ProLabs

160-9401-900-DW55-C

Ciena[®] 160-9401-900-DW55 Compatible TAA 100GBase-DWDM PAM4 Single Lambda QSFP28 Transceiver (SMF, 1533.47nm, 80km w/EDFA/DCM, LC, DOM)

Features:

- SFF-8636 MSA Compliance
- Duplex LC Connector
- 100GHz DWDM ITU Grid
- Single-mode Fiber
- Commercial Temperature 0 to 70 Celsius
- PAM4 optical signal with integrated FEC
- Hot Pluggable
- Metal with Lower EMI
- Excellent ESD Protection
- RoHS Compliant and Lead Free

Applications:

- 100GBase Ethernet
- Access, Metro and Enterprise

Product Description

This Ciena[®] 160-9401-900-DW55 compatible QSFP28 transceiver provides 100GBase-DWDM throughput up to 80km over single-mode fiber (SMF) using a wavelength of 1533.47nm via an LC connector. It is guaranteed to be 100% compatible with the equivalent Ciena[®] transceiver. This easy to install, hot swappable transceiver has been programmed, uniquely serialized and data-traffic and application tested to ensure that it will initialize and perform identically. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

ProLabs's transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S. – made or designated country end products."

Rev. 061522

Regulatory Compliance

- ESD to the Electrical PINs: compatible with MIL-STD-883E Method 3015.4
- ESD to the LC Receptacle: compatible with IEC 61000-4-3
- EMI/EMC compatible with FCC Part 15 Subpart B Rules, EN55022:2010
- Laser Eye Safety compatible with FDA 21CFR, EN60950-1& EN (IEC) 60825-1,2
- RoHS compliant with EU RoHS 2.0 directive 2015/863/EU

Channel #	Frequency (GHz)	Center Wavelength (nm)	Channel #	Frequency (GHz)	Center Wavelength (nm)
21	192.1	1560.61	41	194.1	1544.53
22	192.2	1559.79	42	194.2	1543.73
23	192.3	1558.98	43	194.3	1542.94
24	192.4	1558.17	44	194.4	1542.14
25	192.5	1557.36	45	194.5	1541.35
26	192.6	1556.55	46	194.6	1540.56
27	192.7	1555.75	47	194.7	1539.77
28	192.8	1554.94	48	194.8	1538.98
29	192.9	1554.13	49	194.9	1538.19
30	193.0	1553.33	50	195.0	1537.40
31	193.1	1552.52	51	195.1	1536.61
32	193.2	1551.72	52	195.2	1535.82
33	193.3	1550.92	53	195.3	1535.04
34	193.4	1550.12	54	195.4	1534.25
35	193.5	1549.32	55	195.5	1533.47
36	193.6	1548.51	56	195.6	1532.68
37	193.7	1547.72	57	195.7	1531.90
38	193.8	1546.92	58	195.8	1531.12
39	193.9	1546.12	59	195.9	1530.33
40	194.0	1545.32	60	196.0	1529.55

Wavelength Guide (100GHz ITU-T Channel)

Absolute Maximum Ratings

Parameter	Symbol	Min.	Typical	Max.	Unit
Storage Temperature (case)	Ts	-40		85	°C
Operating Case Temperature	Тор	0	25	70	V
Supply Voltage	V _{cc}	0		3.6	V
Relative Humidity (non-condensing)	RH	5		85	%
Optical Receiver Damage Threshold	Rxdmg	5			dBm
ESD Sensitivity		500			V

Electrical Characteristics

The host 4x25.78 Gbps electrical interface complies with the CAUI-4 standard.

