Post-Tab AccuSerter 2 **Insertion Module (AIM)**

SAFETY PRECAUTIONS READ THIS FIRST! 2 1. INTRODUCTION 3 1.1. Specifications 4
1.1 Specifications
1.2. Restriction on Hazardous Substances (RoHS) Information
2. DESCRIPTION2.1 Physical Description42.2 Functional Description7
3. INSTALLATION 9 3.1. Installing Power Unit onto Machine 9 3.2. Installing Tool Set onto Power Unit 11 3.3 Installing Lower Tooling Tip onto Machine 12 3.4 Loading Terminals 13 3.5 Strip Guide Insert Change–Over 14 3.6 Manually Opening Inserter Clamp 15
4. REMOVAL
4.1. Removing Power Unit from Machine164.2. Removing Tool Set from Power Unit164.3. Removing Lower Tooling Tip from Machine174.4 Unloading Terminals17
5. ADJUSTMENTS185.1. Feed Finger Stroke Adjustment185.2. Feed Finger Forward Position Adjustment195.3. Anti-Backup Finger Position Adjustment205.4. Inserter Assembly Retract Position Adjustment205.5. Die Cylinder Clevis Adjustment225.6. Shear Cylinder Clevis Adjustment225.7. Die Travel Adjustment235.8. Shear Travel Adjustment235.9 Shear and Die Position (Terminal Cut-Off Tab) Adjustment245.10. Lower Tooling Tip Height Adjustment255.11. Power Unit Height (Terminal Insertion Depth) Adjustment255.12. Magnetic Cylinder Switch Adjustment265.13. Inserter Clamp Opening Adjustment275.14. Terminal Drag Pressure Adjustment28
6. PREVENTIVE MAINTENANCE 29 6.1. Cleaning and Inspection 29 6.2. Lubrication 30
7. REPLACEMENT 30 7.1. Die Insert Replacement 32 7.2. Shear Insert Replacement 32 7.3. Inserter Assembly Replacement 33 7.4. Strip Guide Insert Replacement 33 8. REVISION SUMMARY 33

SAFETY PRECAUTIONS AVOID INJURY

Safeguards are designed into this application equipment to protect operators and maintenance personnel from most hazards during equipment operation. However, certain safety precautions must be taken by the operator and repair personnel to avoid personal injury, as well as damage to the equipment. For best results, application equipment must be operated in a dry, dust–free environment. Do not operate equipment in a gaseous or hazardous environment.

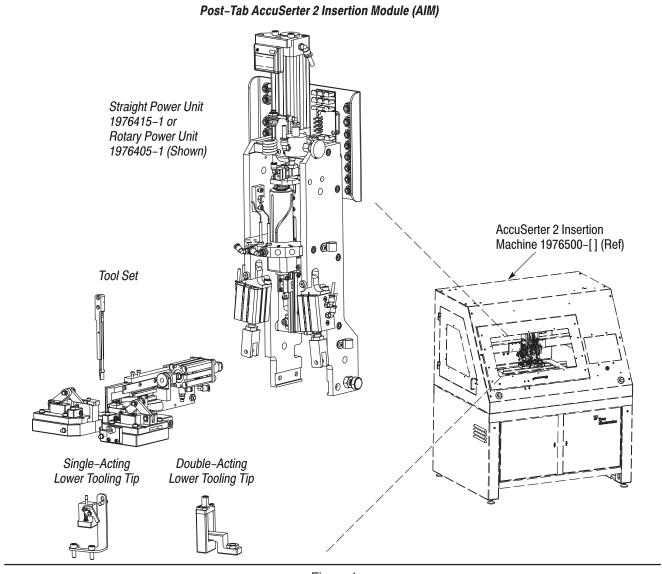
Carefully observe the following safety precautions before and during operation of the equipment:

- ALWAYS wear appropriate ear protection.
- ALWAYS wear approved eye protection when operating powered equipment.
- ALWAYS keep guard(s) in place during normal operation.
- ALWAYS insert power plug into a properly grounded receptacle to avoid electrical shock.
- ALWAYS turn off the main power switch and disconnect electrical cord from the power source when
 performing maintenance on the equipment.
- NEVER wear loose clothing or jewelry that may catch in moving parts of the application equipment.
- NEVER insert hands into installed application equipment.
- NEVER alter, modify, or misuse the application equipment.

TOOLING ASSISTANCE CENTER

CALL TOLL FREE 1-800-722-1111 (CONTINENTAL UNITED STATES AND PUERTO RICO ONLY)

The Tooling Assistance Center offers a means of providing technical assistance when required.


In addition, Field Service Specialists are available to provide assistance in the adjustment or repair of the application equipment when problems arise which your maintenance personnel are unable to correct.

INFORMATION REQUIRED WHEN CONTACTING THE TOOLING ASSISTANCE CENTER

When calling the Tooling Assistance Center regarding service to equipment, it is suggested that a person familiar with the device be present with a copy of the manual (and drawings) to receive instructions. Many difficulties can be avoided in this manner.

When calling the Tooling Assistance Center, be ready with the following information:

- 1. Customer name
- 2. Customer address
- 3. Person to contact (name, title, telephone number, and extension)
- 4. Person calling
- 5. Equipment number (and serial number if applicable)
- 6. Product part number (and serial number if applicable)
- 7. Urgency of request
- 8. Nature of problem
- 9. Description of inoperative component(s)
- 10. Additional information/comments that may be helpful

Figure 1

1. INTRODUCTION

The Post–Tab AccuSerter 2 Insertion Module (AIM) is designed to be used with AccuSerter 2 Insertion Machine 1976500–[] and a terminal–specific lower tooling tip to apply either post type or tab type (with or without a lower leg clinch) reeled terminals onto printed circuit (pc) boards.

