

Example

x = 67

if x > 10:

print("Above ten,")

if x > 20:

print("and also above 20!")

(continues on next page)

3.5. MicroPython Basic Syntax 125

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

(continued from previous page)

else:

print("but not above 20.")

>>> %Run -c $EDITOR_CONTENT

Above ten,

and also above 20!

3.5.6 While Loops

The while statement is used to execute a program in a loop, that is, to execute a program in a loop under certain

conditions to handle the same task that needs to be processed repeatedly.

Its basic form is:

while test expression:

Body of while

In the while loop, first check the test expression. Only when test expression evaluates to True, enter

the body of the while. After one iteration, check the test expression again. This process continues until test

expression evaluates to False.

In MicroPython, the body of the while loop is determined by indentation.

The body starts with an indentation and ends with the first unindented line.

Python interprets any non-zero value as True. None and 0 are interpreted as False.

while Loop Flowchart

126 Chapter 3. For MicroPython User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

x = 10

while x > 0:

print(x)

x -= 1

>>> %Run -c $EDITOR_CONTENT

10

9

8

7

6

5

4

3

2

1

Break Statement

With the break statement we can stop the loop even if the while condition is true:

x = 10

while x > 0:

print(x)

if x == 6:

break

x -= 1

>>> %Run -c $EDITOR_CONTENT

10

9

8

7

6

While Loop with Else

Like the if loop, the while loop can also have an optional else block.

If the condition in the while loop is evaluated as False, the else part is executed.

x = 10

while x > 0:

print(x)

x -= 1

else:

print("Game Over")

>>> %Run -c $EDITOR_CONTENT

10

(continues on next page)

3.5. MicroPython Basic Syntax 127

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

(continued from previous page)

9

8

7

6

5

4

3

2

1

Game Over

3.5.7 For Loops

The for loop can traverse any sequence of items, such as a list or a string.

The syntax format of for loop is as follows:

for val in sequence:

Body of for

Here, val is a variable that gets the value of the item in the sequence in each iteration.

The loop continues until we reach the last item in the sequence. Use indentation to separate the body of the for loop

from the rest of the code.

Flowchart of for Loop

numbers = [1, 2, 3, 4]

sum = 0

(continues on next page)

128 Chapter 3. For MicroPython User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

(continued from previous page)

for val in numbers:

sum = sum+val

print("The sum is", sum)

>>> %Run -c $EDITOR_CONTENT

The sum is 10

The break Statement

With the break statement we can stop the loop before it has looped through all the items:

numbers = [1, 2, 3, 4]

sum = 0

for val in numbers:

sum = sum+val

if sum == 6:

break

print("The sum is", sum)

>>> %Run -c $EDITOR_CONTENT

The sum is 6

The continue Statement

With the continue statement we can stop the current iteration of the loop, and continue with the next:

numbers = [1, 2, 3, 4]

for val in numbers:

if val == 3:

continue

print(val)

>>> %Run -c $EDITOR_CONTENT

1

2

4

The range() function

We can use the range() function to generate a sequence of numbers. range(6) will produce numbers between 0 and 5

(6 numbers).

We can also define start, stop and step size as range(start, stop, step_size). If not provided, step_size defaults to 1.

In a sense of range, the object is “lazy” because when we create the object, it does not generate every number it

“contains”. However, this is not an iterator because it supports in, len and __getitem__ operations.

This function will not store all values in memory; it will be inefficient. So it will remember the start, stop, step size

and generate the next number during the journey.

3.5. MicroPython Basic Syntax 129

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

To force this function to output all items, we can use the function list().

print(range(6))

print(list(range(6)))

print(list(range(2, 6)))

print(list(range(2, 10, 2)))

>>> %Run -c $EDITOR_CONTENT

range(0, 6)

[0, 1, 2, 3, 4, 5]

[2, 3, 4, 5]

[2, 4, 6, 8]

We can use range() in a for loop to iterate over a sequence of numbers. It can be combined with the len() function to

use the index to traverse the sequence.

fruits = ['pear', 'apple', 'grape']

for i in range(len(fruits)):

print("I like", fruits[i])

>>> %Run -c $EDITOR_CONTENT

I like pear

I like apple

I like grape

Else in For Loop

The for loop can also have an optional else block. If the items in the sequence used for the loop are exhausted, the else

part is executed.

The break keyword can be used to stop the for loop. In this case, the else part will be ignored.

Therefore, if no interruption occurs, the else part of the for loop will run.

for val in range(5):

print(val)

else:

print("Finished")

>>> %Run -c $EDITOR_CONTENT

0

1

2

3

4

Finished

The else block will NOT be executed if the loop is stopped by a break statement.

for val in range(5):

if val == 2: break

print(val)

(continues on next page)

130 Chapter 3. For MicroPython User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

(continued from previous page)

else:

print("Finished")

>>> %Run -c $EDITOR_CONTENT

0

1

3.5.8 Functions

In MicroPython, a function is a group of related statements that perform a specific task.

Functions help break our program into smaller modular blocks. As our plan becomes larger and larger, functions make

it more organized and manageable.

In addition, it avoids duplication and makes the code reusable.

Create a Function

def function_nameparameters)

"""docstring"""

statement(s)

• A function is defined using the def keyword

• A function name to uniquely identify the function. Function naming is the same as variable naming, and both

follow the following rules.

– Can only contain numbers, letters, and underscores.

– The first character must be a letter or underscore.

– Case sensitive.

• Parameters (arguments) through which we pass values to a function. They are optional.

• The colon (:) marks the end of the function header.

• Optional docstring, used to describe the function of the function, we usually use triple quotes so that the doc-

string can be expanded to multiple lines.

• One or more valid Micropython statements that make up the function body. Statements must have the same

indentation level (usually 4 spaces).

• Each function needs at least one statement, but if for some reason there is a function that does not contain any

statement, please put in the pass statement to avoid errors.

• An optional return statement to return a value from the function.

3.5. MicroPython Basic Syntax 131

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Calling a Function

To call a function, add parentheses after the function name.

def my_function():

print("Your first function")

my_function()

>>> %Run -c $EDITOR_CONTENT

Your first function

The return Statement

The return statement is used to exit a function and return to the place where it was called.

Syntax of return

return [expression_list]

The statement can contain an expression that is evaluated and returns a value. If there is no expression in the statement,

or the return statement itself does not exist in the function, the function will return a None object.

def my_function():

print("Your first function")

print(my_function())

>>> %Run -c $EDITOR_CONTENT

Your first function

None

Here, None is the return value, because the return statement is not used.

Arguments

Information can be passed to the function as arguments.

Specify arguments in parentheses after the function name. You can add as many arguments as you need, just separate

them with commas.

def welcome(name, msg):

"""This is a welcome function for

the person with the provided message"""

print("Hello", name + ', ' + msg)

welcome("Lily", "Welcome to China!")

>>> %Run -c $EDITOR_CONTENT

Hello Lily, Welcome to China!

132 Chapter 3. For MicroPython User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Number of Arguments

By default, a function must be called with the correct number of arguments. Meaning that if your function expects 2

parameters, you have to call the function with 2 arguments, not more, and not less.

def welcome(name, msg):

"""This is a welcome function for

the person with the provided message"""

print("Hello", name + ', ' + msg)

welcome("Lily", "Welcome to China!")

Herethe function welcome() has 2 parameters.

Since we called this function with two arguments, the function runs smoothly without any errors.

If it is called with a different number of arguments, the interpreter will display an error message.

The following is the call to this function, which contains one and one no arguments and their respective error messages.

welcome("Lily")Only one argument

>>> %Run -c $EDITOR_CONTENT

Traceback (most recent call last):

File "<stdin>", line 6, in <module>

TypeError: function takes 2 positional arguments but 1 were given

welcome()No arguments

>>> %Run -c $EDITOR_CONTENT

Traceback (most recent call last):

File "<stdin>", line 6, in <module>

TypeError: function takes 2 positional arguments but 0 were given

Default Arguments

In MicroPython, we can use the assignment operator (=) to provide a default value for the parameter.

If we call the function without argument, it uses the default value.

def welcome(name, msg = "Welcome to China!"):

"""This is a welcome function for

the person with the provided message"""

print("Hello", name + ', ' + msg)

welcome("Lily")

>>> %Run -c $EDITOR_CONTENT

Hello Lily, Welcome to China!

In this function, the parameter name has no default value and is required (mandatory) during the call.

On the other hand, the default value of the parameter msg is “Welcome to China!”. Therefore, it is optional during the

call. If a value is provided, it will overwrite the default value.

Any number of arguments in the function can have a default value. However, once there is a default argument, all

arguments on its right must also have default values.

3.5. MicroPython Basic Syntax 133

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

This means that non-default arguments cannot follow default arguments.

For example, if we define the above function header as:

def welcome(name = "Lily", msg):

We will receive the following error message:

>>> %Run -c $EDITOR_CONTENT

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

SyntaxError: non-default argument follows default argument

Keyword Arguments

When we call a function with certain values, these values will be assigned to arguments based on their position.

For example, in the above function welcome(), when we called it as welcome(“Lily”, “Welcome to China”), the value

“Lily” gets assigned to the name and similarly “Welcome to China” to parameter msg.

MicroPython allows calling functions with keyword arguments. When we call the function in this way, the order

(position) of the arguments can be changed.

keyword arguments

welcome(name = "Lily",msg = "Welcome to China!")

keyword arguments (out of order)

welcome(msg = "Welcome to China",name = "Lily")

#1 positional, 1 keyword argument

welcome("Lily", msg = "Welcome to China!")

As we can see, we can mix positional arguments and keyword arguments during function calls. But we must remember

that the keyword arguments must come after the positional arguments.

Having a positional argument after a keyword argument will result in an error.

For example, if the function call as follows:

welcome(name="Lily","Welcome to China!")

Will result in an error:

>>> %Run -c $EDITOR_CONTENT

Traceback (most recent call last):

File "<stdin>", line 5, in <module>

SyntaxError: non-keyword arg after keyword arg

134 Chapter 3. For MicroPython User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Arbitrary Arguments

Sometimes, if you do not know the number of arguments that will be passed to the function in advance.

In the function definition, we can add an asterisk (*) before the parameter name.

def welcome(*names):

"""This function welcomes all the person

in the name tuple"""

#names is a tuple with arguments

for name in names:

print("Welcome to China!", name)

welcome("Lily","John","Wendy")

>>> %Run -c $EDITOR_CONTENT

Welcome to China! Lily

Welcome to China! John

Welcome to China! Wendy

Here, we have called the function with multiple arguments. These arguments are packed into a tuple before being

passed into the function.

Inside the function, we use a for loop to retrieve all the arguments.

Recursion

In Python, we know that a function can call other functions. It is even possible for the function to call itself. These

types of construct are termed as recursive functions.

