

FAN7023

1W CMOS Mono Power Amplifier

The FAN7023 is a bridge connected audio power amplifier capable of delivering 1W of continuous average power to an 8Ω load with less than 0.2% (THD) from a 5V power supply. The FAN7023 requires few external components and operates on low supply voltage from 2.2V to 5.5V. Since the FAN7023 does not require output coupling capacitors, bootstrap capacitors, or snubber networks, it is ideally suited for low power portable systems that require minimum volume and weight. The FAN7023 features an externally controlled gain, low power consumption shutdown mode (0.01uA,typ.). Additional FAN7023 features include thermal shutdown protection, unity gain stability, and external gain set.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer (OCM).

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - · Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

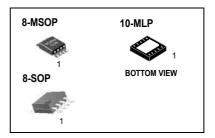
Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

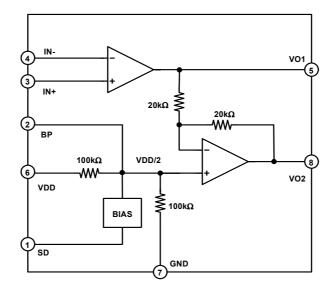
FAN7023

1W CMOS Mono Power Amplifier

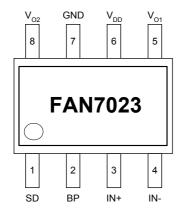
Features

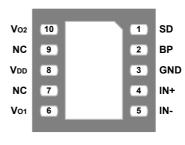

- Continuous Average Power is 1.0W (8 Ω)
- Low THD: Typical 0.2% @ 1kHz (5V)
- Do Not Need Output Coupling Capacitor or Bootstrap Capacitor
- Low Shutdown Current: Typical 0.01µA
- Shutdown: High Active
- Built in TSD Circuit

Typical Applications


- · Cellular Phone
- PDA
- Portable Audio Systems

Description


The FAN7023 is a bridge connected audio power amplifier capable of delivering 1W of continuous average power to an 8Ω load with less than 0.2%(THD) from a 5V power supply. The FAN7023 requires few external components and operates on low supply voltage from 2.2V to 5.5V. Since the FAN7023 does not require output coupling capacitors, bootstrap capacitors, or snubber networks, it is ideally suited for low power portable systems that require minimum volume and weight. The FAN7023 features an externally controlled gain, low power consumption shutdown mode (0.01uA,typ.). Additional FAN7023 features include thermal shutdown protection, unity gain stability, and external gain set.



Internal Block Diagram

Pin Assignments

10-MLP(BOTTOM VIEW)

Pin Definitions

():10MLP

Pin Number	Pin Name	Pin Function Description	
1(1)	SD	Shutdown	
2(2)	BP	Bypass	
3(4)	IN+	Input+	
4(5)	IN-	Input-	
5(6)	V _{O1}	Power AMP Output1	
6(8)	VDD	Supply Voltage	
7(3)	GND	Ground	
8(10)	VO2	Power AMP Output2	

Absolute Maximum Ratings (Ta = 25°C)

Parameter	Symbol	Value	Unit	Remark
Maximum Supply Voltage	VDD	6.0	V	
Power Dissipation	PD	Internally Limited	W	
Operating Temperature	Topr	-40 ~ +85	°C	
Storage Temperature	TSTG	-65 ~ +150	°C	
Junction Temperature	TJ	150	°C	
The second Description of	Rthja	190		8MSOP
Thermal Resistance (Junction to Ambient)		166	°C/W	10MLP, Single-Layer
(Sansasi to / Imploint)		50		10MLP, Multi-Layer

Recommended Operating Conditions (Ta = 25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Operating Supply Voltage	V_{DD}	2.2	-	5.5	V