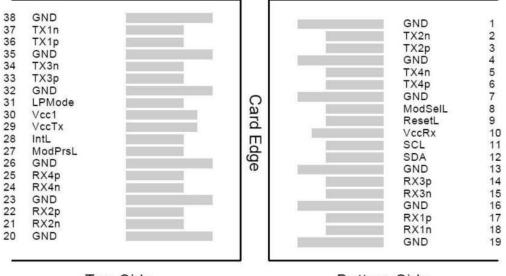
Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Data Rate per Lane (host side)	BRavg		25.78125		Gbps	
Data Rate Variation		-100		100	ppm	
Power Supply Voltage	V _{cc}	3.135	3.3	3.47	V	
Power Consumption	PD		4.7	5.5	W	
Transmitter						
Input Swing (Differential)	Vin			900	mVpp	AC coupled
Input Impedance (Differential)	Zin	90	100	110	Ohm	
Receiver					·	
Output Swing (Differential)	Vout			900	mVpp	AC coupled
Output Impedance (Differential)	Zout	90	100	110	Ohm	
Low Speed Signals						
LPMode, Reset, ModSel	VIL	-0.3		0.8	V	
	VIH	2		V _{CC} +0.3	V	
ModPrs, Int	VOL	0		0.4	V	IOL = 2.0mA
	VOH	Vcc-0.5		Vcc+0.3	V	
SCL, SDA	VIL	-0.3		0.3*V _{CC}	V	
	VIH	0.7*Vcc		Vcc+0.5	V	
SCL, SDA	VOL	0		0.4	V	IOL _{max} = 3.0mA
	VOH	Vcc-0.5		Vcc+0.3	V	

Optical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Data Rate	BR	103.125			Gbps	1
Data Rate Variation		-100		100	ppm	
Transmitter						
Central Wavelength	λC	1527	λ	1567	nm	
Central Wavelength Stability		λር-0.1		λር+0.1	nm	
Average Output Optical Power	PO	-2	-0.5	2	dBm	5
Optical Extinction Ratio (outer)	ER	6			dB	
Optical Output Power, TX: OFF	Poff			-30	dBm	
TX Reflectance				-26	dB	
Receiver				1		
Operating Wavelength		1527		1567	nm	
RX Sensitivity, Avg Power	RX _{sens}		-9	-8	dBm	2, 5
RX Overload, Avg Power	RXsat	4			dBm	2
RX Damage Threshold	RXdmg	4			dBm	
RX Sensitivity, Avg Power at OSNR 32dB/0.1nm				-7	dBm	3, 5
Dispersion Tolerance		-30		+30	ps/nm	4, 5
RX Reflectance				-26	dB	
LOS Assert	LOSA	-15			dBm	
LOS De-Assert	LOSD			-10.5	dBm	
LOS Hysteresis			1		dB	

Notes:

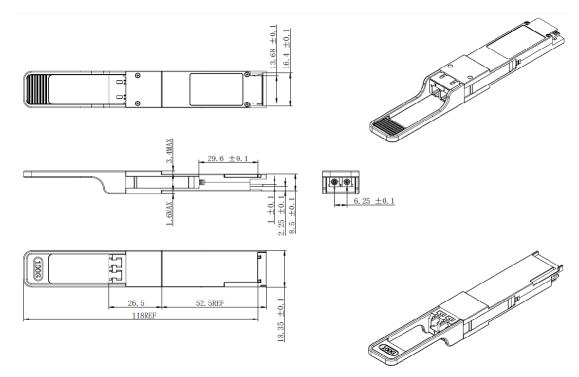
- 1. The raw data rate is minimum 103.125 Gbps, when FEC code is added, the actual optical signal data rate is higher.
- 2. Rx average power sensitivity and overload are for post-FEC BER < 1E-15 with integrated FEC without dispersion and noise load at BOL.
- 3. Rx average power sensitivity at OSNR 32dB is for post-FEC BER < 1E-15 with integrated FEC without dispersion at OSNR 32dB/0.1nm at BOL. A 100GHz spacing DWDM filter with enough bandwidth should be used to remove the extra noises of the optical signal with noises for the RX test.
- 4. Dispersion tolerance is for dispersion values that cause Rx OSNR penalty less than 2 dB when compared with no dispersion at RX power -6 dBm and PRBS15 signal at BER 2e-3 at the operating data rate at BOL. A 100GHz spacing DWDM filter with enough bandwidth should be used to remove the extra noises of the optical signal with noises for the RX BER test.
- 5. The Average output optical power, RX sensitivity, RX sensitivity at OSNR 32dB/0.1nm, and Dispersion tolerance parameters are specified for beginning of life (BOL) over the operating temperature with clean fiber connectors.