This has the benefit of meaning that you can loop through data to reach a result.

The developer should be very careful with recursion as it can be quite easy to slip into writing a function which never

terminates, or one that uses excess amounts of memory or processor power. However, when written correctly recursion

can be a very efficient and mathematically-elegant approach to programming.

def rec_func(i):

if(i > 0):

result = i + rec_func(i - 1)

print(result)

else:

result = 0

return result

rec_func(6)

>>> %Run -c $EDITOR_CONTENT

1

3

6

10

15

21

In this example, rec_func() is a function that we have defined to call itself (“recursion”). We use the i variable as

the data, and it will decrement (-1) every time we recurse. When the condition is not greater than 0 (that is, 0), the

recursion ends.

3.5. MicroPython Basic Syntax 135

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

For new developers, it may take some time to determine how it works, and the best way to test it is to test and modify

it.

Advantages of Recursion

• Recursive functions make the code look clean and elegant.

• A complex task can be broken down into simpler sub-problems using recursion.

• Sequence generation is easier with recursion than using some nested iteration.

Disadvantages of Recursion

• Sometimes the logic behind recursion is hard to follow through.

• Recursive calls are expensive (inefficient) as they take up a lot of memory and time.

• Recursive functions are hard to debug.

3.5.9 Data Types

Built-in Data Types

MicroPython has the following data types:

• Text Type: str

• Numeric Types: int, float, complex

• Sequence Types: list, tuple, range

• Mapping Type: dict

• Set Types: set, frozenset

• Boolean Type: bool

• Binary Types: bytes, bytearray, memoryview

Getting the Data Type

You can get the data type of any object by using the type() function:

a = 6.8

print(type(a))

>>> %Run -c $EDITOR_CONTENT

<class 'float'>

Setting the Data Type

MicroPython does not need to set the data type specifically, it has been determined when you assign a value to the

variable.

x = "welcome"

y = 45

z = ["apple", "banana", "cherry"]

(continues on next page)

136 Chapter 3. For MicroPython User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

(continued from previous page)

print(type(x))

print(type(y))

print(type(z))

>>> %Run -c $EDITOR_CONTENT

<class 'str'>

<class 'int'>

<class 'list'>

>>>

Setting the Specific Data Type

If you want to specify the data type, you can use the following constructor functions:

Example Date Type

x = int(20) int

x = float(20.5) float

x = complex(1j) complex

x = str(“Hello World”) str

x = list((“apple”, “banana”, “cherry”)) list

x = tuple((“apple”, “banana”, “cherry”)) tuple

x = range(6) range

x = dict(name=”John”, age=36) dict

x = set((“apple”, “banana”, “cherry”)) set

x = frozenset((“apple”, “banana”, “cherry”)) frozenset

x = bool(5) bool

x = bytes(5) bytes

x = bytearray(5) bytearray

x = memoryview(bytes(5)) memoryview

You can print some of them to see the result.

a = float(20.5)

b = list(("apple", "banana", "cherry"))

c = bool(5)

print(a)

print(b)

print(c)

>>> %Run -c $EDITOR_CONTENT

20.5

['apple', 'banana', 'cherry']

True

>>>

3.5. MicroPython Basic Syntax 137

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Type Conversion

You can convert from one type to another with the int(), float(), and complex() methods: Casting in python is therefore

done using constructor functions:

• int() - constructs an integer number from an integer literal, a float literal (by removing all decimals), or a string

literal (providing the string represents a whole number)

• float() - constructs a float number from an integer literal, a float literal or a string literal (providing the string

represents a float or an integer)

• str() - constructs a string from a wide variety of data types, including strings, integer literals and float literals

a = float("5")

b = int(3.7)

c = str(6.0)

print(a)

print(b)

print(c)

Note: You cannot convert complex numbers into another number type.

3.5.10 Operators

Operators are used to perform operations on variables and values.

• Arithmetic Operators

• Assignment operators

• Comparison Operators

• Logical Operators

• Identity Operators

• Membership Operators

• Bitwise Operators

Arithmetic Operators

You can use arithmetic operators to do some common mathematical operations.

Operator Name

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus

** Exponentiation

// Floor division

138 Chapter 3. For MicroPython User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

x = 5

y = 3

a = x + y

b = x - y

c = x * y

d = x / y

e = x % y

f = x ** y

g = x // y

print(a)

print(b)

print(c)

print(d)

print(e)

print(f)

print(g)

>>> %Run -c $EDITOR_CONTENT

8

2

15

1.666667

2

125

1

8

2

15

>>>

Assignment operators

Assignment operators can used to assign values to variables.

Operator Example Same As

= a = 6 a =6

+= a += 6 a = a + 6

-= a -= 6 a = a - 6

*= a *= 6 a = a * 6

/= a /= 6 a = a / 6

%= a %= 6 a = a % 6

**= a **= 6 a = a ** 6

//= a //= 6 a = a // 6

&= a &= 6 a = a & 6

|= a |= 6 a = a | 6

^= a ^= 6 a = a ^ 6

>>= a >>= 6 a = a >> 6

<<= a <<= 6 a = a << 6

a = 6

(continues on next page)

3.5. MicroPython Basic Syntax 139

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

(continued from previous page)

a *= 6

print(a)

>>> %Run test.py

36

>>>

Comparison Operators

Comparison operators are used to compare two values.

Operator Name

== Equal

!= Not equal

< Less than

> Greater than

>= Greater than or equal to

<= Less than or equal to

a = 6

b = 8

print(a>b)

>>> %Run test.py

False

>>>

Return False, beause the a is less than the b.

Logical Operators

Logical operators are used to combine conditional statements.

Operator Description

and Returns True if both statements are true

or Returns True if one of the statements is true

not Reverse the result, returns False if the result is true

a = 6

print(a > 2 and a < 8)

>>> %Run -c $EDITOR_CONTENT

True

>>>

140 Chapter 3. For MicroPython User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Identity Operators

Identity operators are used to compare the objects, not if they are equal, but if they are actually the same object, with

the same memory location.

Operator Description

is Returns True if both variables are the same object

is not Returns True if both variables are not the same object

a = ["hello", "welcome"]

b = ["hello", "welcome"]

c = a

print(a is c)

returns True because z is the same object as x

print(a is b)

returns False because x is not the same object as y, even if they have the same

→˓content

print(a == b)

returns True because x is equal to y

>>> %Run -c $EDITOR_CONTENT

True

False

True

>>>

Membership Operators

Membership operators are used to test if a sequence is presented in an object.

Operator Description

in Returns True if a sequence with the specified value is present in the object

not in Returns True if a sequence with the specified value is not present in the object

a = ["hello", "welcome", "Goodmorning"]

print("welcome" in a)

>>> %Run -c $EDITOR_CONTENT

True

>>>

3.5. MicroPython Basic Syntax 141

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Bitwise Operators

Bitwise operators are used to compare (binary) numbers.

Operator Name Description

& AND Sets each bit to 1 if both bits are 1

OR Sets each bit to 1 if one of two bits is 1

^ XOR Sets each bit to 1 if only one of two bits is 1

~ NOT Inverts all the bits

<< Zero fill left shift Shift left by pushing zeros in from the right and let the leftmost bits

fall off

>> Signed right shift Shift right by pushing copies of the leftmost bit in from the left, and let

the rightmost bits fall off

num = 2

print(num & 1)

print(num | 1)

print(num << 1)

>>> %Run -c $EDITOR_CONTENT

0

3

4

>>>

3.5.11 Lists

Lists are used to store multiple items in a single variable, and are created using square brackets:

B_list = ["Blossom", "Bubbles","Buttercup"]

print(B_list)

List items are changeable, ordered, and allow duplicate values. The list items are indexed, with the first item having

index [0], the second item having index [1], and so on.

C_list = ["Red", "Blue", "Green", "Blue"]

print(C_list) # duplicate

print(C_list[0])

print(C_list[1]) # ordered

C_list[2] = "Purple" # changeable

print(C_list)

>>> %Run -c $EDITOR_CONTENT

['Red', 'Blue', 'Green', 'Blue']

Red

Blue

['Red', 'Blue', 'Purple', 'Blue']

A list can contain different data types:

142 Chapter 3. For MicroPython User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

A_list = ["Banana", 255, False, 3.14]

print(A_list)

>>> %Run -c $EDITOR_CONTENT

['Banana', 255, False, 3.14]

List Length

To determine how many items are in the list, use the len() function.

A_list = ["Banana", 255, False, 3.14]

print(len(A_list))

>>> %Run -c $EDITOR_CONTENT

4

Check List items

Print the second item of the list:

A_list = ["Banana", 255, False, 3.14]

print(A_list[1])

>>> %Run -c $EDITOR_CONTENT

[255]

Print the last one item of the list:

A_list = ["Banana", 255, False, 3.14]

print(A_list[-1])

>>> %Run -c $EDITOR_CONTENT

[3.14]

Print the second, third item:

A_list = ["Banana", 255, False, 3.14]

print(A_list[1:3])

>>> %Run -c $EDITOR_CONTENT

[255, False]

3.5. MicroPython Basic Syntax 143

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Change List Items

Change the second, third item:

A_list = ["Banana", 255, False, 3.14]

A_list[1:3] = [True,"Orange"]

print(A_list)

>>> %Run -c $EDITOR_CONTENT

['Banana', True, 'Orange', 3.14]

Change the second value by replacing it with two values:

A_list = ["Banana", 255, False, 3.14]

A_list[1:2] = [True,"Orange"]

print(A_list)

>>> %Run -c $EDITOR_CONTENT

['Banana', True, 'Orange', False, 3.14]

Add List Items

Using the append() method to add an item:

C_list = ["Red", "Blue", "Green"]

C_list.append("Orange")

print(C_list)

>>> %Run -c $EDITOR_CONTENT

['Red', 'Blue', 'Green', 'Orange']

Insert an item as the second position:

C_list = ["Red", "Blue", "Green"]

C_list.insert(1, "Orange")

print(C_list)

>>> %Run -c $EDITOR_CONTENT

['Red', 'Orange', 'Blue', 'Green']

Remove List Items

The remove() method removes the specified item.

C_list = ["Red", "Blue", "Green"]

C_list.remove("Blue")

print(C_list)

>>> %Run -c $EDITOR_CONTENT

['Red', 'Green']

The pop() method removes the specified index. If you do not specify the index, the pop() method removes the last

item.

144 Chapter 3. For MicroPython User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

A_list = ["Banana", 255, False, 3.14, True,"Orange"]

A_list.pop(1)

print(A_list)

A_list.pop()

print(A_list)

>>> %Run -c $EDITOR_CONTENT

255

['Banana', False, 3.14, True, 'Orange']

'Orange'

['Banana', False, 3.14, True]

The del keyword also removes the specified index:

C_list = ["Red", "Blue", "Green"]

del C_list[1]

print(C_list)

>>> %Run -c $EDITOR_CONTENT

['Red', 'Green']

The clear() method empties the list. The list still remains, but it has no content.