Electrical Characteristics

(R_L = 8Ω , Ta = 25°C, unless otherwise specified)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit			
V _{DD} = 5.0V, UNLESS OTHERWISE SPECIFIED									
Quiescent Power Supply Current	IDD	V _{IN} = 0V,I _O = 0A	-	1.8	6	mA			
Shutdown Current	ISD	V _{SD} = V _{DD}	-	0.01	2.0	μΑ			
Output Offset Voltage	Vos	VIN = 0V	-	5	50	mV			
Output Power	Po	THD = 1% (Max.); f = 1kHz	-	1	-	W			
Total Harmonic Distortion+Noise	THD+N	Po = 0.25W _{rms} ,gain = 2, f =1kHz	-	0.1	-	%			
Power Supply Rejection Ratio	PSRR	V _{DD} ±250mVp, f = 1kHz	-	65	-	dB			
V _{DD} = 3.3V, UNLESS OTHERWISE SPECIFIED									
Quiescent Power Supply Current	IDD	$V_{IN} = 0V, I_O = 0A$	-	1.5	-	mA			
Shutdown Current	ISD	V _{SD} = V _{DD}	-	0.01	-	μΑ			
Output Offset Voltage	Vos	VIN = 0V	-	5	-	mV			
Output Power	Po	THD = 1% (Max.);f = 1kHz	-	0.45	-	W			
Total Harmonic Distortion+Noise	THD+N	Po = 0.25Wrms, gain =2, f = 1kHz	-	0.15	-	%			
Power Supply Rejection Ratio	PSRR	V _{DD} ±250mVp, f = 1kHz	-	65	-	dB			
V _{DD} = 2.6V, UNLESS OTHERWISE	V _{DD} = 2.6V, UNLESS OTHERWISE SPECIFIED								
Quiescent Power Supply Current	IDD	V _{IN} = 0V,I _O = 0A	-	1.3	-	mA			
Shutdown Current	ISD	V _{SD} = V _{DD}	-	0.01	-	μΑ			
Output Offset Voltage	Vos	VIN = 0V	-	5	-	mV			
Output Power	Po	THD = 1% (Max.);f = 1kHz	-	0.2	-	W			
Total Harmonic Distortion+Noise	THD+N	Po = 0.2Wrms, gain = 2, f = 1kHz	-	0.25	-	%			
Power Supply Rejection Ratio	PSRR	V _{DD} ±250mVp, f = 1kHz	-	65	-	dB			

Performance Characteristics

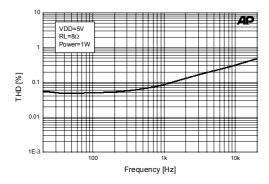


Figure 1. THD+N vs. Frequency, V_{DD} =5V

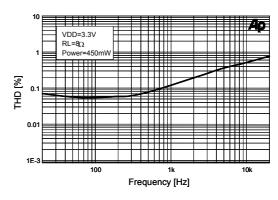


Figure 2. THD+N vs. Frequency, V_{DD} =3.3V

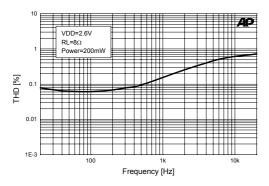


Figure 3. THD+N vs. Frequency, V_{DD} =2.6V

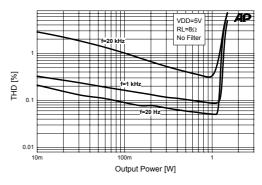


Figure 4. THD+N vs. Output Power, V_{DD} =5V

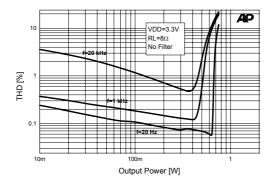


Figure 5. THD+N vs. Output Power, V_{DD} =3.3V

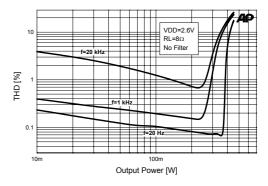


Figure 6. THD+N vs. Output Power, V_{DD} =2.6V

Performance Characteristics (Continued)

