
Low-Jitter Configurable CMOS Oscillator

General Description

The DSC2010 series of high performance CMOS oscillators utilize a proven silicon MEMS technology to provide excellent jitter and stability while incorporating additional device functionality. The DSC2010 allows the user to easily modify the frequency and drive strength of the oscillator using pins. The DSC2010 has provision for up to four user-defined pre-programmed, pin-selectable output frequencies, and eight pin-selectable output drive levels to help reduce EMI.

DSC2010 is packaged in a 14-pin 3.2x2.5 mm QFN package and available in temperature grades from Ext. Commercial to Automotive.

Block Diagram

Features

- Low RMS Phase Jitter: <1 ps (typ)
- High Stability: ±10, ±25, ±50 ppm
- Wide Temperature Range
 - o Automotive: -55° to 125° C
 - o Ext. Industrial: -40° to 105° C
 - o Industrial: -40° to 85° C
 - o Ext. commercial: -20° to 70° C
- High Supply Noise Rejection: -50 dBc
- Pin-Selectable Configurations
 - 3-bit Output Drive Strength
 - 2-bit Output Frequency Combinations
- Short Lead Times: 2 Weeks
- Wide Freq. Range:
 - o CMOS Output: 2.3 to 170 MHz
- Miniature Footprint of 3.2x2.5mm
- Excellent Shock & Vibration Immunity
 - o Qualified to MIL-STD-883
- High Reliability
 - o 20x better MTF than quartz oscillators
- Supply Range of 2.25 to 3.6 V
- Lead Free & RoHS Compliant

Applications

- Consumer Electronics
- Storage Area Networks
 - o SATA, SAS, Fibre Channel
- Passive Optical Networks
 - o EPON, 10G-EPON, GPON, 10G-PON
- Ethernet
 - o 1G, 10GBASE-T/KR/LR/SR, and FCoE
- HD/SD/SDI Video & Surveillance
- PCI Express

Pin Description

Pin No.	Pin Name	Pin Type	Description	
1	Enable	I	nables outputs when high and disables when low	
2	NC	NA	Leave unconnected or grounded	
3	NC	NA	Leave unconnected or grounded	
4	GND	Power	Ground	
5	FS0	I	Least significant bit for frequency selection	
6	FS1	I	Nost significant bit for frequency selection	
7	NC	NA	eave unconnected or grounded	
8	Output	0	CMOS output	
9	OS0	I	Least significant bit for output drive strength selection	
10	OS1	I	Middle bit for output drive strength selection	
11	NC	NA	Leave unconnected or grounded	
12	VDD2	Power	Power Supply	
13	VDD	Power	Power Supply	
14	OS2	I	Most significant bit for output drive strength selection	

Operational Description

The DSC2010 is a CMOS oscillator consisting of a MEMS resonator and a support PLL IC. The CMOS output is generated through independent 8-bit programmable dividers from the output of the internal PLL.

The actual frequency output by the DSC2010 is controlled by an internal pre-programmed memory (OTP). This memory stores all coefficients required by the PLL for up to four different frequencies. Two control pins (FS0 – FS1) select the output frequency. Discera supports customer defined versions of the DSC2010. Standard frequency options are described in the following sections.

When Enable (pin 1) is floated or connected to VDD, the DSC2010 is in operational mode. Driving Enable to ground will disable the output driver (hi-impedance mode).

The DSC2010 has programmable output drive strength. Using three control pins (OS0-OS2) the drive strength can be adjusted to match circuit board impedances to reduce power supply noise, overshoot/undershoot and EMI. Table 1 displays typical rise / fall times for the output with a 15pf load capacitance as a function of these control pins at VDD=3.3V and room temperature.