Pin Descriptions

Pin	Logic	Symbol	Name/Descriptions	Plug Sequence	Ref.
1		GND	Ground	1	1
2	CML-I	Tx2n	Transmitter Inverted Data Input	3	<u> </u>
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input	3	
4		GND	Ground	1	1
5	CML-I	Tx4n	Transmitter Inverted Data Input	3	
6	CML-I	Tx4p	Transmitter Non-Inverted Data Input	3	1
7		GND	Ground	1	1
8	LVTTL-I	ModSelL	Module Select	3	1
9	LVTTL-I	ResetL	Module Reset	3	
10		VccRx	+3.3V Power Supply Receiver	2	2
11	LVCMOS- I/O	SCL	2-wire serial interface clock	3	
12	LVCMOS- I/O	SDA	2-wire serial interface data	3	1
13		GND	Ground	1	1
14	CML-O	Rx3p	Receiver Non-Inverted Data Output	3	
15	CML-O	Rx3n	Receiver Inverted Data Output	3	
16		GND	Ground	1	1
17	CML-O	Rx1p	Receiver Non-Inverted Data Output	3	
18	CML-O	Rx1n	Receiver Inverted Data Output	3	<u> </u>
19		GND	Ground	1	1
20		GND	Ground	1	1
21	CML-O	Rx2n	Receiver Inverted Data Output	3	
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	3	
23		GND	Ground	1	1
24	CML-O	Rx4n	Receiver Inverted Data Output	3	
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	3	
26		GND	Ground	1	1
27	LVTTL-O	ModPrsL	Module Present	3	
28	LVTTL-O	IntL/RX_LOS	Interrupt	3	3
29		VccTx	+3.3V Power supply transmitter	2	2
30		Vcc1	+3.3V Power supply	2	2
31	LVTTL-I	LPMode/TX_ DIS	Low Power Mode	3	3
32		GND	Ground	1	1
33	CML-I	Тх3р	Transmitter Non-Inverted Data Input	3	
34	CML-I	Tx3n	Transmitter Inverted Data Input	3	
35		GND	Ground	1	1
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	3	
37	CML-I	Tx1n	Transmitter Inverted Data Input	3	
38		GND	Ground	1	1

Notes:

- 1. GND is the symbol for signal and supply (power) common for the QSFP28 module. All are common within the QSFP28 module and all module voltages are referenced to this potential unless otherwise noted.
- 2. Vcc Rx, Vcc1 and Vcc Tx are the receiver and transmitter power supplies and shall be applied concurrently


Electrical Pin-out Details

Top Side Viewed from Top

Bottom Side Viewed from Bottom

Mechanical Specifications

About ProLabs

Our experience comes as standard; for over 15 years ProLabs has delivered optical connectivity solutions that give our customers freedom and choice through our ability to provide seamless interoperability. At the heart of our company is the ability to provide state-of-the-art optical transport and connectivity solutions that are compatible with over 90 optical switching and transport platforms.

Complete Portfolio of Network Solutions

ProLabs is focused on innovations in optical transport and connectivity. The combination of our knowledge of optics and networking equipment enables ProLabs to be your single source for optical transport and connectivity solutions from 100Mb to 400G while providing innovative solutions that increase network efficiency. We provide the optical connectivity expertise that is compatible with and enhances your switching and transport equipment.

Trusted Partner

Customer service is our number one value. ProLabs has invested in people, labs and manufacturing capacity to ensure that you get immediate answers to your questions and compatible product when needed. With Engineering and Manufacturing offices in the U.K. and U.S. augmented by field offices throughout the U.S., U.K. and Asia, ProLabs is able to be our customers best advocate 24 hours a day.

Contact Information ProLabs US Email: sales@prolabs.com Telephone: 952-852-0252

ProLabs UK

Email: salessupport@prolabs.com Telephone: +44 1285 719 600