C_list = ["Red", "Blue", "Green"]

C_list.clear()

print(C_list)

>>> %Run -c $EDITOR_CONTENT

[]

3.5. MicroPython Basic Syntax 145

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

146 Chapter 3. For MicroPython User

CHAPTER

FOUR

FOR ARDUINO USER

This chapter includes installing Arduino IDE, programming Raspberry Pi Pico with the most popular microcontroller

development environment-Arduino IDE and a dozen interesting and practical projects to help you learn Arduino code

quickly.

We recommend that you read the chapters in order.

4.1 Getting Started with Arduino

Arduino is an open source platform with powerful software and hardware features.

Even if you are a beginner, you can master it in no time. It provides an integrated development environment (IDE) for

code compilation that is compatible with various control boards. In fact, the Arduino IDE supports almost all hobbyist

microcontrollers, including the Raspberry Pi Pico. Therefore, all you need to do is download the Arduino IDE, upload

the sketches (i.e. code files) to the control board, and then you can see the relative experimental phenomena.

For more information, refer to Arduino Website.

4.1.1 Install Arduino IDE

The first thing we need to do is to download the IDE from the Arduino software page

<https://www.arduino.cc/en/software>. The Raspberry Pi Pico is a newly released control board and may not

be compatible on older versions of the Arduino IDE, so it is recommended that you download the latest version of the

IDE, at least version 1.8.13 or higher.

If you are more explorative, you can also download Arduino IDE 2.0. This version is still in beta, so you may encounter

some strange problems, but it is faster and even more powerful!

Choose the version that suits your system. You don’t have to make a donation to download the software, but if you are

a casual user and can afford it, this is a good way to help make sure it continues to get upgraded.

147

http://www.arduino.cc

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

4.1.2 Introduction the Arduino Software (IDE)

Double-click the Arduino icon (arduino.exe) created by the installation process. Then the Arduino IDE will appear.

Let’s check details of the software.

148 Chapter 4. For Arduino User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

1. Verify: Compile your code. Any syntax problem will be prompted with errors.

2. Upload: Upload the code to your board. When you click the button, the RX and TX LEDs on the board will

flicker fast and won’t stop until the upload is done.

3. New: Create a new code editing window.

4. Open: Open an .ino sketch.

5. Save: Save the sketch.

6. Serial Monitor: Click the button and a window will appear. It receives the data sent from your control board. It

is very useful for debugging.

7. File: Click the menu and a drop-down list will appear, including file creating, opening, saving, closing, some

parameter configuring, etc.

8. Edit: Click the menu. On the drop-down list, there are some editing operations like Cut, Copy, Paste, Find, and

so on, with their corresponding shortcuts.

4.1. Getting Started with Arduino 149

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

9. Sketch: Includes operations like Verify, Upload, Add files, etc. More important function is Include Library –

where you can add libraries.

10. Tool: Includes some tools – the most frequently used Board (the board you use) and Port (the port your board is

at). Every time you want to upload the code, you need to select or check them.

11. Help: If you’re a beginner, you may check the options under the menu and get the help you need, including

operations in IDE, introduction information, troubleshooting, code explanation, etc.

12. In this message area, no matter when you compile or upload, the summary message will always appear.

13. Detailed messages during compile and upload. For example, the file used lies in which path, the details of error

prompts.

14. Board and Port: Here you can preview the board and port selected for code upload. You can select them again

by Tools -> Board / Port if any is incorrect.

15. The editing area of the IDE. You can write code here.

4.1.3 Setup the Raspberry Pi Pico

1. Once it’s installed, open the application, we need to install the extra package that makes the Raspberry Pi Pico

work.

Open the Boards Manager by clicking Tools -> Board -> Boards Manager.

2. Search for Pico(Arduino Mbed OS RP2040 Boards) and click install button.

150 Chapter 4. For Arduino User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

3. Once the installation is complete, you can select the board as Raspberry Pi Pico.

4. Now open a example - blink.

4.1. Getting Started with Arduino 151

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

5. Click on the upload icon to run the code

6. When the compiling message shown in the figure below appears, press BOOTSEL immediately and connect

Pico to the computer with a Micro USB cable.

152 Chapter 4. For Arduino User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Note: This step is very important and only necessary for the first use on the Arduino IDE, otherwise your code will

upload unsuccessfully.

After the upload is successful this time, Pico will be recognized by the computer as COMxx (Raspberry Pi Pico).

You only need to plug it into the computer the next time you use it.

7. After the Done Uploading appear, you will see the LED on the Pico blinking.

4.2 Projects

Note: The Pico Arduino core is a recent development, so it may take a long time to compile and upload, or the COM

port may suddenly disappear during use.

• For the former, we have to wait patiently until a new Arduino core is released.

• For the latter case, you can unplug the USB cable, then press and hold the BOOTSEL button to plug it in, unplug

it and plug it in again to see the COM port.

• If you encounter a problem, you can come first FAQ to find a solution.

4.2. Projects 153

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

4.2.1 Hello LED

Just as printing “Hello, world!” is the first step in learning programming, letting the LED light up is the traditional

entry to learning physical programming.

To use extended electronic components, a solderless breadboard will be the most powerful partner for novice users.

The breadboard is a rectangular plastic plate with a bunch of small holes in it. These holes allow us to easily insert elec-

tronic components and build electronic circuits. The breadboard does not permanently fix the electronic components,

which makes it easy for us to repair the circuit and start over when we make a mistake.

Schematic

Wiring

Let us follow the direction of the current to build the circuit!

1. Here we use the electrical signal from the GP15 pin of the Pico board to make the LED work, and the circuit

starts from here.

154 Chapter 4. For Arduino User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

2. The current needs to pass through a 220 ohm resistor (used to protect the LED). Insert one end (either end) of

the resistor into the same row as the Pico GP15 pin (row 20 in my circuit), and insert the other end into the free

row of the breadboard (row 24 in my circuit).

Note: The color ring of the 220 ohm resistor is red, red, black, black and brown.

3. Pick up the LED, you will see that one of its leads is longer than the other. Insert the longer lead into the same

row as the end of the resistor, and connect the shorter lead across the middle gap of the breadboard to the same

row.

Note: The longer lead is known as the anode, and represents the positive side of the circuit; the

shorter lead is the cathode, and represents the negative side.

The anode needs to be connected to the GPIO pin through a resistor; the cathode needs to be con-

nected to the GND pin.

4. Insert the male-to-male (M2M) jumper wire into the same row as the LED short pin, and then connect it to the

negative power bus of the breadboard.

5. Use a jumper to connect the negative power bus to the GND pin of Pico.

Code

• You can click the Download Sketch icon to download the code and open it with the desktop Arduino IDE.

• Or OPEN IN WEB EDITOR.

• Then upload the code to your Pico(Setup the Raspberry Pi Pico).

How it works?

Here, we connect the LED to the GPIO15, so we define a variable ledPin to represent GPIO15. You could also just

replace all the ledPin pins in the code with 15, but if you were to replace 15 with other pins you would have to

modify 15 one by one, which would add a lot of work.

#define ledPin 15

Now, you need to set the pin to OUTPUT mode in the setup() function.

pinMode(ledPin, OUTPUT);

• pinMode()

The above code has “set” the pin, but it will not light up the LED. Here, we use the digitalWrite() function to assign a

high level signal to ledpin, which will cause a voltage difference between the LED pins, causing the LED to light

up.

digitalWrite(ledPin, HIGH);

If the level signal is changed to LOW, the ledPin’s signal will be returned to 0 V to turn LED off.

digitalWrite(ledPin, LOW);

• digitalWrite()

4.2. Projects 155

https://www.arduino.cc/reference/en/language/functions/digital-io/pinmode/
https://www.arduino.cc/reference/en/language/functions/digital-io/digitalwrite/
https://www.arduino.cc/reference/en/language/functions/digital-io/digitalwrite/

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

An interval between on and off is required to allow people to see the change, so we use a delay(1000) code to let

the controller do nothing for 1000 ms.

delay(1000);

4.2.2 Fading LED

In last projects, we have used only two output signals: high level and low level (or called 1 & 0, ON & OFF), which

is called digital output.

However, in actual use, many devices do not simply ON/OFF to work, for example, adjusting the speed of the motor,

adjusting the brightness of the desk lamp, and so on. In the past, a slider that can adjust the resistance was used to

achieve this goal, but this is always unreliable and inefficient.

Therefore, Pulse width modulation (PWM) has emerged as a feasible solution to such complex problems. A digital

output composed of a high level and a low level is called a pulse. The pulse width of these pins can be adjusted by

changing the ON/OFF speed.

Simply put, when we are in a short period (such as 20ms, most people’s visual retention time), Let the LED turn on,

turn off, and turn on again, we won’t see it has been turned off, but the brightness of the light will be slightly weaker.

During this period, the more time the LED is turned on, the higher the brightness of the LED. In other words, in the

cycle, the wider the pulse, the greater the “electric signal strength” output by the microcontroller. This is how PWM

controls LED brightness (or motor speed).

• Pulse-width modulation - Wikipedia

There are some points to pay attention to when Pico uses PWM. Let’s take a look at this picture.

156 Chapter 4. For Arduino User

https://en.wikipedia.org/wiki/Pulse-width_modulation

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Each GPIO pin of Pico supports PWM, but it actually has a total of 16 independent PWM outputs (instead of 30),

distributed between GP0 to GP15 on the left, and the PWM output of the right GPIO is equivalent to the left copy.

What we need to pay attention to is to avoid setting the same PWM channel for different purposes during programming.

(For example, GP0 and GP16 are both PWM_0A)

After understanding this knowledge, let us try to achieve the effect of Fading LED.

Schematic

4.2. Projects 157

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Wiring

• RP2040 Datasheet

1. Here we use the GP15 pin of the Pico board.

2. Connect one end (either end) of the 220 ohm resistor to GP15, and insert the other end into the free row of the

breadboard.

3. Insert the anode lead of the LED into the same row as the end of the 220 resistor, and connect the cathode lead

across the middle gap of the breadboard to the same row.

4. Connect the LED cathode to the negative power bus of the breadboard.

5. Connect the negative power bus to the GND pin of Pico.

Note: The color ring of the 220 ohm resistor is red, red, black, black and brown.

158 Chapter 4. For Arduino User

https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Code

When the program is running, the LED will alternate between gradually brightening and gradually dimming.

How it works?