The machine accepts several types of insertion modules and insertion heads to apply various terminals including posts, tabs, pins, barrels, mini–spring sockets, continuous wire posts, bandolier pins, and clips, as well as terminals for through–hole applications onto pc boards.

The Post–Tab AIM (the upper tooling) consists of Straight Power Unit 1976415–1 or Rotary Power Unit 1976405–1 and a tool set. The Straight Power Unit inserts terminals straight into the pc board, and the Rotary Power Unit inserts terminals at different angles into the pc board (the power unit rotates the terminal during the insertion stroke). The power unit and tool set are typically shipped assembled and mounted onto the base of the machine.

There are two types of lower tooling tips available: single–acting and double–acting. The single–acting lower tooling tip is used when the legs of the terminal are not designed to be clinched; such as, press or interference fit. The double–acting lower tooling tip is used when the legs of the terminal are designed to be clinched for positive retention in the pc board.

This customer manual is limited to the operation, adjustments, and maintenance of the Post–Tab AIM. Information on the AccuSerter 2 insertion machine can be found in Customer Manual 409–10089. Read and understand that manual before using the Post–Tab AIM.

When reading this manual, pay particular attention to **DANGER**, **CAUTION**, **NOTE** statements.

Denotes an imminent hazard which may result in moderate or severe injury.

Denotes a condition which may result in product or equipment damage.

Highlights special or important information.

Reasons for reissue of this customer manual are provided in Section 8, REVISION SUMMARY.

Dimensions in this manual are in metric units [with U.S. customary units in brackets].

1.1. Specifications

The following specifications apply to the Straight Power Unit when mounted to the machine:

Height:	583 mm [22.95 in.]
Depth:	316 mm [12.44 in.]
Width:	215 mm [8.46 in.]
Weight:	16.3 kg [36 lbs]
Cycle Time:	90 insertions per minute

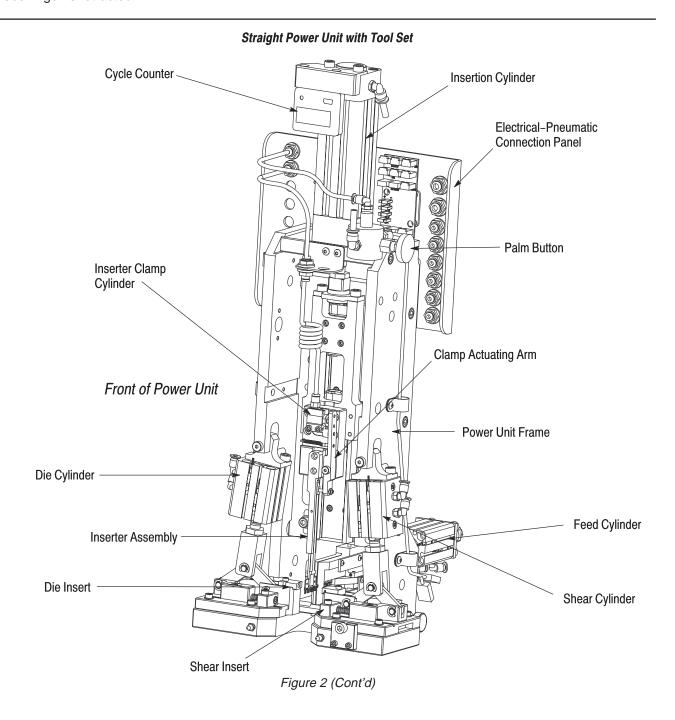
Cycle time is the maximum rate that the tool set will reliably operate when all conditions are optimal. The rate may be affected by inadequate air supply, accessories that are added to the power unit sequence, excessive table travel required between terminal insertions, or excessive terminal feed pitch.

1.2. RoHS Information

Information on the presence and location of any substances subject to RoHS can be found at the following website: http://www.tycoelectronics.com/customersupport/rohssupportcenter
Click on "Find Compliance Status," and enter the tooling part number.

2. DESCRIPTION

2.1. Physical Description (Refer to Figure 2)


The AIM (power unit and tool set combination) is air operated and electrically controlled. The power unit is fastened to the gantry (or frame) of the machine and connected by multiple air line connections and electrical connectors. The mechanical actions of feeding, gripping, shearing, and inserting terminals are achieved through a series of slides, cams, and links controlled by air cylinders of the power unit and tool set.

Electrical switches, actuated by the extension and retraction of the air cylinders, signal to the machine the state of each cylinder.

The insertion cylinder located on the top of the power unit extends to insert the terminal into the pc board. The insertion cylinder drives a linear slide which is attached to the tool set. The inserter assembly (which consists

of an inserter clamp and inserter body) grips the terminal. The inserter clamp is air operated and pivots to open and allow the terminal to feed into the inserter assembly, then pivots to close and to grip the terminal.

The feed cylinder controls feeding the terminal strip from the supply reel and through the tool set. The terminal strip is guided into a strip guide at the back of the tool set. A feed finger advances the terminal strip. The feed cylinder extends, advancing the feed finger to feed the terminal into the open inserter clamp. The feed cylinder remains extended until the terminal is gripped by the inserter assembly and sheared from the terminal strip, then it is retracted to engage the next terminal on the strip. The terminal drag assembly, located on the feed assembly, applies a slight drag to the terminal strip to ensure consistent feeding of the terminal. An anti–backup finger, located on the feed assembly, prevents the terminal strip from moving backward when the feed finger is retracted.

Shearing is performed by a shear insert and die insert which are operated by individual cylinders. The die cylinder is extended to bring the die insert into position against the terminal. The shear cylinder is then extended to move the shear insert and cut the terminal from the strip.

Some terminals produce waste material (a scrap slug) when the terminal is cut from the strip. The tool set for these terminals have a suction tube connected to a vacuum transducer on the machine to removed the scrap slug during each cycle.