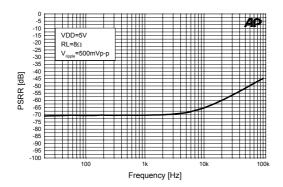


Figure 7. Power Supply Rejection Ratio, V_{DD} =5V Input Floating

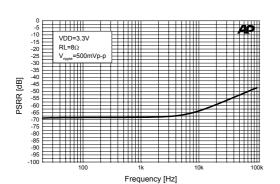


Figure 9. Power Supply Rejection Ratio, V_{DD} =3.3V Input Floating

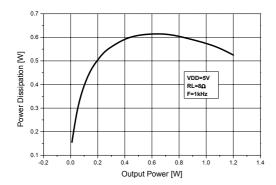


Figure 11. Power Dissipation vs. Output Power, V_{DD} =5V @ THD ≤ 1% (No Filter)

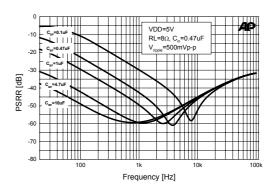


Figure 8. Power Supply Rejection Ratio with Capacitor, V_{DD} =5V Input Terminated to GND

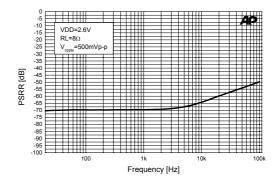


Figure 10. Power Supply Rejection Ratio, V_{DD} =2.6V Input Floating

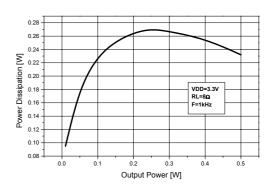


Figure 12. Power Dissipation vs. Output Power, V_{DD} =3.3V @ THD \leq 1% (No Filter)

Performance Characteristics (Continued)

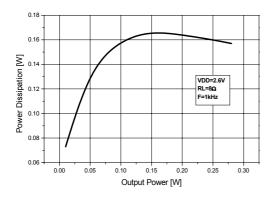


Figure 13. Power Dissipation vs. Output Power, V_{DD} =2.6V @ THD \leq 1% (No Filter)

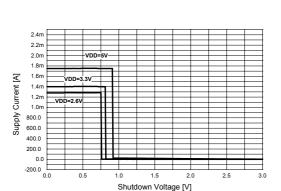


Figure 15. Supply Current vs. Shutdown Voltage

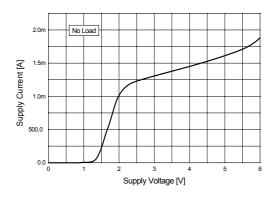


Figure 17. Supply Current vs. Supply Voltage

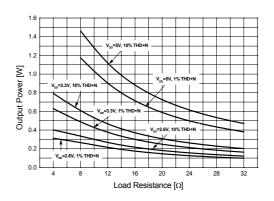


Figure 14. Output Power vs. Load Resistance

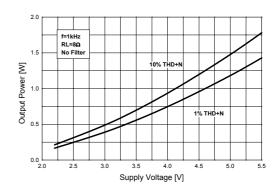


Figure 16. Output Power vs. Supply Voltage

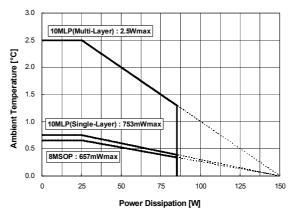
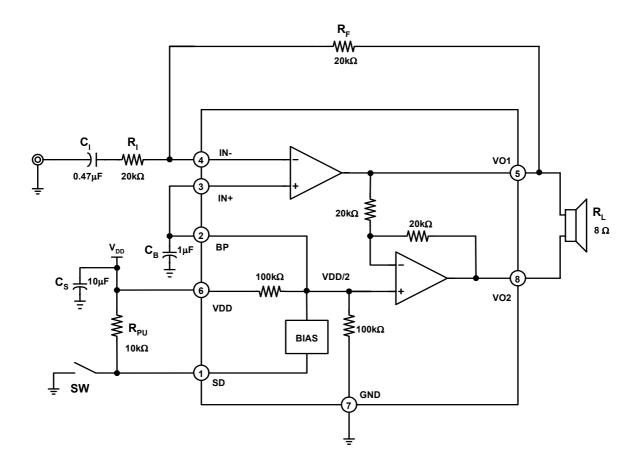
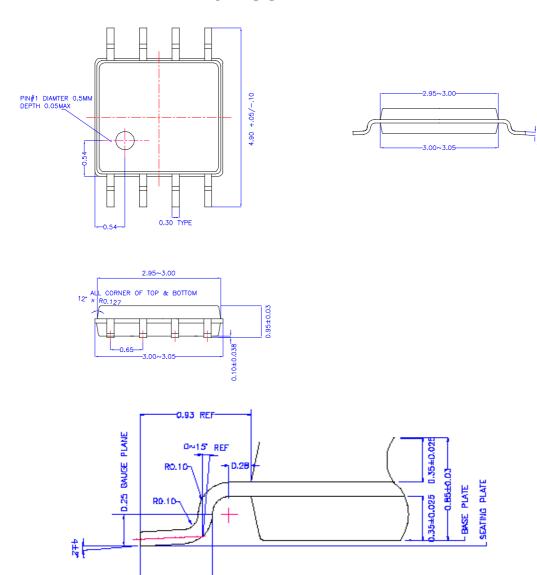