As in the previous project, when using a pin, its input/output mode needs to be defined first. Then we can write values

to it, a function analogWrite() in loop() assigns ledPin a PWM wave (brightness)which will add or decrease 5 for

each cycle.

analogWrite(ledPin, brightness);

// change the brightness for next time through the loop:

brightness = brightness + fadeAmount;

Use an if statement to limit the range of brightness to 0-255, the brightness will accumulate from 0 to 255

and then decrement from 255 to 0, alternating repeatedly.

if (brightness <= 0 || brightness >= 255) {

fadeAmount = -fadeAmount;

}

• <=

• >=

• ||

4.2.3 Warning Light

From the name of GPIO (General-purpose input/output), we can see that these pins have both input and output func-

tions. In the previous two projects we used the output function, in this project, we will use the input function to input

the Slide value, and then control the LED to blink, like a warning light.

4.2. Projects 159

https://www.arduino.cc/reference/en/language/functions/analog-io/analogwrite/
https://www.arduino.cc/reference/en/language/structure/comparison-operators/lessthanorequalto/
https://www.arduino.cc/reference/en/language/structure/comparison-operators/greaterthanorequalto/
https://www.arduino.cc/reference/en/language/structure/boolean-operators/logicalor/

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Schematic

160 Chapter 4. For Arduino User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Wiring

1. Connect the 3V3 pin of Pico to the positive power bus of the breadboard.

2. Connect one end (either end) of the 220 ohm resistor to GP15, and insert the other end into the free row of the

breadboard.

3. Insert the anode lead of the LED into the same row as the end of the 220 resistor, and connect the cathode lead

across the middle gap of the breadboard to the same row.

4. Connect the LED cathode to the negative power bus of the breadboard.

5. Insert the slide switch into the breadboard.

6. Use a jumper wire to connect one end of slide switch pin to the negative bus.

7. Connect the middle pin to GP14 with a jumper wire.

8. Use a jumper wire to connect last end of slide switch pin to the positive bus

9. Use a 10K resistor to connect the middle pin of the slide switch and the negative bus.

10. Use a 104 capacitor to connect the middle pin of the slide switch and the negative bus to realize debounce that

may arise from your toggle of switch.

11. Connect the negative power bus of the breadboard to Pico’s GND.

When you toggle the slide switch, the circuit will switch between closed and open.

• Slide Switch

• Capacitor

4.2. Projects 161

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Code

After the code has run, toggle the Slide switch to one side and the LED will flash. Toggle to the other side and the

LED will go out.

How it works?

For switchs, we need to set their mode to INPUT in order to be able to get their values.

void setup() {

// initialize the LED pin as an output:

pinMode(ledPin, OUTPUT);

// initialize the switch pin as an input:

pinMode(switchPin, INPUT);

}

Read the status of the switchPin in loop() and assign it to the variable switchState.

switchState = digitalRead(switchPin);

• digitalRead()

If the switchState is HIGH, the LED will flash.

if (switchState == HIGH)

{

// turn LED on:

digitalWrite(ledPin, HIGH);

delay(1000);

digitalWrite(ledPin, LOW);

delay(1000);

}

Otherwise, turn off the LED.

else

{

digitalWrite(ledPin, LOW);

}

4.2.4 Table Lamp

In the previous projects, we have used the digital input on the Pico. For example, a button can change the pin from

low level (off) to high level (on). This is a binary working state.

However, Pico can receive another type of input signal: analog input. It can be in any state from fully closed to fully

open, and has a range of possible values. The analog input allows the microcontroller to sense the light intensity, sound

intensity, temperature, humidity, etc. of the physical world.

Usually, a microcontroller needs an additional hardware to implement analog input-the analogue-to-digital converter

(ADC). But Pico itself has a built-in ADC for us to use directly.

162 Chapter 4. For Arduino User

https://www.arduino.cc/reference/en/language/functions/digital-io/digitalread/

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Pico has three GPIO pins that can use analog input, GP26, GP27, GP28. That is, analog channels 0, 1, and 2.

In addition, there is a fourth analog channel, which is connected to the built-in temperature sensor and will not be

introduced here.

In this project, we try to read the analog value of potentiometer.

4.2. Projects 163

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Schematic

Wiring

1. Connect 3V3 and GND of Pico to the power bus of the breadboard.

164 Chapter 4. For Arduino User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

2. Insert the potentiometer into the breadboard, its three pins should be in different rows.

3. Use jumper wires to connect the pins on both sides of the potentiometer to the positive and negative power bus

respectively.

4. Connect the middle pin of the potentiometer to GP28 with a jumper wire.

5. Connect the anode of the LED to the GP15 pin through a 220 resistor, and connect the cathode to the negative

power bus.

Code

Once the code has been successfully uploaded, open Serial Monitor and then ensure that baudrate is 9600, rotate the

potentiometer in 2 directions and you will see that the value range is 0-1023.

When the displayed value is 0, the LED goes off and as the value increases, the LED gets brighter.

4.2. Projects 165

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Note: If your code is OK and you have selected the correct board and port, but the upload is still not successful.

At this point you can click on the Upload icon again when the progress below shows “Upload. . . ”, unplug the USB

cable again and plug it in and the code will be uploaded successfully.

How it works?

To enable Serial Monitor, you need to start serial communication in setup() and set the datarate to 9600.

void setup() {

pinMode(ledPin, OUTPUT);

Serial.begin(9600);

}

• Serial

In the loop function, the value of the potentiometer is read, then the value is mapped from 0-1023 to 0-255 and finally

the value after the mapping is used to control the brightness of the LED.

void loop() {

int sensorValue = analogRead(sensorPin);

Serial.println(sensorValue);

int brightness = map(sensorValue, 0, 1023, 0, 255);

analogWrite(ledPin, brightness);

}

• analogRead() is used to read the value of the sensorPin (potentiometer) and assigns it to the variable

sensorValue.

int sensorValue = analogRead(sensorPin);

• Print the value of SensorValue in Serial Monitor.

Serial.println(sensorValue);

• Here, the map(value, fromLow, fromHigh, toLow, toHigh) function is required as the potentiometer value read

is in the range 0-1023 and the value of a PWM pin is in the range 0-255. It is used to Re-maps a number from

one range to another. That is, a value of fromLow would get mapped to toLow, a value of fromHigh to toHigh,

values in-between to values in-between, etc.

int brightness = map(sensorValue, 0, 1023, 0, 255);

• Now we can use this value to control the brightness of the LED.

analogWrite(ledPin,brightness);

166 Chapter 4. For Arduino User

https://www.arduino.cc/reference/en/language/functions/communication/serial/
https://www.arduino.cc/reference/en/language/functions/analog-io/analogread/
https://www.arduino.cc/reference/en/language/functions/analog-io/analogread/

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

4.2.5 Measure Light Intensity

A photoresistor or photocell is a light-controlled variable resistor. The resistance of a photo resistor decreases with

increasing incident light intensity; in other words, it exhibits photo conductivity.

Therefore, we can use a photoresistor to measure light intensity, and then show it through 5 LEDs.

Schematic

4.2. Projects 167

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Wiring

In this experiment, we will use 5 LEDs to show the light intensity. The higher the light intensity is, the more LEDs

will light up, vice versa.

Code

How it works?

const int ledPins[] = {11, 12, 13, 14, 15};

const int photocellPin = A0; //photoresistor attach to A0

int sensorValue = 0; // value read from the sensor

int Level = 0; // sensor value converted into LED 'bars'

First of all, there are still various initialization definitions, setting pins and setting initial values of variables.

In order to quickly set the input/output status and HIGH/LOW for the 5 LEDs in the following code, here we use the

array ledPin[] to define the 5 LEDs connected to the corresponding pins of the Pico.

The element number of the array usually starts from 0. For example, ledPin[0] refers to GPIO11, and ledPin[4]

refers to GPIO15.

• array

void setup()

{

Serial.begin(9600); // start serial port at 9600 bps:

for (int i = 0; i < 5; i++)

{

pinMode(ledPins[i], OUTPUT);// make all the LED pins outputs

}

}

In setup()using the for() statement set the 5 pins to OUTPUT. The variable i is added from 0 to 5, and the

pinMode() function sets pin11 to pin15 to OUTPUT in turn.

168 Chapter 4. For Arduino User

https://www.arduino.cc/reference/en/language/variables/data-types/array/

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

sensorValue = analogRead(photocellPin); //read the value of A0

Level = map(sensorValue, 0, 1023, 0, 5); // map to the number of LEDs

Serial.println(Level);

delay(10);

In loop(), read the analog value of the photocellPin(A0) and store to the variable sensorValue.

The map() function is used to map 0-1023 to 0-5. It means that the value range of the photoresistor (0-1023) is

equally divided into 5 levels, 0-204.8 belongs to Level 0, 204.9-409.6 belongs to Level 1, and 819.2-1023 belong to

Level 4. If the value of variable sensorValue is 300 at this time, then Level is equal to 1.

• map()

for (int i = 0; i < 5; i++)

{

if (i <= Level) //When i is smaller than Level, run the following code.

{

digitalWrite(ledPins[i], HIGH); // turn on LEDs less than the level

}

else

{

digitalWrite(ledPins[i], LOW); // turn off LEDs higher than level

}

}

Now we need to find a way to display the brightness level at this time with LEDs.

The for() statement is used here to perform loop detection in the ledPin[] array. If the element bit in the array

is less than the value of Level, the corresponding GPIO is set to high level, that is, the corresponding LED is lit. If

Level is equal to 1, turn on the LEDs on GPIO11 and GPIO12.

4.2.6 Doorbell

A buzzer is a great tool in your experiments whenever you want to make some sounds. In this project, we will learn

how to drive a passive buzzer to build a simple doorbell.

Two types of buzzers are included in the kit. We need to use passive buzzer. Turn them around, the one with exposed

PCB is we want.

The buzzer needs to use a transistor when working, here we use S8050.

4.2. Projects 169

https://www.arduino.cc/reference/en/language/functions/math/map/

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

• Transistor

• Button

Schematic

Wiring

• The basic function of the triode is to amplify and switch. In this circuit, the switch function of the NPN triode

is used to drive the buzzer. When a high-level signal is given to the base of the NPN transistor, the transistor is

turned on and the buzzer can emit a sound.

• When a pin is floating, its level may be high or low, so we connect a 10K resistor in the upper left corner of the

button to keep the button in a low state when it is not pressed. You can also try to remove this 10K resistor, and

you will find that even if it is not pressed, the buzzer may sound.

170 Chapter 4. For Arduino User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Code

After uploading the code, when you press the button, you can hear a 7-note melody.

How it works?

#include "pitches.h"

The code uses an extra file, pitches.h. This file contains all the pitch values for typical notes. For example,

NOTE_C4 is middle C. NOTE_FS4 is F sharp, and so forth. This note table was originally written by Brett Hagman,

on whose work the tone() command was based. You may find it useful whenever you want to make musical notes.