The terminal is inserted at the beginning of each cycle of the tool set. The next terminal is fed, gripped, and sheared at the end of each cycle. Each cycle involves two terminals: the one being inserted and the one being fed, gripped, and sheared. The double—acting lower tooling tip contains a board support anvil which is raised by the first lower tooling cylinder of the machine to support the pc board during insertion of the terminal; then after insertion, the second lower tooling cylinder is extended to raise the clinch tooling and mechanically clinch the legs of the terminal.

A cycle counter located at the top of the power unit records the number of cycles.

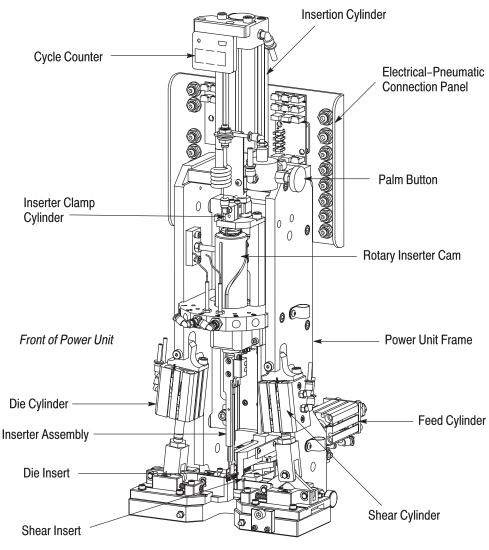


Figure 2 (End)

2.2. Function Description

The following describes a cycle of the AIM when it is properly mounted, adjusted, and loaded with terminals.

When the AIM is at rest between cycles, the insertion cylinder is retracted and actuating the insert–retract switch; the feed cylinder, die cylinder, and shear cylinder are each retracted and actuating their respective retract switch; the inserter clamp is closed and gripping the terminal that has been fed and sheared from the terminal strip during the previous cycle; and the lower tooling cylinder(s) are retracted.

The condition of a cylinder (extended or retracted) when the AIM is at rest between cycles is called the "rest" position.

When a cycle signal is issued, air is sent to the lower tooling cylinder and the board support is raised to support the bottom of the pc board. At the same time, air is sent to extend the insertion cylinder. The inserter assembly moves down to insert the terminal into the pc board. When extended, the insertion cylinder actuates the insert—ON switch. If the terminal requires a clinching, the clinch cylinder is then turned ON. After the board support cylinder, insertion cylinder, and if used, clinch cylinder are extended, a terminal—presence check is performed to confirm that the terminal has been applied to the pc board. If troubleshooting is required, this check can be turned OFF at the Run Screen of the machine. Air to the cylinders is then reversed, the board support, clinch tooling, and inserter assembly are returned to their rest position, and the inserter clamp is opened. At this point, the machine positioning table is allowed to move the pc board into position for the next terminal insertion while the AIM completes its cycle.

A complete timing diagram is shown in Figure 3.

Complete Timing Diagram

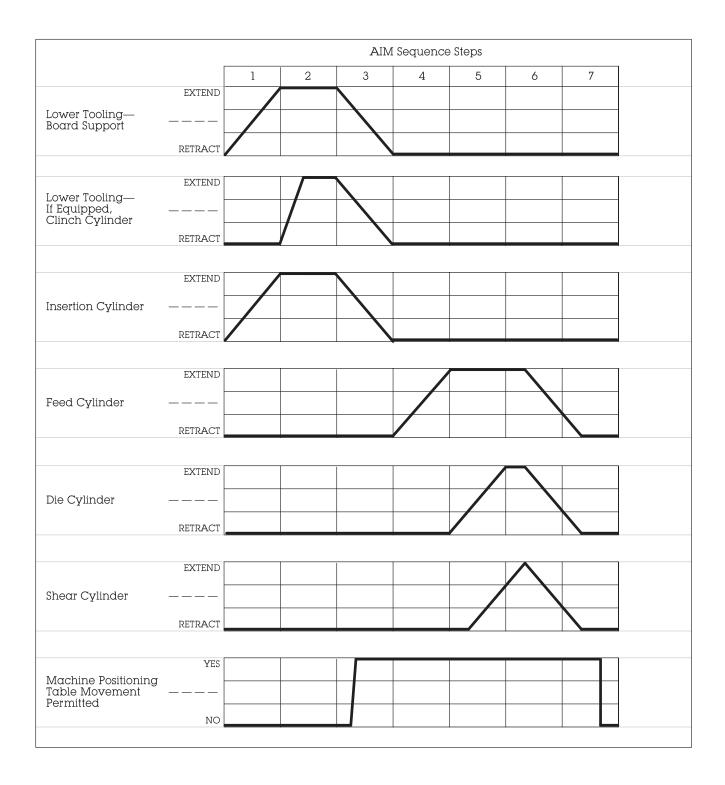


Figure 3

3. INSTALLATION

Verify that the correct lower tooling tip (single–acting or double–acting; terminal specific) and power unit (straight or rotary; application specific) are being used for the tool set and type of terminal being applied (refer to Section 1 for description). For additional information, refer to the assembly drawings included with the tool set documentation.

To avoid personal injury, ALWAYS DISCONNECT the electrical power and air supply from the base machine before installing or removing components.

3.1. Installing Power Unit onto Machine

When installing the Rotary Power Unit onto the machine, the machine must be equipped with Rotary Integration Kit 2031280–1. When installing the Straight Power Unit onto a machine equipped with the rotary integration kit, the air lines and electrical connector (which are part of the rotary integration kit) will not be used and must be disconnected. The unused air line must be capped or plugged.

To avoid any possible damage to the equipment, remove or secure any unused air and electrical connectors to prevent them from interfering with any moving components.

Proceed as follows:

1. Disconnect the electrical power and air supply from the base machine.

To avoid personal injury, ALWAYS DISCONNECT the electrical power and air supply from the base machine before installing the power unit onto the machine.

