

34060565-C

Huawei® 34060565 Compatible TAA 2.4Gbs/1.2Gbs-B+ GPON SFP Transceiver (SMF, 1310nmTx/1490nmRx, 20km, SC, DOM)

Features:

- SC Connector
- Single-mode Fiber
- Commercial Temperature 0 to 70 Celsius
- Hot Pluggable
- Metal with Lower EMI
- Excellent ESD Protection
- RoHS Compliant and Lead Free

Applications:

- GPON
- Access and Enterprise

Product Description

This Huawei® 34060565 compatible SFP transceiver provides 2.4Gbs/1.2Gbs-B+ throughput up to 20km over single-mode fiber (SMF) using a wavelength of 1310nmTx/1490nmRx via a SC connector. It is guaranteed to be 100% compatible with the equivalent Huawei® transceiver. This easy to install, hot swappable transceiver has been programmed, uniquely serialized and data-traffic and application tested to ensure that it will initialize and perform identically. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

ProLabs' transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S. — made or designated country end products."

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Maximum Supply Voltage	Vcc	0		3.6	V	1
Storage Ambient Temperature	T _{Stg}	-40		+85	ōС	1
Relative Humidity - Storage	RH _S	0		95	%	1
Operating Case Temperature	TCASE	0		70	ōС	1
Relative Humidity - Operating	RHo	0		85	%	1
Downstream Signaling Speed +/- 100 ppm	Sdown		2488		Mb/s	
Upstream Signaling Speed +/- 100 ppm	Sup		1244		Mb/s	
Control Function Logic Levels						
Transmit Burst Enable Logic HIGH State	Tx_Burst	0		V _{cc} +0.5	V	LVTTL
Transmit FAULT Logic HIGH State	Tx_Fault	0		V _{cc} +0.5	V	2
Receiver Loss of Signal High Logic	Rx_Los	0		V _{cc} +0.5	V	LVTTL
I ² C Serial Data Logic HIGH State	SDA	-		V _{cc} +0.5	V	LVTTL
I ² C Serial Clock HIGH State	SCL	-		V _{cc} +0.5	V	LVTTL

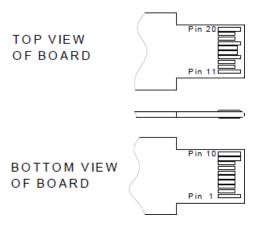
- 1. Exceeding the Absolute Maximum Ratings may cause irreversible damage to the device. The device is not intended to be operated under the condition of simultaneous Absolute Maximum Ratings, a condition which may cause irreversible damage to the unit.
- 2. LVTTL (Laser is OFF / FAULT)

Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes	
Module Supply Voltage	VCC	3.135	3.3	3.465	V		
Module Supply Current	liN			400	mA		
Transmitter							
Tx_Data Differential Input Voltage	VIN	400		1600	mV	1	
Tx_Burst = HIGH (Transmitter OFF / DISABLED)	VIH	2.0		V _{CC} +0.3	V	2, 3	
Tx_Burst = LOW (Transmitter ON / ENABLED)	VIL	0		0.8	V	2, 3	
Tx_FAULT = HIGH (FAULT Condition)	VOH	V _{cc} - 0.5		V _{CC} +0.3	V	4	
Tx_FAULT = LOW (NORMAL)	VOL	0		0.8	V	4	
Tx_SD = HIGH (Transmitter ON)	VIH	2.0		V _{CC} +0.3	V		
Tx_SD= LOW (Transmitter OFF)	VIL	0		0.8	V		
Receiver							
Rx_Data Differential Output Voltage	Vout	200		1600	mV	5	
Rx_Los = LOW (Receiver ON / NORMAL)	VOH	0		0.8	V		
Rx_Los = HIGH (Receiver OFF / Loss of Signal)	VOL	Vcc-0.5		Vcc+0.3	V		

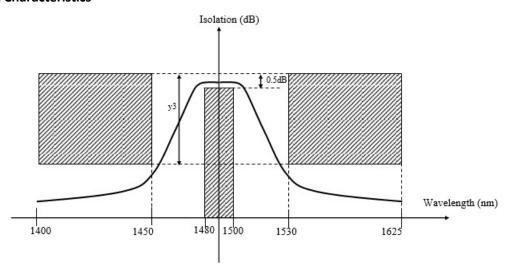
- 1. LVPECL Tx_DATA Electrical Signal
- 2. LVTTL (Control INPUT)
- 3. Transmitter Enable Control Level can be chosen, High Enable and Low enable are compatible.
- 4. LVTTL (Monitor OUTPUT)
- 5. CML Rx_DATA Electrical Signal