Note: There is already a pitches.h file in this sample program. If you cannot find pitches.h after downloading or

opening the code, you can just install one manually.

Click the button below the serial monitor icon and select “New Tab”, or use Ctrl+Shift+N.

4.2. Projects 171

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Then paste from Code and save it as pitches.h:

int melody[] = {NOTE_C4, NOTE_G3, NOTE_G3, NOTE_A3, NOTE_G3, 0, NOTE_B3, NOTE_C4};

int buttonPin = 14;

//note durations. 4=quarter note / 8=eighth note

int noteDurations[] = {4, 8, 8, 4, 4, 4, 4, 4};

The array melody[] stores 7 notes, and noteDurations[] is the duration corresponding to these notes, 4=quarter

note, 8=eighth note.

• Quarter note

• Eighth note

int buttonState = digitalRead(buttonPin); //read the input pin

//if the button is pressed

if (buttonState == 1) {

//iterate over the notes of the melody

for (int i = 0; i < 8; i++) {

// to calculate the note duration, take one second divided by the note type.

//e.g. quarter note = 1000 / 4, eighth note = 1000/8, etc.

int noteDuration = 1000 / noteDurations [i];

tone(15, melody [i], noteDuration);

//to distinguish the notes, set a minimum time between them

//the note's duration +30% seems to work well

int pauseBetweenNotes = noteDuration * 1.30;

delay(pauseBetweenNotes);

}

}

First read the value of the button in loop(). When the button is pressed, buttonState will be equal to 1.

In the for() statement, a tone() is used to let the buzzer play one note at a time, and then after 8 times, the buzzer can

play the notes in the array melody[] one by one.

tone(15, melody [i], noteDuration);

• 15: The pin on which to generate the tone (the buzzer pin).

172 Chapter 4. For Arduino User

https://en.wikipedia.org/wiki/Quarter_note
https://en.wikipedia.org/wiki/Eighth_note
https://www.arduino.cc/reference/en/language/functions/advanced-io/tone/

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

• melody [i]: The frequency of the tone in hertz.

• noteDuration: The duration of the tone in milliseconds (optional).

else

{

noTone(15); //if the button is released, stop the tone playing.

}

Stops the generation of a square wave triggered by tone(). Has no effect if no tone is being generated.

4.2.7 RGB LED

As we know, light can be superimposed. For example, mix blue light and green light give cyan light, red light and

green light give yellow light. This is called “The additive method of color mixing”.

• Additive color - Wikipedia

Based on this method, we can use the three primary colors to mix the visible light of any color according to different

specific gravity. For example, orange can be produced by more red and less green.

In this chapter, we will use RGB LED to explore the mystery of additive color mixing!

RGB LED is equivalent to encapsulating Red LED, Green LED, Blue LED under one lamp cap, and the three LEDs

share one cathode pin. Since the electric signal is provided for each anode pin, the light of the corresponding color

can be displayed. By changing the electrical signal intensity of each anode, it can be made to produce various colors.

Schematic

4.2. Projects 173

https://en.wikipedia.org/wiki/Additive_color

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Wiring

Put the RGB LED flat on the table, we can see that it has 4 leads of different lengths. Find the longest one (GND) and

turn it sideways to the left. Now, the order of the four leads is Red, GND, Green, Blue from left to right.

174 Chapter 4. For Arduino User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

1. Connect the GND pin of the Pico to the negative power bus of the breadboard.

2. Insert the RGB LED into the breadboard so that its four pins are in different rows.

3. Connect the red lead to the GP13 pin via a 330 resistor. When using the same power supply intensity, the Red

LED will be brighter than the other two, and a slightly larger resistor needs to be used to reduce its brightness.

4. Connect the Green lead to the GP14 pin via a 220 resistor.

5. Connect the Blue lead to the GP15 pin via a 220 resistor.

6. Connect the GND lead to the negative power bus.

7. Connect the negative power bus to Pico’s GND.

Note:

• The color ring of the 220 resistor is red, red, black, black and brown.

• The color ring of the 330 resistor is orange, orange, black, black and brown.

Code

Here, we can choose our favorite color in drawing software and display it with RGB LED.

Write the RGB value into color(), you will be able to see the RGB light up the colors you want.

4.2. Projects 175

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

How it works?

void color (unsigned char red, unsigned char green, unsigned char blue)// the color

→˓generating function

{

analogWrite(redPin, red);

analogWrite(greenPin, green);

analogWrite(bluePin, blue);

}

We defined a color() function to let the three primary colors work together.

At present, pixels in computer hardware usually adopt a 24-bit representation method. The three primary colors are

divided into 8 bits, and the color value range is 0 to 255. With 256 possible values for each of the three primary colors

(don’t forget to count 0!), that 256 x 256 x 256 = 16,777,216 colors can be combined in this way. The color()

function also follows the 24-bit notation, which makes it easier for us to select the desired color.

analogWrite(pin, value) Writes an analog value (PWM wave) to a pin. Can be used to light a LED at

varying brightnesses or drive a motor at various speeds. After a call to analogWrite(), the pin will generate a

steady rectangular wave of the specified duty cycle until the next call to analogWrite() (or a call to digitalRead() or

digitalWrite()) on the same pin.

pin: the Arduino pin to write to. Allowed data types: int.

value: the duty cycle: between 0 (always off) and 255 (always on). Allowed data types: int.

• analogWrite(pin, value)

4.2.8 Light Theremin

Theremin is an electronic musical instrument that does not require physical contact. It produces different tones by

sensing the position of the player’s hand.

The instrument’s controlling section usually consists of two metal antennas that sense the relative position of the

thereminist’s hands and control oscillators for frequency with one hand, and amplitude (volume) with the other. The

electric signals from the theremin are amplified and sent to a loudspeaker.

We cannot reproduce the same instrument through Pico, but we can use photoresistor and passive buzzer to achieve

similar gameplay.

• Theremin - Wikipedia

176 Chapter 4. For Arduino User

https://www.arduino.cc/reference/en/language/functions/analog-io/analogwrite/
https://en.wikipedia.org/wiki/Theremin

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Schematic

4.2. Projects 177

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Wiring

1. Connect 3V3 and GND of Pico to the power bus of the breadboard.

2. Connect one lead of the photoresistor to the GP28 pin, then connect the same lead to the positive power bus with

a 10K ohm resistor.

3. Connect another lead of photoresistor to the negative power bus.

4. Insert the LED into the breadboard, connect its anode pin to the GP16 in series with a 220 resistor, and connect

its cathode pin to the negative power bus.

5. Insert the passive buzzer and S8050 transistor into the breadboard. The anode pin of the buzzer is connected

to the positive power bus, the cathode pin is connected to the collector lead of the transistor, and the base lead

of the transistor is connected to the GP15 pin through a 1k resistor. emitter lead is connected to the negative

power bus.

Note:

• The color ring of the 220 resistor is red, red, black, black and brown.

• The color ring of the 10k resistor is brown, black, black, red and brown.

Code

When the program runs, the LED will light up, and we will have one seconds to calibrate the detection range of the

photoresistor. This is because we may be in a different light environment each time we use it (e.g. the light intensity

is different between midday and dusk).

At this time, we need to swing our hands up and down on top of the photoresistor, and the movement range of the hand

will be calibrated to the playing range of this instrument.

After one seconds, the LED will go out and we can wave our hands on the photoresistor to play.

178 Chapter 4. For Arduino User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

How it works?

/* calibrate the photoresistor max & min values */

previousMillis = millis();

digitalWrite(ledPin, HIGH);

while (millis() - previousMillis <= interval) {

sensorValue = analogRead(photocellPin);

if (sensorValue > lightHigh) {

lightHigh = sensorValue;

}

if (sensorValue < lightLow) {

lightLow = sensorValue;

}

}

digitalWrite(ledPin, LOW);

Set up a calibration process in setup(), using millis() for timing with an interval of 1s (interval = 1000).

During this second, wave a hand around the photoresistor, the maximum and minimum values of the detected light are

recorded and assigned to lightHigh and lightLow respectively.

• millis()

sensorValue = analogRead(photocellPin); //read the value of A0

pitch = map(sensorValue, lightLow, lightHigh, 50, 6000);

if (pitch > 50) {

tone(buzzerPin, pitch, 20);

}

Read the value of the photocell resistor to sensorValue and map it from the small range to the large range to be

used to control the frequency of the buzzer. For a detailed explanation of map(), please refer to the course Measure

Light Intensity.

tone(buzzerPin, pitch, 20)

This function can make the buzzer sound, the frequency is pitch, and the duration is 20 milliseconds.

4.2.9 74HC595

74HC595

Integrated circuit (integrated circuit) is a kind of miniature electronic device or component, which is represented by

the letter “IC” in the circuit.

A certain process is used to interconnect the transistors, resistors, capacitors, inductors and other components and

wiring required in a circuit, fabricate on a small or several small semiconductor wafers or dielectric substrates, and

then package them in a package , it has become a micro-structure with the required circuit functions; all of the

components have been structured as a whole, making electronic components a big step towards micro-miniaturization,

low power consumption, intelligence and high reliability.

The inventors of integrated circuits are Jack Kilby (integrated circuits based on germanium (Ge)) and Robert Norton

Noyce (integrated circuits based on silicon (Si)).

This kit is equipped with an IC, 74HC595, which can greatly save the use of GPIO pins. Specifically, it can replace 8

pins for digital signal output by writing an 8-bit binary number.

• Binary number - Wikipedia

• 74HC595

4.2. Projects 179

https://www.arduino.cc/reference/en/language/functions/time/millis/
https://en.wikipedia.org/wiki/Binary_number

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

LED Segment Display

LED Segment Display can be seen everywhere in life. For example, on an air conditioner, it can be used to display

temperature; on a traffic indicator, it can be used to display a timer.

The LED Segment Display is essentially a device packaged by 8 LEDs, of which 7 strip-shaped LEDs form an “8”

shape, and there is a slightly smaller dotted LED as a decimal point. These LEDs are marked as a, b, c, d, e, f, g, and

dp. They have their own anode pins and share cathodes. Their pin locations are shown in the figure below.

This means that it needs to be controlled by 8 digital signals at the same time to fully work and the 74HC595 can do

this.

180 Chapter 4. For Arduino User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Schematic

Wiring

1. Connect 3V3 and GND of Pico to the power bus of the breadboard.

4.2. Projects 181

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

2. Insert 74HC595 across the middle gap into the breadboard.

3. Connect the GP0 pin of Pico to the DS pin (pin 14) of 74HC595 with a jumper wire.

4. Connect the GP1 pin of Pico to the STcp pin (12-pin) of 74HC595.

5. Connect the GP2 pin of Pico to the SHcp pin (pin 11) of 74HC595.

6. Connect the VCC pin (16 pin) and MR pin (10 pin) on the 74HC595 to the positive power bus.

7. Connect the GND pin (8-pin) and CE pin (13-pin) on the 74HC595 to the negative power bus.

8. Insert the LED Segment Display into the breadboard, and connect a 220 resistor in series with the GND pin to

the negative power bus.