- 2. Position the mounting holes of the power unit over the four mounting screws of the machine gantry. Refer to Figure 4.
- 3. Move the power unit back and downward until it is properly seated on the gantry. Ensure that the dowel pin is properly located in the alignment slot of the gantry.
- 4. Tighten the four mounting screws.
- 5. Connect the CPC electrical connector(s) and air lines from the machine to the power unit (numbers are marked on the air lines). For proper connections, refer to Figure 5.

Installing Power Unit onto Machine

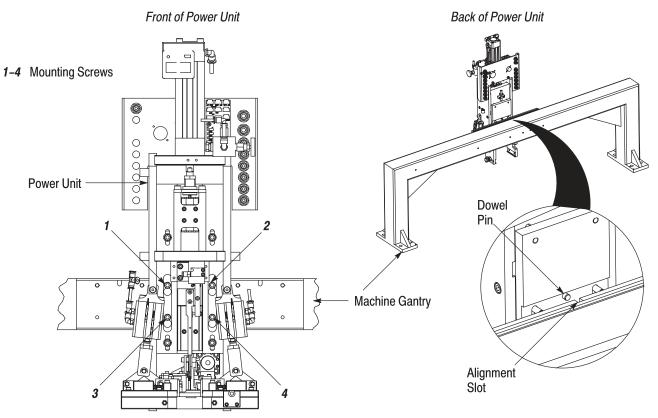
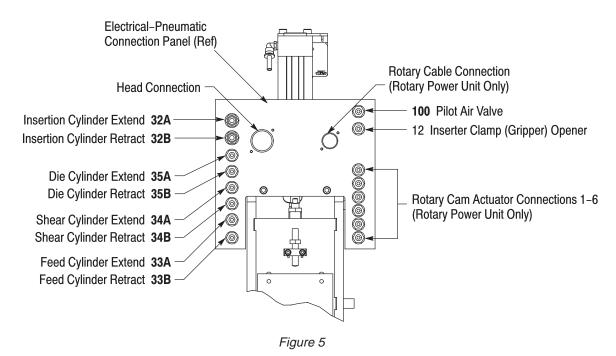
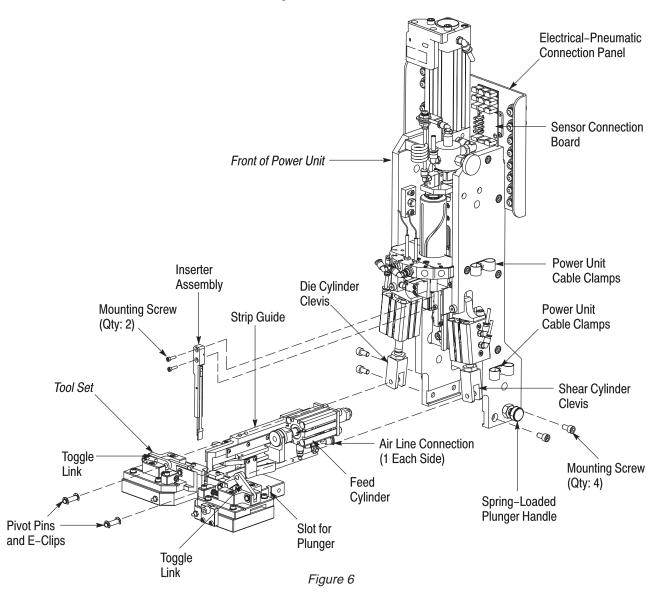



Figure 4

Air Lines and Electrical Connections

Back of Power Unit

3.2. Installing Tool Set onto Power Unit (See Figure 6)


1. If the power unit is installed onto the machine, disconnect the electrical power and air supply from the base machine.

To avoid personal injury, ALWAYS DISCONNECT the electrical power and air supply from the base machine before installing the tool set onto the power unit.

- 2. Remove the inserter assembly from its storage location on top of the strip guide by removing the two mounting screws. Retain the inserter assembly and mounting screws.
- 3. Remove the two e-clips and two pivot pins from the center of the toggle links shown in Figure 6. DO NOT remove the other pivot pins.
- 4. Pull and hold the spring-loaded plunger handle, and begin to slide the tool set (feed cylinder end first) into the bottom of the power unit. Release the plunger handle, and continue to slide the tool set until the plunger handle locks into the slot of the tool set.
- 5. Install and tighten the four mounting screws (two located on each side of the power unit).

6. Secure the toggle links to the shear cylinder clevis and die cylinder clevis using the pivot pins and e-clips.

E-Clip Tool 2031651-1 is available to install the toggle link e-clips onto the pivot pins.

- 7. Install the inserter assembly onto the power unit using the two mounting screws (removed from the strip guide).
- 8. Route the two air lines from the electrical—pneumatic connection panel through the cable clamps of the power unit to the tool set. Connect the air lines to the feed cylinder.
- 9. Route the two sensor cables from the feed cylinder through the cable clamps of the power unit to the electrical—pneumatic connection panel. Connect the cables to the panel.

Refer to the customer documentation for air line and sensor cable connection locations.

3.3. Installing Lower Tooling Tip onto Machine (See Figure 7)

The lower tooling tip attaches to the lower tooling assembly of the machine. Proceed as follows:

To avoid personal injury, ALWAYS DISCONNECT the electrical power and air supply from the base machine before installing the lower tooling tip.

Single-Acting Lower Tooling Tip

- 1. Disconnect the electrical power and air supply from the base machine.
- 2. Ensure that the compression spring is installed in the bottom of the lower tooling tip, then thread approximately 10 mm [0.4 in.] of the lower tooling tip onto the lower tooling cylinder.
- 3. Align the lower tooling tip with the proximity switch bracket as shown in Figure 7, then tighten the jam nut onto the cylinder shaft to lock the lower tooling tip into position.
- 4. Using the hardware, attach the proximity switch bracket to the lower tooling cylinder as shown in Figure 7.
- 5. Mount and connect the proximity switch to the machine wiring.