Optical Characteristics

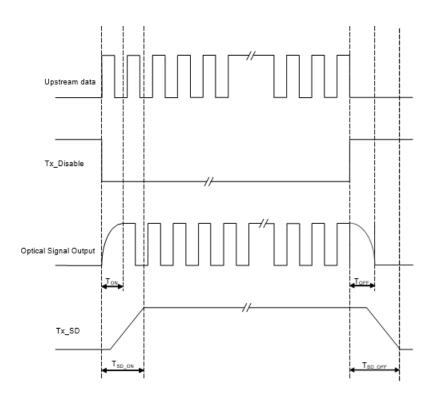

Optical Characteristics Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes	
Transmitter							
Transmitter Type		131	1310nm DFB Burst Mode				
Transmitter Control		В	Burst Mode ON/OFF			1	
Upstream Signaling Speed	Sup		1244		Mb/s		
Average Output Power (9/125 μm SMF)	Pout	0.5		5	dBm		
Optical Output with Tx OFF	POFF			-45	dBm		
Optical Center Wavelength	λ	1290	1310	1330	nm		
Spectral Line Width @ -20 dB	Δλ			1.0	nm		
Side Mode Suppression Ratio	SMSR	30			dB		
Extinction Ratio	ER	10			dB		
Transmitter Turn ON / Turn OFF Time	ton / toff			12.8	ns		
Peak to Peak Jitter	JP-P			0.2	UI		
Receiver							
Receiver Type			1490nm CW Mode				
Optical Signal Monitor			Loss of Signal			2	
Optical Center Wavelength	λ	1480	1490	1500	nm		
Downstream Signaling Speed	Sdown		2488		Mb/s		
Receiver Sensitivity	PiN			-28	dBm	3	
Receiver Optical Overload	P _{IN} (SAT)	-8			dBm	3	
Rx_Los Assert	Pa	-45			dBm		
Rx_Los Deassert	P _d			-28.5	dBm		
Optical Isolation from External Source	ISO	25			dB		

- 1. Tx_Burst = Burst Mode Control
- 2. Rx_Los Monitors Rx ON / OFF state
- 3. BER<10⁻¹⁰, 2488 Mb/s, PRBS 2²³- 1

Pin Description

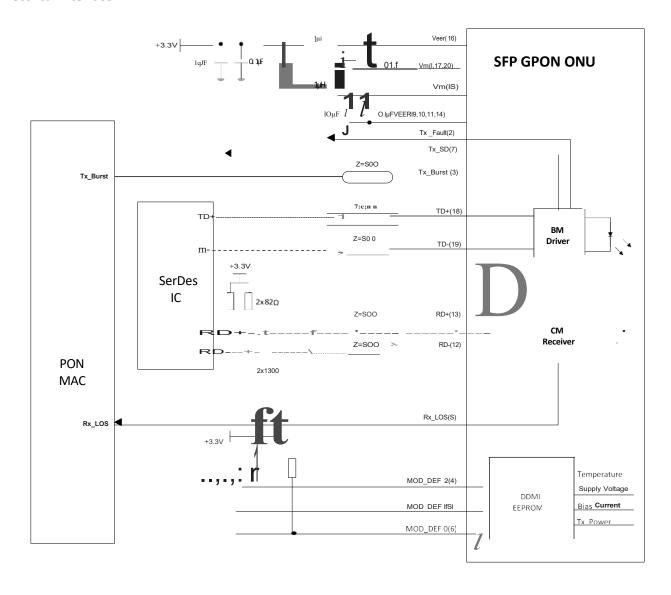

PIN	Symbol	Name / Description	Notes
1	VEET	Transmitter Ground	
2	Tx_FAULT	Transmitter Fault, LOW = Normal Operation, HIGH = Fault Indication	1
3	Tx_DIS	Transmit Disable, LOW = Normal Operation, HIGH = Disables Module	1
4	MOD_DEF 2	Module Definition 2 - Two-Wire Interface - Serial Data	1
5	MOD_DEF 1	Module Definition 1 - Two-Wire Interface - Clock Signal	1
6	MOD_DEF 0	Module Definition 0 - Presence Pin, the MOD_DEF0 Signal set to low level after initialization of μC and power up the I2C interface	
7	Dying Gasp	Dying Gasp Indication, when high indicates normal operation, low indicates power fail	4
8	LOS	Loss of Signal, When high indicates no optical power; Low indicates normal operation	1
9	VEER	Receiver Ground	
10	VEER	Receiver Ground	
11	VEER	Receiver Ground	
12	RD-	Rx_Data Output (Inverted)	2
13	RD+	Rx_Data Output (Non Inverted)	2
14	VEER	Receiver Ground	
15	VCCR	Receiver DC Power	3.3 V +/- 5%
16	VCCT	Transmitter DC Power	3.3 V +/- 5%
17	VEET	Transmitter Ground	
18	TD+	Tx_Data Input (Non Inverted)	3
19	TD-	Tx_Data Input (Inverted)	3
20	VEET	Transmitter Ground	