Note: The color ring of the 220 ohm resistor is red, red, black, black and brown.

9. Follow the table below to connect the 74hc595 and LED Segment Display.

Table 1: Wiring

74HC595 LED Segment Display

Q0 a

Q1 b

Q2 c

Q3 d

Q4 e

Q5 f

Q6 g

Q7 dp

Code

When the program runs, the 7-digit digital tube will start to display numbers from 0 to 9 in sequence.

How it works?

for(int num = 0; num <=9; num++)

{

digitalWrite(STcp,LOW); //ground ST_CP and hold low for as long as you are

→˓transmitting

shiftOut(DS,SHcp,MSBFIRST,datArray[num]);

digitalWrite(STcp,HIGH); //pull the ST_CPST_CP to save the data

delay(500); //wait for a second

}

shiftOut(dataPin, clockPin, bitOrder, value) will make 74HC595 output 8 digital signals. It out-

puts the last bit of the binary number to Q0, and the output of the first bit to Q7. In other words, writing the binary

number “00000001” will make Q0 output high level and Q1~Q7 output low level.

• dataPin: the pin on which to output each bit. Allowed data types: int.

• clockPin: the pin to toggle once the dataPin has been set to the correct value. Allowed data types: int.

• bitOrder: which order to shift out the bits; either MSBFIRST or LSBFIRST. (Most Significant Bit First, or,

Least Significant Bit First).

182 Chapter 4. For Arduino User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

• value: the data to shift out. Allowed data types: byte.

• shiftOut()

Suppose that the 7-segment Display display the number “1”, we need to write a high level for b, c, and write a low

level for a, d, e, f, g, and dg. That is, the binary number “00000110” needs to be written. For readability, we will use

hexadecimal notation as “0x06”.

• Hexadecimal

• BinaryHex Converter

Similarly, we can also make the LED Segment Display display other numbers in the same way. The following table

shows the codes corresponding to these numbers.

Table 2: Glyph Code

Numbers Binary Code Hex Code

0 00111111 0x3f

1 00000110 0x06

2 01011011 0x5b

3 01001111 0x4f

4 01100110 0x66

5 01101101 0x6d

6 01111101 0x7d

7 00000111 0x07

8 01111111 0x7f

9 01101111 0x6f

Write these codes into datArray[num] of shiftOut() to make the LED Segment Display display the corre-

sponding numbers.

4.2.10 Digital Dice

In the last project, we learned how to use 74HC595 to light up the LED Segment Display. Of course, we can expand

on this basis to make it more interesting.

Here, we will add a button to the previous project to make a digital dice. When the button is pressed, the 7 segment

display will randomly show 1-6.

4.2. Projects 183

https://www.arduino.cc/reference/en/language/functions/advanced-io/shiftout/
https://en.wikipedia.org/wiki/Hexadecimal
https://www.binaryhexconverter.com/binary-to-hex-converter

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Schematic

Wiring

184 Chapter 4. For Arduino User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Code

When the program starts running, every time you press the button, the digital tube will randomly display a number

from 1 to 6.

How it works?

SEGCODE = [0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f]

First, define a hexadecimal array to represent the number from 0 to 9 displayed by the 7 segment display.

if (digitalRead(button)==HIGH){

dice = random(1,7);

}

When the value of the button is HIGH, i.e. the key has been pressed, the random() function is called to generate a

random number from 1 to 6 to be stored in the variable dice.

• random

The following table shows the codes corresponding to these numbers.

Table 3: Glyph Code

Numbers Binary Code Hex Code

0 00111111 0x3f

1 00000110 0x06

2 01011011 0x5b

3 01001111 0x4f

4 01100110 0x66

5 01101101 0x6d

6 01111101 0x7d

7 00000111 0x07

8 01111111 0x7f

9 01101111 0x6f

dice = random(1,7) the random function generates pseudo-random numbers from 1 to 6(Exclude 7).

digitalWrite(STcp,LOW); //ground ST_CP and hold low for as long as you are

→˓transmitting

shiftOut(DS,SHcp,MSBFIRST,datArray[dice]);

digitalWrite(STcp,HIGH); //pull the ST_CPST_CP to save the data

delay(100); //wait for a second

Display the corresponding number on the 7 segment display via shiftOut() function.

4.2. Projects 185

https://www.arduino.cc/reference/en/language/functions/random-numbers/random/

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

4.2.11 Flow LEDs

In this kit is equipped with a WS2812 RGB 8 LEDs Strip, which can display colorful colors and each LED can be

controlled independently.

Here, a tilt switch is used to control the flow direction of LED on the WS2812 Strip.

Schematic

Wiring

186 Chapter 4. For Arduino User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Code

After the code runs, when the tilt switch is placed vertically, the LED on the WS2812 Strip will light up from one side,

and when it is placed horizontally, the WS2812 will light up from the other side.

How it works?

#include <Adafruit_NeoPixel.h>

Adafruit_NeoPixel pixels(NUMPIXELS, PIN, NEO_GRB + NEO_KHZ800);

Import the Adafruit_NeoPixel.h library and create a object pixel to control WS2812. The three parameters

NUMPIXELS, PIN, NEO_GRB + NEO_KHZ800 are used to declare the number of LED pixels, pin number and

Pixel type flags.

Note: To use this library, open the Library Manager in the Arduino IDE and install it from there.

Sketch -> Include Library -> Manager Libraries

pixels.begin()

This statement is used to initialize the NeoPixel strip object.

if (ledIndex < 0) {

ledIndex = NUMPIXELS-1;

}

else if (ledIndex >= NUMPIXELS) {

ledIndex = 0;

}

4.2. Projects 187

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Limit the value of ledIndex to 0 to NUMPIXELS. When it is greater than this range, ledIndex is re-assigned to

0. When it is less than this range, ledIndex is re-assigned to NUMPIXELS-1.

pixels.clear()

This statement set pixel colors to 0 (off).

pixels.setPixelColor(ledIndex, pixels.Color(100, 50, 0))

This statement is used to set the color of the WS2812 Strip, the first parameter refers to the serial number of the

WS2812 Strip, and the second parameter represents the color.

pixels.show()

Show the effect on WS2812 Strip.

4.2.12 WS2812 Strip Multi-Mode

In addition to having the WS2812 Strip display one color or one LED at a time, you can control 8 LEDs at a time and

have them each display a different color.

Schematic

188 Chapter 4. For Arduino User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Wiring

Code

After the program is running, every time you press the switch, WS2812 will change a mode, there are four modes in

total.

How it works?

Adafruit_NeoPixel strip(PIXEL_COUNT, PIXEL_PIN, NEO_GRB + NEO_KHZ800)

Create object strip to control ws2812 and declare the number of LED pixels, pin number and Pixel type flags.

boolean lastButtonState = LOW

Set the initial state of the button to LOW, which means the button is not pressed.

boolean currentButtonState = digitalRead(BUTTON_PIN);

// Check if button press.

if ((currentButtonState == LOW) && (lastButtonState == HIGH)) {

// Short delay to debounce button.

delay(20);

mode = (mode + 1) % 4;

switch (mode) { // Start the new animation...

case 0:

colorWipe(strip.Color(255, 127, 0), 50);

break;

case 1:

theaterChase(strip.Color(0, 127, 127), 100);

break;

case 2:

rainbow(10);

break;

case 3:

theaterChaseRainbow(100);

(continues on next page)

4.2. Projects 189

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

(continued from previous page)

break;

}

Firstly, the value of the button is read, and when the button is detected from pressed to released, it enters into the mode

selection. There are 4 modes:

• colorWipe(): From the left (wired side) to the right, light up one led every 50ms, after all light up, wait

500ms, then from left to right, turn off one led every 50ms(variable wait), until all off.

• theaterChase(): First light up the WS2812 Strip on the 1st (wired side), 4, 7 position of the LED, wait

50ms after extinguishing; then light up 2, 5, 8 of the led, wait 50ms after extinguishing; finally light up 3, 6

of the led, wait 50ms after extinguishing. The whole process is cycled 10 times, due to the short interval thus

achieving the effect of flow.

• rainbow(): Different colors are displayed on 8 LEDs, and then these 8 colors flow from right to left (wired

side), flowing 3 times and then stopping.

• theaterChaseRainbow(): Add flow effect to rainbow().

4.2.13 LUMI Piano

In this project, we will use 7 buttons, a WS2812 Strip and a buzzer to create a LUMI Piano.

The 7 buttons respectively represent 7 notes. When the button is pressed, the passive buzzer will emit the corresponding

note, and the WS2812 Strip will light up the corresponding LED.

Schematic

190 Chapter 4. For Arduino User

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Wiring

Code

After the program is running, press different buttons, the buzzer will emit different sounds, and the WS2812 will also

light up the corresponding LEDs.

How it works?

const int buttonPin[] = {6, 7, 8, 9, 10, 11, 12};

const int pitch[] = {523, 587, 659, 698, 784, 880, 988};

Store the 8 button pins in the array buttonPin[] so that they can be quickly set and used later.

pitch[] stores the frequencies corresponding to C, E, E, F, G, A, B,notes in C major scale.

for (int i = 0; i < NUMPIXELS ; i++) {

pinMode(buttonPin[i], OUTPUT);

}

pixels.begin();

pinMode(buzzerPin, OUTPUT);

Serial.begin(9600);

Use the for loop in setup() to initialize the pins of all buttons and buzzer and set them to output mode.

for (int i = 0; i < NUMPIXELS; i++) {

if (digitalRead(buttonPin[i]) == HIGH) {

tone(buzzerPin, pitch[i]);

pixels.setBrightness(100);

pixels.setPixelColor(i, 0xFF8822);

pixels.show();

while (digitalRead(buttonPin[i]) == HIGH);

fade();

(continues on next page)

4.2. Projects 191

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

(continued from previous page)

noTone(buzzerPin);

}

}

Create a for loop in loop() function to traverse all the buttons, sounds and pixels, and set the judgment when the

button is pressed, the buzzer will sound the corresponding note, and the WS2812 will light up the corresponding LED.

void fade() {

while (1) {

int brightness = pixels.getBrightness();

if (brightness <= 0) {

return;

}

pixels.setBrightness(brightness -= 1);

pixels.show();

delay(2);

}

The fade() function is used to slowly reduce the brightness of the LEDs on the WS2812 Strip to 0.

First get the brightness value of the currently lit LED through getBrightness() function, then write the decreas-

ing brightness value to WS2812 Strip through setBrightness() function, and finally present the effect through

show() function.