Double-Acting Lower Tooling Tip

- 1. Disconnect the electrical power and air supply from the base machine.
- 2. Hold the board support of the lower tooling tip in the raised position, and thread approximately 10 mm [0.4 in.] of the crimp yoke onto the left cylinder rod. Then, align the board support to the right cylinder rod.
- 3. Adjust the rod nut located under the board support until the board support tip is aligned with the top of the crimp yoke tip.
- 4. Tighten the upper jam nut of the board support bracket (right cylinder rod).
- 5. Tighten the lower jam nut of the crimp yoke (left cylinder rod).
- 6. Check for smooth operation by manually extending and retracting both cylinder rods. If necessary, loosen and re–adjust the rod nuts to permit smooth operation.
- 7. Attach the wiring from the lower tooling tip to the base machine.

Installing Lower Tooling Tip onto Machine

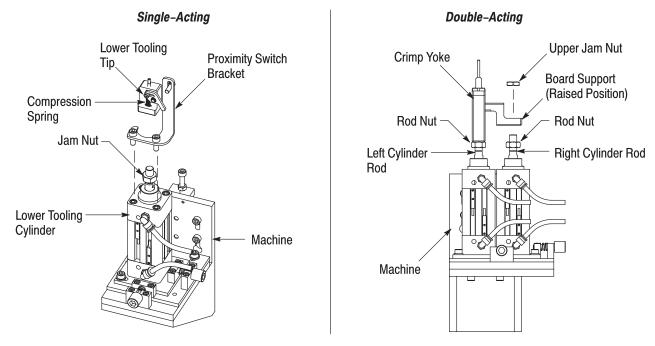


Figure 7

3.4. Loading Terminals

Install the terminal reel onto the machine according to the customer manual supplied with the machine, then proceed as follows:

1. Disconnect the electrical power and air supply from the base machine.

To avoid personal injury, ALWAYS DISCONNECT the electrical power and air supply from the base machine before loading the terminal strip.

2. Raise the shear cylinder and die cylinder. Depress the palm button located on the power unit, then raise the insertion cylinder.

Depressing the palm button before moving the insertion cylinder allows air to escape and the cylinder to move.

- 3. Unreel 1 to 2 m [3 to 6 ft] of the terminal strip.
- 4. Facing the back of the power unit, rotate the drag release lever outward until it stops to release the drag from the terminal strip. See Figure 8. If a section of the terminal strip is in the tool set, depress and hold both the feed finger release (on left side of tool set) and anti–backup finger release (on right side of tool set), and pull the section of the terminal strip out of the back of the strip guide.
- 5. Feed the end of the new terminal strip into the back of the strip guide.
- 6. Continue to advance the terminal strip until it appears at the front of the strip guide, then retract it slightly until the feed finger engages the terminal strip. Refer to Figure 8.
- 7. Facing the tool set, rotate the drag release lever inward until it stops to apply drag to the terminal strip. See Figure 8.

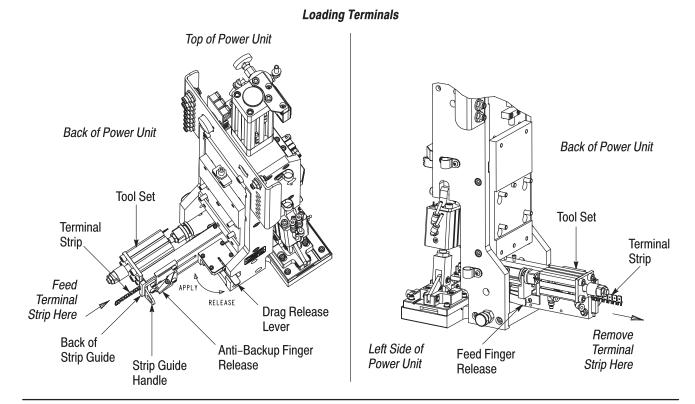


Figure 8

3.5. Strip Guide Insert Change-Over

Make sure that the strip guide insert is designed for the terminal being used. To change the strip guide insert, proceed as follows:

1. Disconnect the electrical power and air supply from the base machine.

To avoid personal injury, ALWAYS DISCONNECT the electrical power and air supply from the base machine before changing the strip guide insert.

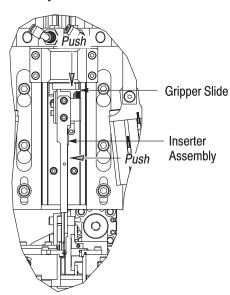
- 2. Rotate the drag release lever inward until it stops.
- 3. Push and hold the anti-backup finger until it is clear of the strip guide.
- 4. Using the strip guide handle, pull the strip guide insert to the back of the feed package (refer to Figure 8). Remove the strip guide insert.
- 5. Push the new strip guide insert into the back of the feed package.
- 6. Rotate the drag release lever outward until it stops.

3.6. Manually Opening Inserter Clamp

To avoid personal injury, ALWAYS DISCONNECT the electrical power and air supply from the base machine before manually opening the inserter clamp.

A. Straight Power Unit

- 1. Disconnect the electrical power and air supply from the base machine.
- 2. Squeeze the inserter assembly and clamp actuating arm together at the points indicated in Figure 9, or extend and retract the inserter assembly.


B. Rotary Power Unit

- 1. Disconnect the electrical power and air supply from the base machine.
- 2. Push the gripper slide down, or facing the power unit, push the inserter assembly to the left.