Figure 18. Power Derating Curve

Typical Application Circuit

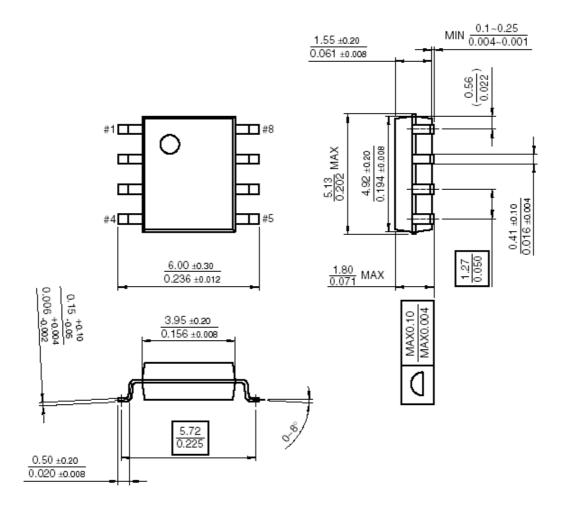


Mechanical Dimensions

Package

Dimensions in millimeters

8-MSOP

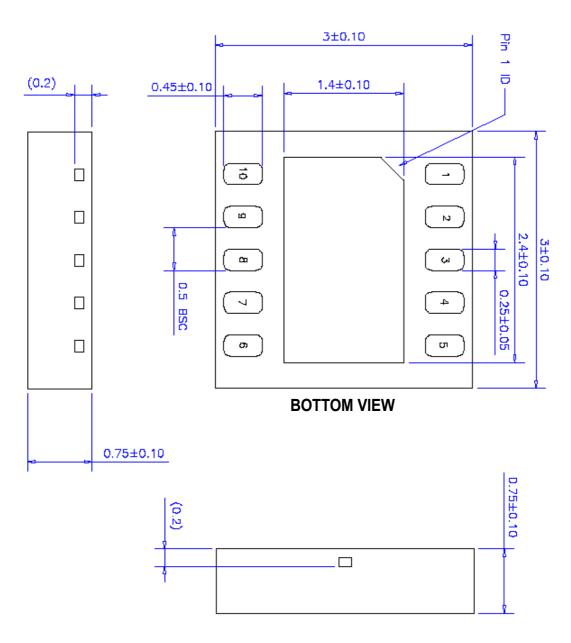

-0.53±0.05

Mechanical Dimensions (Continued)

Package

Dimensions in millimeters/inches

8-SOP



Mechanical Dimensions (Continued)

Package

Dimensions in millimeters

10-MLP

Ordering Information

Device	Package	Operating Temperature	Packing	
FAN7023MU	8-MSOP		Tube	
FAN7023M	8-SOP		Tube	
FAN7023MUX	8-MSOP	-40°C ~ +85°C		
FAN7023MX	8-SOP		Tape& Reel	
FAN7023MPX	10-MLP			

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com