If the brightness is less than 0, then exit this function.

The new projects for Arduino are still being updated continuously.

192 Chapter 4. For Arduino User

CHAPTER

FIVE

FOR PIPER MAKE

This chapter contains an introduction to Piper Make, how to connect and program Pico in Piper Make, and several

interesting projects to help you get up and running with Piper quickly.

We recommend that you read this chapter in order.

5.1 Quick Guide on Piper Make

Piper Make is a super easy and fun way to make projects using Raspberry Pi Pico. It uses blocks like Scratch, so

you don’t need any programming experience to use it. The underlying principle is to use CircuitPython with auxiliary

libraries.

5.1.1 Set up the Pico

First, visit Piper Make through the following link

https://make.playpiper.com/

In the pop-up page, if you don’t need to subscribe for more tutorials, you can just click Let’s Go! or the x button.

Note: If you see a different pop-up window, your browser version is not supported, please update your browser and

try again.

Scroll to the bottom of this page and click on the Set up my Pico under the Tools section and follow the prompts to

configure it.

193

https://make.playpiper.com/

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Click Next to start configuring your Pico, even if you have set it up before, these are the same steps you will use to

update your Pico firmware.

In this step, you need to make sure that your Pico is unplugged from your computer, as it needs to be plugged in in a

specific way in the next step. Make sure your cable can handle power and data, as many micro USB cables only have

power.

Now, press and hold the RST (white) button on the Pico and plug the Pico into your computer. Once plugged in, you

can release the button.

194 Chapter 5. For Piper Make

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Your Pico will appear as a USB drive, click Next after that select RPI-RP2 drive.

Note: After select RPI-RP2 drive, there will be a pop up window at the top that you need to allow the web page to

view files.

Now Piper Make will load the firmware to your Pico, again you need to allow save changes to the hard drive where

the Pico is located.

5.1. Quick Guide on Piper Make 195

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

When this prompt appears, it means your Pico is set up and you can start using it.

5.1.2 How to use Piper Make

Now that you have set up Pico, it is time to learn how to program it. Now let’s light up the onboard LED.

Switch to CREATIVE MODE and click on the New Project button, and a new project will appear in the MY

PROJECTS section and will be assigned a random name that can be changed from the programming page.

196 Chapter 5. For Piper Make

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Then open the new project just created.

Now go to the Piper Make programming page.

5.1. Quick Guide on Piper Make 197

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

• START: Used to run the code, if it’s gray, it’s not connected to Pico at this time.

• Block palette: contains different types of blocks.

• CONNECT: Used to connect to Pico, it is green when not connected to Pico, when connected it will become

DISCONNECT(red).

• Programming Area: Drag blocks here to finish programming by stacking them.

• Tools Area: You can click DIGITAL VIEW to see the pin distribution of Pico; you can view the print infor-

mation in CONSOLE; you can read data from DATA, and you can click Python to view the Python source

code.

• Project name and description: You can change the project name and description.

• DOWNLOAD: You can click the DOWNLOAD button to save it locally, usually in .png format. Next time

you can import it via the Import Project button on the home page.

Click on the Chip palette and drag the [start] block to the Programming Area.

198 Chapter 5. For Piper Make

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Then drag the [loop] block in loops palette to the bottom of the [start] block, and set the loop interval to 1 second.

5.1. Quick Guide on Piper Make 199

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

The Raspberry Pi Pico’s onboard LED is at pin25, so we use the [turn pin () ON/OFF] block on the Chip palette to

control it.

200 Chapter 5. For Piper Make

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Now click on the CONNECT button to connect to pico, after clicking on it a new popup will appear, select the

recognized CircuitPython CDC control (COMXX) port, then click on Connect. When the connection is successful,

the green CONNECT in the bottom left corner will change to a red DISCONNECT.

Now click on the START button to run this code and you will see the LED on the Pico lit up. If yours is gray, it means

that the Pico is not connected, please reconnect it.

5.1. Quick Guide on Piper Make 201

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Then turn off pin25 every second in the cycle, and click START on the upper left again, so that you can see the

onboard LED lights flashing.

202 Chapter 5. For Piper Make

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

5.2 Blink LED

For this project, we intend to make the extended LED light blink. To use extended electronic components, a solderless

breadboard will be the most powerful partner for novice users.

The breadboard is a rectangular plastic plate with a bunch of small holes in it. These holes allow us to easily insert elec-

tronic components and build electronic circuits. The breadboard does not permanently fix the electronic components,

which makes it easy for us to repair the circuit and start over when we make a mistake.

Wiring

• The color ring of the 220 ohm resistor is red, red, black, black and brown.

• The longer lead of the LED is known as the anode (+), the shorter lead is the cathode (-).

Code

After connecting Pico, click the Start button and you will see the LED blinking. For more details, you can refer to

How to use Piper Make.

5.2. Blink LED 203

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Code Explanation

This is the body of the loop: turn the pin15 on to light up the LED, wait one second, then turn the pin15 off to make

the LED go off. Wait 1 second and then re-run the previous cycle, so you can see the LED has been in the state of

alternating between light and off.

• [start]: This block is the basic framework of the program and represents the beginning of the program.

• [repeat forever do() wait()seconds]: Means that the blocks in it will be executed repeatedly, and the execution

time interval is defined by yourself.

• [turn pin () ON/OFF]: Indicates that a certain pin is placed in a high level (ON) or a low level (OFF).

• [wait () seconds]: Set the execution interval between blocks.

5.3 Button

In this project, we will learn how to turn on or off the LED by using a button.

Wiring

204 Chapter 5. For Piper Make

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

• We can think of the four-legged button as an H-shaped button. Its left (right) two feet are connected, which

means that after it straddles the central dividing line, it will connect the two half rows of the same row number

together. (For example, in my circuit, E23 and F23 have been connected, as are E25 and F25). Before the button

is pressed, the left and right sides are independent of each other, and current cannot flow from one side to the

other.

• Buttons require pull-up resistors or pull-down resistors. If there is no pull-up or pull-down resistor, the main

controller may receive a ‘noisy’ signal which can trigger even when you’re not pushing the button.

• The color ring of the 10k resistor is brown, black, black, red, brown.

Code

After connecting Pico, click the Start button and the code starts to run. When the button is pressed, the LED will be

lit. When the button is released, the LED will go out.

5.3. Button 205

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Code Explanation

When the button is pressed, pin14 is high. So if the read pin14 is high, turn the pin15 on (LED is lit); else, turn off the

pin15 (LED is off).

• [if () do () else ()]: This is a judgment block, depending on the condition after the [if] block to determine whether

to run the blocks inside the [do] block, or the blocks inside the [else] block.

• [is pin () HIGH]: This is used to read the level of a specific pin, if the level read is the same as the set HIGH/LOW,

then execute the blocks inside [do] block, otherwise execute the blocks inside [else].

5.4 Slide Switch

In this project, we will learn how to use a slide switch. Usually,the slide switch is soldered on PCB as a power switch,

but here we need to insert it into the breadboard, thus it may not be tightened. And we use it on the breadboard to

show its function.

Wiring

206 Chapter 5. For Piper Make

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

• If the switch is toggled to the left, the 2 pins on the left are connected together; if it is toggled to the right, the 2

pins on the right are connected together.

• The purpose of connecting 10K resistor and capacitor on the toggle switch is to de-jitter and get a stable level.

Code

After connecting Pico, click the Start button and the code starts to run. Toggle the slide switch to the left and the LED

will light up; otherwise, the LED will turn off.

5.4. Slide Switch 207

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Note: This project code is exactly the same as the previous project Button.

5.5 Tilt Switch

This is a ball tilt-switch with a metal ball inside. It is used to detect inclinations of a small angle.

Wiring

208 Chapter 5. For Piper Make

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

• The tilt switch has an iron ball inside, when you put it upright, the iron ball falls down, which can make the 2

pins connected together; tilt it to a horizontal angle, the iron ball rolls towards the end, so the 2 pins of the tilt

switch are disconnected.

• Again, you need to connect 10K pull-up resistor to get a stable level.

Code

After connecting Pico, click the Start button and the code starts to run. When the tilt switch is placed horizontally, the

LED will turn on; and when placed vertically, the LED will turn off.

5.5. Tilt Switch 209

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Note: This project code is exactly the same as the previous project Button.

5.6 Active Buzzer

In this project, we will learn how to use a button to control the active buzzer.

Wring

210 Chapter 5. For Piper Make

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

• An active buzzer is a device that makes a sound by directly giving high and low levels. Since the current coming

out of the Pico pin is small, an NPN transistor is used here to amplify the current to make the buzzer sound

louder.

• The 1K resistor between the NPN transistor and GP15 is used for current limiting when the transistor is ener-

gized.

Code

After connecting Pico, click the Start button and the code starts to run. The buzzer will sound when the button is

pressed.

5.6. Active Buzzer 211

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Note: This project code is exactly the same as the previous project Button.

5.7 PIR Module

In the previous chapters, we used simple electronic components (such as LED, button). This time we will use the

sensor module - PIR.

Passive infrared sensor (PIR sensor) is a common sensor that can measure infrared (IR) light emitted by objects in its

field of view. Simply put, it will receive infrared radiation emitted from the body, thereby detecting the movement of

people and other animals. More specifically, it tells the main control board that someone has entered your room.

PIR Motion Sensor

Now, let’s use PIR module and LED to build an Intruder Alarm, when an object passes through the PIR, the LED will

light up.

Wiring

212 Chapter 5. For Piper Make

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

• The PIR module will output a high level signal when it detecwts people or other animals passing by.

Code

After connecting Pico, click the Start button and the code starts to run. When an object passes through the PIR, the

LED will light up.

5.7. PIR Module 213

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Note: This project code is exactly the same as the previous project Button.

5.8 RGB LED

In this project, we will learn how to use Piper Make to light up the RGB LED.

RGB LED is equivalent to encapsulating Red LED, Green LED, Blue LED under one lamp cap, and the three LEDs

share one cathode pin. Since the electric signal is provided for each anode pin, the light of the corresponding color

can be displayed. By changing the electrical signal intensity of each anode, it can be made to produce various colors.

Wiring

214 Chapter 5. For Piper Make

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

• First find the longest pin (GND), there is only one pin (Red) on the left side of the longest pin, and two pins on

the right side are Green and Blue.

• When using the same power supply intensity, the Red LED will be brighter than the other two, and a slightly

larger resistor(330) needs to be used to reduce its brightness.

• The color ring of the 220 resistor is red, red, black, black and brown.

• The color ring of the 330 resistor is orange, orange, black, black and brown.

• The 3 buttons are used to control the lighting of the Red, Green and Blue LEDs respectively.