Manually Opening Inserter Clamp

Inserter Assembly Push Squeeze Together

Rotary Power Unit

Push Gripper Slide Down or Push Inserter Assembly Left

Figure 9

4. REMOVAL

4.1. Removing Power Unit from Machine

1. Disconnect the electrical power and air supply from the base machine.

To avoid personal injury, ALWAYS DISCONNECT the electrical power and air supply from the base machine before removing the power unit from the machine.

2. If the terminal strip is in the tool set, press and hold the palm button while lifting the inserter assembly to its fully raised position, then release the palm button. Cut the terminal strip at the back of the tool set, and remove the terminal strip.

It is recommended that a short section of the terminal strip remain in the tool set during removal and when being placed into storage to help identify the tool set.

- 3. If equipped, disconnect the suction tube from the tool set.
- 4. Loosen, but do not remove, the four mounting screws that attach the power unit to the machine gantry (refer to Figure 4).
- 5. Pull the lower portion of the power unit forward, then lift it up and pull it forward to remove it from the four screws.

4.2. Removing Tool Set from Power Unit

Remove the tool set from the power unit in the opposite way that it was installed. Refer to Figure 6, and proceed as follows:

1. If the power unit is installed in the machine, disconnect the electrical power and air supply from the base machine.

To avoid personal injury, ALWAYS DISCONNECT the electrical power and air supply from the base machine before removing the tool set from the power unit.

- 2. Disconnect the two air lines from the feed cylinder.
- 3. Disconnect the two feed cylinder sensor cables from the electric–pneumatic connection panel, and carefully pull the sensor cables from the cable clamps of the power unit.
- 4. If the terminal strip is in the tool set, press and hold the palm button while lifting the inserter assembly to its fully raised position, then release the palm button. Cut the terminal strip at the back of the tool set, and remove the terminal strip.

It is recommended that a short section of the terminal strip remain in the tool set during removal and when being placed into storage to help identify the tool set.

- 5. Remove the two mounting screws securing the inserter assembly to the power unit; and remove the inserter assembly. Retain the mounting screws.
- 6. Remove the e-clips and pivot pins from the die cylinder clevis and shear cylinder clevis. Push the toggle links down to clear the clevises.
- 7. Remove the two mounting screws (located on each side of the power unit) securing the tool set to the power unit. Retain the mounting screws.
- 8. Pull and hold the spring-loaded plunger handle outward from the power unit, and slide the tool set straight out of the power unit. Release the plunger handle.

9. Using the two mounting screws, secure the inserter assembly onto its storage location on top of the strip guide of the tool set to prevent damage or loss.

10. Install the pivot pins and e-clips onto the toggle links.

E-Clip Tool 2031651-1 is available to install the toggle link e-clips onto the pivot pins.

4.3. Removing Lower Tooling Tip from Machine

To avoid personal injury, ALWAYS DISCONNECT the electrical power and air supply from the base machine before removing the lower tooling tip.

Single-Acting Lower Tooling Tip

- 1. Disconnect the electrical power and air supply from the base machine.
- 2. Disconnect and remove the proximity switch from the machine wiring.
- 3. Remove the hardware, then remove the proximity switch bracket from the lower tooling cylinder (refer to Figure 7).
- 4. Loosen the jam nut from the lower tooling cylinder shaft, and remove the lower tooling tip; taking care not to lose the compression spring.

Double-Acting Lower Tooling Tip

- 1. Disconnect the electrical power and air supply from the base machine.
- 2. Remove the upper jam nut from the board support bracket (right cylinder rod).
- 3. Loosen the jam nut of the crimp yoke (left cylinder rod).
- 4. Raise the board support bracket until it is above the right cylinder rod, and unthread then remove the crimp yoke from the left cylinder rod.
- 5. Remove the lower tooling tip.

4.4. Unloading Terminals

1. Disconnect the electrical power and air supply from the base machine.

To avoid personal injury, ALWAYS DISCONNECT the electrical power and air supply from the base machine before unloading the terminal strip.

- 2. Ensure that the inserter assembly is in the raised position. To raise the inserter assembly, depress and hold the palm button while manually lifting the inserter assembly to its fully raised position, then release the palm button.
- 3. Cut the terminal strip at the back of the tool set. It is recommended that a section of the terminal strip always remain in the tool set for terminal identification. If it is necessary to remove the section of the terminal strip, depress and hold both the feed finger release (on left side of tool set) and anti–backup finger release (on right side of tool set), and pull the section of the terminal strip out of the back of the tool set (refer to Figure 8).

5. ADJUSTMENTS

Adjustments may be necessary during normal service or after the power unit or tool set has been disassembled and re–assembled.

If any individual function of the following processes is not performing properly, all succeeding processes will be out of alignment, and the tool set may perform unsatisfactorily. Make sure to perform these adjustments carefully and in the correct sequence. Adjustment to the following processes must be made in the following sequence:

- 1. Feed finger stroke
- 2. Feed finger forward position
- 3. Anti-backup finger position
- 4. Inserter assembly retract position
- 5. Die cylinder clevis adjustment
- 6. Shear cylinder clevis
- 7. Die travel
- 8. Shear travel
- 9. Shear and die position (cut-off tab)
- 10. Lower tooling tip height
- 11. Power unit height (terminal insertion depth)
- 12. Magnetic cylinder switch

To avoid personal injury, ALWAYS DISCONNECT the electrical power and air supply from the base machine before making any adjustments to tooling.

Adjustments to the inserter clamp opening (Paragraph 5.13) and terminal drag pressure (Paragraph 5.14) can be made when necessary.

5.1. Feed Finger Stroke Adjustment (See Figure 10)

<u>Important:</u> The succeeding process is affected by this adjustment—make sure to adjust the succeeding process after this adjustment. Refer to Section 5 for the proper sequence of adjustments.