Table 1. Rise/Fall times for drive strengths

	Output Drive Strength Bits [OS2, OS1, OS0] - Default [111]							
	000	001	010	011	100	101	110	111
tr (ns)	2.1	1.7	1.6	1.4	1.3	1.3	1.2	1.1
tf (ns)	2.5	2.4	2.4	2.2	1.8	1.6	1.4	1.4

DSC2010 Page 2 MK-Q-B-P-D-12042601-2

Output Clock Frequencies

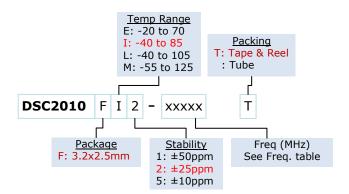
Table 2 lists the standard frequency configurations and the associated ordering information to be used in conjunction with the ordering code. Customer defined combinations are available.

Table 2. Pre-programmed pin-selectable output frequency combinations

Ordering	Freq	Freq Select Bits [FS1, FS0] - Default is [11]					
Info	(MHz)	00	01	10	11		
A0001	f _{OUT}	27	24	148.5	74.25		
A0002	f _{OUT}	155.52	106.25	156.25	125		
A0003	f _{OUT}	25	75	125	150		
A0004	f _{OUT}	72	74.25	36	108		
A0005	f _{OUT}	27	50	0*	0*		
A0006	f _{OUT}	16	13.56	0*	0*		
A0007	f _{OUT}	96	55	0*	0*		
A0008	f _{out}	25	50	0*	0*		
A0009	f _{OUT}	55.296	27.648	0*	0*		
A00010	f _{OUT}	27.648	55.296	0*	0*		
A000X	f _{OUT}	Contact factory for additional configurations.					

Frequency select bit are weakly tied high so if left unconnected the default setting will be [11] and the device will output the associated frequency highlighted in **Bold**. 0^* – denotes invalid selection, output frequency is not specified.

DSC2010 Page 3 MK-Q-B-P-D-12042601-2



Absolute Maximum Ratings

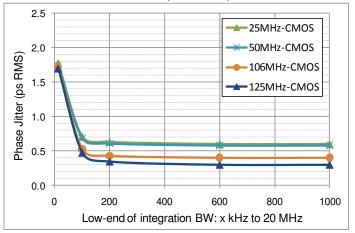
Item	Min	Max	Unit	Condition
Supply Voltage	-0.3	+4.0	V	
Input Voltage	-0.3	$V_{DD} + 0.3$	V	
Junction Temp	-	+150	°C	
Storage Temp	-55	+150	°C	
Soldering Temp	-	+260	°C	40sec max.
ESD	-		V	
HBM		4000		
MM		400		
CDM		1500		

Note: 1000+ years of data retention on internal memory

Ordering Code

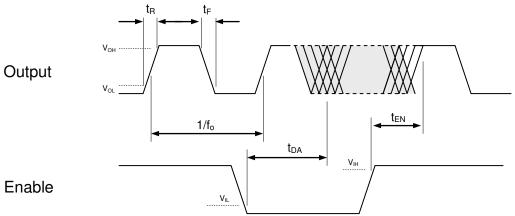
Specifications (Unless specified otherwise: T=25° C, max CMOS drive strength)

Parameter		Condition	Min.	Typ.	Max.	Unit
Supply Voltage ¹	V_{DD}		2.25		3.6	V
Supply Current	I_{DD}	EN pin low – output is disabled		21	23	mA
Frequency Stability	Δf	Includes frequency variations due to initial tolerance, temp. and power supply voltage			±10 ±25 ±50	ppm
Aging	Δf	1 year @25°C			±5	ppm
Startup Time ²	t _{su}	T=25°C			5	ms
Input Logic Levels Input logic high Input logic low	$oldsymbol{V}_{IH}$		0.75xV _{DD} -		- 0.25xV _{DD}	V
Output Disable Time ³	t_{DA}				5	ns
Output Enable Time	t _{EN}				20	ns
Pull-Up Resistor ⁴		Pull-up exists on all digital IO		40		kΩ
		CMOS Output				
Supply Current ⁴	I_{DD}	EN pin high – output is enabled $C_L=15$ pF, $F_O=125$ MHz		31	35	mA
Output Logic Levels Output logic high Output logic low	V _{OH} V _{OL}	I=±6mA	0.9xV _{DD} -		- 0.1xV _{DD}	V
Output Transition time ³ Rise Time Fall Time	t _R t _F	20% to 80% C _L =15pf		1.1 1.3	2 2	ns
Frequency	f_0	Commercial/Industrial temp range Automotive temp range	2.3		170 100	MHz
Output Duty Cycle	SYM		45		55	%
Period Jitter	J_{PER}	F _O =125 MHz		3		ps _{RMS}
Integrated Phase Noise	J _{cc}	200kHz to 20MHz @ 125MHz 100kHz to 20MHz @ 125MHz 12kHz to 20MHz @ 125MHz		0.3 0.38 1.7	2	ps _{RMS}