Code

After connecting Pico, click the Start button and the code starts to run. Pressing these buttons individually will emit

5.8. RGB LED 215

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

a single color of light, but if two of the buttons are pressed at the same time, or all 3 buttons are pressed at the same

time, the RGB LEDs will emit a variety of different colors, up to a maximum of 7.

Note: In fact, RGB LED can emit up to 16 million colors, but since Piper Make does not have a block to output PWM

signal, here we just use the [turn pin() (ON/OFF)] block to make RGB LEDs show 7 colors.

216 Chapter 5. For Piper Make

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Code Explanation

You can think of this project as using three buttons to control the RGB LED, and setting three if judgment conditions to

determine whether the three buttons are pressed or not. When the buttons are pressed, the levels of the corresponding

pins are pulled high, causing the RGB LED to display different colors.

5.9 Servo

Servo is a position (angle) servo device, which is suitable for those control systems that require constant angle changes

and can be maintained. It has been widely used in high-end remote control toys, such as airplanes, submarine models,

and remote control robots.

Now, try to make the servo sway!

Wiring

5.9. Servo 217

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

• The brown wire of the servo is GND, the red wire is VCC and the yellow wire is signal.

• Connect VBUS (not 3V3) to the power bus of the breadboard.

Code

After connecting Pico, click the Start button and the code starts to run. If necessary, press the Servo Arm into the

Servo output shaft, then you can see the Servo Arm swinging back and forth from 0° to 180°.

218 Chapter 5. For Piper Make

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

• [servo pin () set angle to ()]: This block is used to set the rotation angle of the servo, the range is 0~180 degrees.

5.10 Neopixel

The kit is equipped with a WS2812 RGB LED Strip, which can display colorful colors, and each LED can be inde-

pendently controlled.

Here we try to use the tilt switch to control the flow direction of the LEDs on the WS2812 RGB LED Strip.

Wiring

Programming

Step 1: Use the [setup neopixel pin() pixels()] block in the Actions palette to initialize the WS2812 RGB LED Strip.

0 means the connected pin is GP0 and 8 means there are 8 RGB LEDs on the WS2812 RGB LED Strip.

5.10. Neopixel 219

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Step 2: In the Variables palette, click the Create variable button to create a variable called i to represent the LEDs

on the WS2812 RGB LED Strip.

Step 3: Set the initial value of variable i to 1 (the LED near the wires), then in [repeat forever] block, use [() mod ()]

to set the value of i from 0 to 7. e.g. 1 mod 8 = 1. . . 8 mod 8 =0, 9 mod 8 =1, etc.

• [() mod ()]: This is the modulo operator block, from the Loops palette, drop down [() = ()] to select mod.

220 Chapter 5. For Piper Make

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

Step 4: Set all neopixels to black to make all LEDs go off, then use [updates neopixels] to make this effect update to

the WS2812 RGB LED Strip.

5.10. Neopixel 221

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

• [set all neopixels to ()]: Use to set a color for all LEDs, there are 13*9 colors, the top right color is black to

make LEDs to go off.

• [updates neopixels]: Update the effect to the WS2812 RGB LED Strip.

Step 5: If pin14 is read high, let the LEDs on the WS2812 RGB LED Strip light up one by one in green, otherwise

light up green one by one in the opposite direction.

222 Chapter 5. For Piper Make

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

• [change () by ()]: Used to increase (positive) or decrease (negative) the value of a variable by a specific step.

Code

After connecting Pico, click the Start button and the code starts to run.

When the tilt switch is placed vertically, it makes the LEDs on the WS2812 RGB LED Strip light up one by one in

green, and when the tilt switch is placed horizontally, the LEDs light up one by one in the opposite direction in green.

5.10. Neopixel 223

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

224 Chapter 5. For Piper Make

CHAPTER

SIX

FAQ

6.1 Q1: NO MicroPython(Raspberry Pi Pico) Interpreter Option on

Thonny IDE?

• Check that your Pico is plugged into your computer via a USB cable.

• Check that you have installed MicroPython for Pico (Installing MicroPython).

• The Raspberry Pi Pico interpreter is only available in version 3.3.3 or higher version of Thonny. If you are

running an older version, please update (Thonny Python IDE).

• Plug in/out the micro USB cable sveral times.

225

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

6.2 Q2: Cannot open Pico code or save code to Pico via Thonny IDE?

• Check that your Pico is plugged into your computer via a USB cable.

• Check that you have selected the Interpreter as MicroPython (Raspberry Pi Pico).

6.3 Q3: Can Raspberry Pi Pico be used on Thonny and Arduino at

the same time?

NO, you need to do some different operations.

• If you used it on Arduino first, and now you want to use it on Thonny IDE, you need to Installing MicroPython

on it.

• If you used it on Thonny first and now you want to use it on Arduino IDE, you need to Setup the Raspberry Pi

Pico.

6.4 Q4: Code upload failed in Arduino IDE?

• Make sure you have installed the Pico board in the Arduino IDE.

• Check that the Board(Raspberry Pi Pico) or portCOMxx (Raspberry Pi Pico)is selected correctly.

• Make sure you have plugged the Pico into your computer.

• If only COMxx (The complete one should be COMxx (Raspberry Pi Pico)) is displayed, it means that Pico is

not correctly recognized by the computer. You need to refer to steps 5, 6, and 7 in Setup the Raspberry Pi Pico.

226 Chapter 6. FAQ

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

6.5 Q5: If your computer is win7 and pico cannot be detected.

1. Download the USB CDC driver from http://aem-origin.microchip.com/en-us/mindi-sw-library?swsearch=

Atmel%2520USB%2520CDC%2520Virtual%2520COM%2520Driver

2. Unzip the amtel_devices_cdc.inf file to a folder named “pico-serial”

3. Change the name of amtel_devices_cdc.inf file to pico-serial.inf

4. Open/edit the pico-serial.inf in a basic editor like notepad

5. Remove and replace the lines under the following headings:

[DeviceList]

%PI_CDC_PICO%=DriverInstall, USB\VID_2E8A&PID_0005&MI_00

[DeviceList.NTAMD64]

%PI_CDC_PICO%=DriverInstall, USB\VID_2E8A&PID_0005&MI_00

[DeviceList.NTIA64]

%PI_CDC_PICO%=DriverInstall, USB\VID_2E8A&PID_0005&MI_00

[DeviceList.NT]

%PI_CDC_PICO%=DriverInstall, USB\VID_2E8A&PID_0005&MI_00

[Strings]

Manufacturer = "ATMEL, Inc."

PI_CDC_PICO = "Pi Pico Serial Port"

Serial.SvcDesc = "Pi Pico Serial Driver"

6. Close and save and make sure your retain the name as pico-serial.inf

7. Go to your pc device list, find the pico under Ports, named something like CDC Device. A yellow exclamation

mark indicates it.

8. Right click on the CDC Device and update or install driver choosing the file you created from the location you

saved it at.

6.5. Q5: If your computer is win7 and pico cannot be detected. 227

http://aem-origin.microchip.com/en-us/mindi-sw-library?swsearch=Atmel%2520USB%2520CDC%2520Virtual%2520COM%2520Driver
http://aem-origin.microchip.com/en-us/mindi-sw-library?swsearch=Atmel%2520USB%2520CDC%2520Virtual%2520COM%2520Driver

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

228 Chapter 6. FAQ

CHAPTER

SEVEN

THANK YOU

Thanks to the evaluators who evaluated our products, the veterans who provided suggestions for the tutorial, and the

users who have been following and supporting us. Your valuable suggestions to us are our motivation to provide better

products!

Particular Thanks

• Len Davisson

• Kalen Daniel

• Juan Delacosta

Now, could you spare a little time to fill out this questionnaire?

Note: After submitting the questionnaire, please go back to the top to view the results.

229

SunFounder Thales Kit for Raspberry Pi Pico, Release 1.0

230 Chapter 7. Thank You

CHAPTER

EIGHT

COPYRIGHT NOTICE

All contents including but not limited to texts, images, and code in this manual are owned by the SunFounder Company.

You should only use it for personal study,investigation, enjoyment, or other non-commercial or nonprofit purposes,

under therelated regulations and copyrights laws, without infringing the legal rights of the author and relevant right

holders. For any individual or organization that uses these for commercial profit without permission, the Company

reserves the right to take legal action.

231

	Introduction to Raspberry Pi Pico
	Features
	Pico’s Pins

	What is Included in This Kit
	Components List
	Components Introduction
	Breadboard
	LED
	RGB LED
	Resistor
	Potentiometer
	Photoresistor
	Thermistor
	Transistor
	Capacitor
	Button
	Tilt Switch
	Slide Switch
	PIR Motion Sensor
	Buzzer
	Servo
	WS2812 RGB 8 LEDs Strip
	74HC595
	7-segment Display
	I2C LCD1602

	For MicroPython User
	Geting Started with MicroPython
	The Story Starts Here
	Why MicroPython？
	Installing MicroPython

	Thonny Python IDE
	Download from Web
	Introducing Thonny IDE

	Your First MicroPython Program
	Interactive Mode
	Script Mode

	Projects
	Hello, LED!
	Hello, Breadboard!
	Reading Button Value
	Reaction Game
	Traffic Light
	Two Kinds of Transistors
	Intruder Alarm
	Fading LED
	Colorful Light
	Custom Tone
	Swinging Servo
	Turn the Knob
	Thermometer
	Light Theremin
	Microchip - 74HC595
	LED Segment Display
	Liquid Crystal Display
	RGB LED Strip

	MicroPython Basic Syntax
	Indentation
	Comments
	Print()
	Variables
	If Else
	While Loops
	For Loops
	Functions
	Data Types
	Operators
	Lists

	For Arduino User
	Getting Started with Arduino
	Install Arduino IDE
	Introduction the Arduino Software (IDE)
	Setup the Raspberry Pi Pico

	Projects
	Hello LED
	Fading LED
	Warning Light
	Table Lamp
	Measure Light Intensity
	Doorbell
	RGB LED
	Light Theremin
	74HC595
	Digital Dice
	Flow LEDs
	WS2812 Strip Multi-Mode
	LUMI Piano

	For Piper Make
	Quick Guide on Piper Make
	Set up the Pico
	How to use Piper Make

	Blink LED
	Button
	Slide Switch
	Tilt Switch
	Active Buzzer
	PIR Module
	RGB LED
	Servo
	Neopixel

	FAQ
	Q1: NO MicroPython(Raspberry Pi Pico) Interpreter Option on Thonny IDE?
	Q2: Cannot open Pico code or save code to Pico via Thonny IDE?
	Q3: Can Raspberry Pi Pico be used on Thonny and Arduino at the same time?
	Q4: Code upload failed in Arduino IDE?
	Q5: If your computer is win7 and pico cannot be detected.

	Thank You
	Copyright Notice