Verify that the stroke of the feed finger (the gap between the cylinder stop and the cylinder mount plate) is 0.9 mm [.035 in.] more than the die feed length of the terminal. If it is not, proceed as follows:

- 1. Make sure that the electrical power and air supply is disconnected from the base machine.
- 2. Push the front of the feed cylinder until the feed cylinder is fully retracted.
- 3. While holding the cylinder stop with a 14–mm wrench, loosen the jam nut at the back of the feed cylinder.
- 4. Adjust the cylinder stop to obtain the proper gap between the cylinder stop and the cylinder mount plate.
- 5. After the proper gap is set, turn the jam nut until it is against the cylinder stop. Then, using two wrenches, one to hold the cylinder stop and the other to rotate the jam nut, tighten the jam nut.

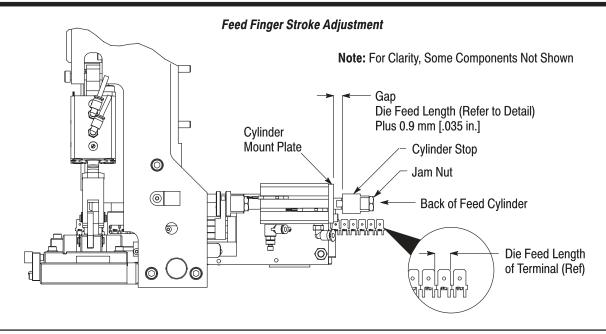


Figure 10

5.2. Feed Finger Forward Position Adjustment (See Figure 11)

<u>Important:</u> The succeeding process is affected by this adjustment—make sure to adjust the succeeding process after this adjustment. Refer to Section 5 for the proper sequence of adjustments.

Verify that the feed finger properly positions a terminal under the inserter assembly. If the terminal clamp does not scrape the terminal when it closes, the feed finger forward position does not need to be adjusted. If the inserter clamp scrapes the terminal when it closes, proceed as follows:

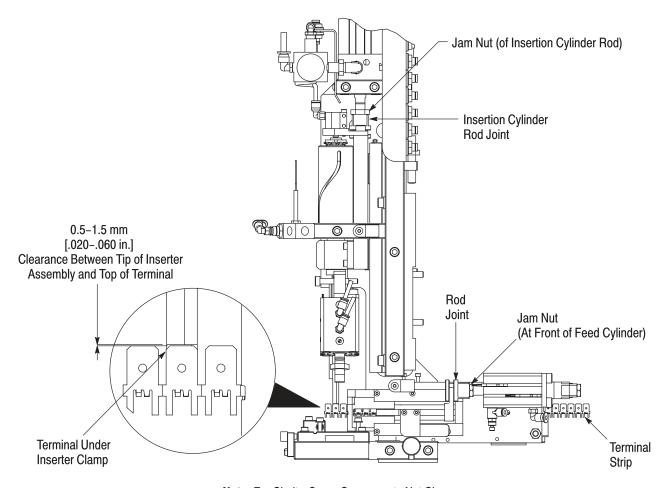
- 1. Make sure that the electrical power and air supply is disconnected from the base machine.
- 2. Manually raise the inserter assembly to its fully raised position. Ensure that the inserter clamp is open; if it is not, refer to Paragraph 3.6.
- 3. With the terminal strip in the tool set and drag applied (drag release lever is positioned toward the back of the power unit), manually operate the feed cylinder until a terminal is visible under the inserter assembly. Determine whether the terminal is being under–fed or over–fed.
- 4. Hold the feed cylinder in its forward position (the cylinder stop should be against the rear mounting plate of the feed cylinder), and manually close the inserter clamp (refer to Paragraph 3.6).
- 5. Holding the rod joint, loosen the jam nut at the front of the feed cylinder.
- 6. Rotate the rod joint *clockwise* to increase the forward position or *counter–clockwise* to decrease the forward position. Then, using two wrenches (one to hold the rod joint and the other to turn the jam nut) tighten the jam nut.
- 7. Repeat Steps 2 through 4 to check if the terminal is properly positioned.

5.3. Anti-Backup Finger Position Adjustment (See Figure 11)

Important: The succeeding process is affected by this adjustment—make sure to adjust the succeeding process after this adjustment. Refer to Section 5 for the proper sequence of adjustments.

Verify that the anti-backup finger prevents the feed finger from pulling the terminal strip rearward during its return stroke. If it does not, proceed as follows:

- 1. Make sure that the electrical power and air supply is disconnected from the base machine.
- 2. Manually operate the feed cylinder until a terminal is visible under the inserter assembly. Ensure that the feed cylinder is in its forward position (the cylinder stop should be against the rear mounting plate of the feed cylinder).
- 3. Loosen the two locking screws, and slide the anti-backup finger mount rearward until the anti-backup finger drops into the terminal strip behind a terminal.
- 4. Tighten the two locking screws.
- 5. Manually cycle the feed cylinder a few strokes to ensure that the anti-backup finger drops behind a terminal just as the feed cylinder reaches the end of its forward position. If it does not, repeat Steps 2 through 4.


5.4. Inserter Assembly Retract Position Adjustment (See Figure 11)

<u>Important:</u> The succeeding process is affected by this adjustment—make sure to adjust the succeeding process after this adjustment. Refer to Section 5 for the proper sequence of adjustments.

Verify that there is clearance between the tip of the inserter assembly and the top of the terminal within the dimension given in Figure 11. If there is not, proceed as follows:

- 1. Make sure that the electrical power and air supply is disconnected from the base machine.
- 2. Raise the inserter assembly to its fully raised position.
- 3. Manually extend the die cylinder.
- 4. Loosen the jam nut of the insertion cylinder rod.
- 5. Turn the insertion cylinder rod joint until there is clearance between the tip of the inserter assembly and the top of the terminal within the dimension given in Figure 11.
- 6. Re-tighten the jam nut.