Notes:

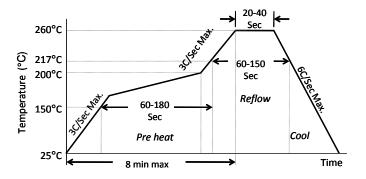
- Pin 4 $\ensuremath{V_{\text{DD}}}$ should be filtered with 0.01uf capacitor. 1.
- t_{SU} is time to 100PPM stable output frequency after V_{DD} is applied and outputs are enabled. Output Waveform and Test Circuit figures below define the parameters.
- 2. 3.
- Output is enabled if Enable pad is floated or not connected.

DSC2010 MK-Q-B-P-D-12042601-2

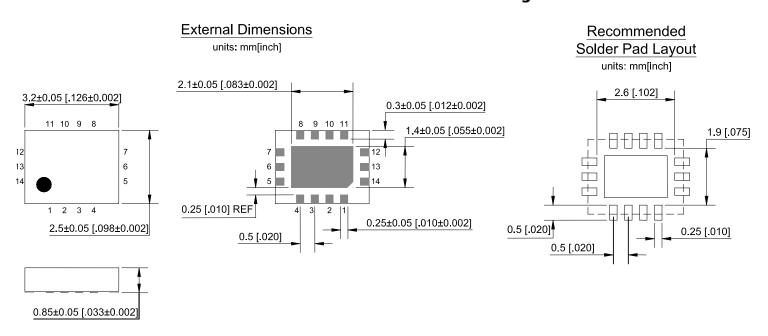


Nominal Performance Parameters (Unless specified otherwise: T=25° C, V_{DD}=3.3 V)

CMOS Phase jitter (integrated phase noise)


Output Waveform: CMOS

DSC2010 Page 5 MK-Q-B-P-D-12042601-2


Solder Reflow Profile

MSL 1 @ 260°C refer to JSTD-020C					
Ramp-Up Rate (200°C to Peak Temp)	3°C/Sec Max.				
Preheat Time 150°C to 200°C	60-180 Sec				
Time maintained above 217°C	60-150 Sec				
Peak Temperature	255-260°C				
Time within 5°C of actual Peak	20-40 Sec				
Ramp-Down Rate	6°C/Sec Max.				
Time 25°C to Peak Temperature	8 min Max.				

Package Dimensions

3.2 x 2.5 mm 14 Lead Plastic Package

Disclaimer:

Micrel makes no representations or warranties with respect to the accuracy or completeness of the information furnished in this data sheet. This information is not intended as a warranty and Micrel does not assume responsibility for its use. Micrel reserves the right to change circuitry, specifications and descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Micrel's terms and conditions of sale for such products, Micrel assumes no liability whatsoever, and Micrel disclaims any express or implied warranty relating to the sale and/or use of Micrel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

MICREL, Inc. • 2180 Fortune Drive, San Jose, California 95131 • US

Phone: +1 (408) 944-0800 • Fax: +1 (408) 474-1000 • Email: hbwhelp@micrel.com • <u>www.micrel.com</u>