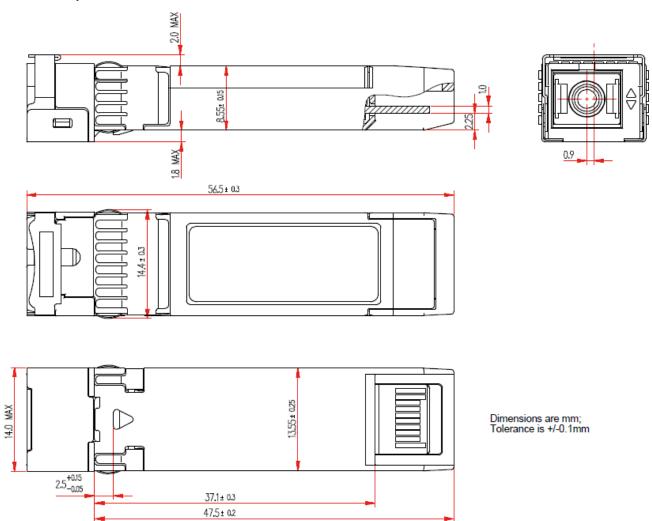
- 1. The uncommitted Tx_FAULT, Tx_DIS, MOD_DEF2, MOD_DEF1 and LOS monitor and control pins each require a pull up resistor of 4.7k to 10k Ohms. The pull-up voltage must be 3.3V.
- 2. The 100Ohms differential Rx Data output is internally AC coupled. Supporting both 1000BASE-X/SGMII interface
- 3. The 100Ohms differential Tx Data input is internally AC coupled. Supporting both 1000BASE-X/SGMII interface
- 4. Voltage Detect Input for Dying Gasp. When the voltage on this pin is lower than 1.23V+/-5%, a dying gasp event is triggered. A 4.7k Ohm resistor is used to pull up to DC Power in the module.


Pin-out of connector Block on Host board

WBF Isolation Characteristics

WBF Isolation Characteristics						
Wavelength (nm)	1400~1441	1450	1530	1539~1625		
Isolation (dB)	у3	у3	у3	у3		
	>35	>25	>25	>35		


Timing Diagram


Timing Diagram Characteristics

Parameter	Symbol	Min	Тур	Max	Units
Transmitter Turn ON Time	TON			12.8	ns
Transmitter Turn OFF Time	TOFF			12.8	ns
Tx_SD Assert Time	TSD_ON			350	ns
Tx_SD Deassert Time	TSD_OFF			350	ns

Electrical Interface

Mechanical Specifications

About ProLabs

Our experience comes as standard; for over 15 years ProLabs has delivered optical connectivity solutions that give our customers freedom and choice through our ability to provide seamless interoperability. At the heart of our company is the ability to provide state-of-the-art optical transport and connectivity solutions that are compatible with over 90 optical switching and transport platforms.

Complete Portfolio of Network Solutions

ProLabs is focused on innovations in optical transport and connectivity. The combination of our knowledge of optics and networking equipment enables ProLabs to be your single source for optical transport and connectivity solutions from 100Mb to 400G while providing innovative solutions that increase network efficiency. We provide the optical connectivity expertise that is compatible with and enhances your switching and transport equipment.

Trusted Partner

Customer service is our number one value. ProLabs has invested in people, labs and manufacturing capacity to ensure that you get immediate answers to your questions and compatible product when needed. With Engineering and Manufacturing offices in the U.K. and U.S. augmented by field offices throughout the U.S., U.K. and Asia, ProLabs is able to be our customers best advocate 24 hours a day.

Contact Information

ProLabs US

Email: sales@prolabs.com Telephone: 952-852-0252

ProLabs UK

Email: salessupport@prolabs.com Telephone: +44 1285 719 600