Feed Finger Forward Position Adjustment and Inserter Assembly Retract Position Adjustment

Note: For Clarity, Some Components Not Shown

Anti-Backup Finger Position Adjustment

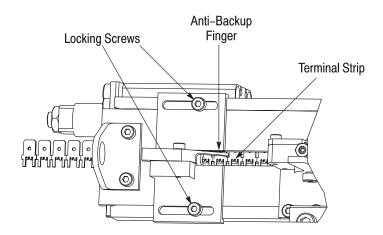


Figure 11

5.5. Die Cylinder Clevis Adjustment (See Figure 12)

Important: The succeeding process is affected by this adjustment—make sure to adjust the succeeding process after this adjustment. Refer to Section 5 for the proper sequence of adjustments.

- 1. Make sure that the electrical power and air supply is disconnected from the base machine.
- 2. Manually raise the inserter assembly to its fully raised position.
- 3. Manually operate the die cylinder to its fully extended position.
- 4. Loosen the jam nut of the cylinder rod.
- 5. Turn the cylinder rod to extend or retract the clevis until the toggle link is parallel to the mount surface.
- 6. Using two wrenches (one to hold the rod clevis and the other to rotate the jam nut), re-tighten the jam nut.

To avoid damage to the tooling, DO NOT allow the clevis to turn while tightening the jam nut.

5.6. Shear Cylinder Clevis Adjustment (See Figure 12)

Important: The succeeding process is affected by this adjustment—make sure to adjust the succeeding process after this adjustment. Refer to Section 5 for the proper sequence of adjustments.

- 1. Make sure that the electrical power and air supply is disconnected from the base machine.
- 2. Repeat Steps 2 through 6 of Paragraph 5.5 to adjust the shear cylinder clevis.

Die Cylinder Clevis Adjustment and Shear Cylinder Clevis Adjustment

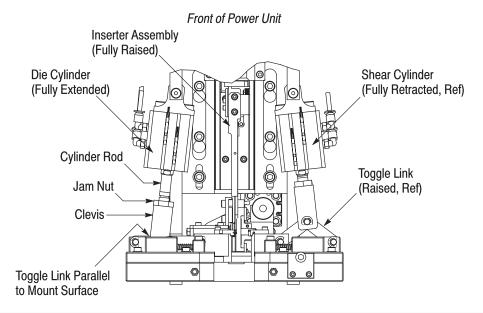


Figure 12

5.7. Die Travel Adjustment (See Figure 13)

Important: The succeeding process is affected by this adjustment—make sure to adjust the succeeding process after this adjustment. Refer to Section 5 for the proper sequence of adjustments.

Verify that the die insert just touches the terminal in the tool set. If it does not, proceed as follows:

- 1. Make sure that the electrical power and air supply is disconnected from the base machine.
- 2. Manually feed a terminal into the tool set.
- 3. Pull the die cylinder clevis down to extend the die slide.
- 4. Loosen the two locking screws that retain the die lever mount.
- 5. Turn the die adjustment screw *clockwise* to extend the die insert and *counter–clockwise* to retract the die insert until the terminal in the tool set is just touching the die insert.

The terminal should just touch the die insert without causing the inserter clamp to move or the terminal to move.

6. Re-tighten the die lever mount locking screws.

5.8. Shear Travel Adjustment (See Figure 13)

Important: The succeeding process is affected by this adjustment—make sure to adjust the succeeding process after this adjustment. Refer to Section 5 for the proper sequence of adjustments.

- 1. Make sure that the electrical power and air supply is disconnected from the base machine.
- 2. Loosen the two locking screws that retain the shear lever mount.
- 3. With the die cylinder still in the extended position, fully extend the shear cylinder. If necessary, loosen the shear adjustment screw until the shear cylinder can be fully extended.
- 4. Tighten the shear adjustment screw until the terminal strip is sheared, then:
 - a. for terminals that produce a scrap slug, continue to tighten the screw until the scrap slug is pushed into the clearance area of the die insert. If necessary, remove the die insert cover plate to verify the shear insert travel.
 - b. for terminals that do not produce a scrap slug, turn the screw one additional rotation after the terminal strip is sheared. The shear bypass should be within the dimension given in Figure 13.

DO NOT allow the shear insert to butt against the die insert. If the shear extends too far, the shear insert could be damaged.

- 5. Re-tighten the shear lever mount locking screws.
- 6. Pull the die cylinder clevis up to retract the die slide.
- 7. If removed, re–install the die insert cover plate.

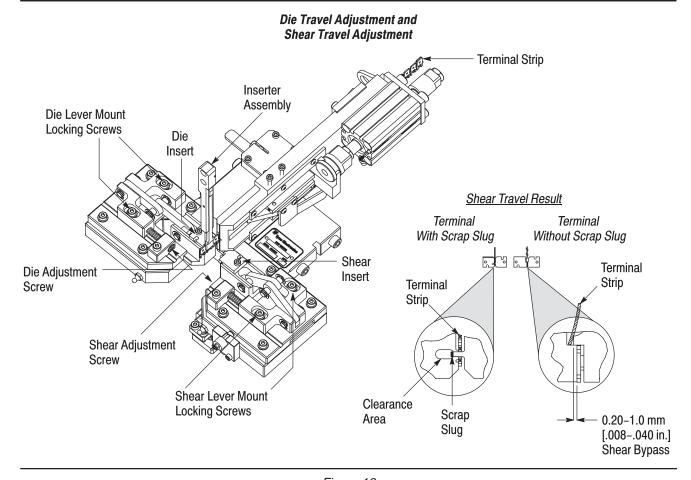


Figure 13

5.9. Shear and Die Position (Terminal Cut-Off Tab) Adjustment (See Figure 14)

<u>Important:</u> The succeeding process is affected by this adjustment—make sure to adjust the succeeding process after this adjustment. Refer to Section 5 for the proper sequence of adjustments.

Verify that the length of the terminal cut—off tab is correct; refer to the terminal application specification (114–series). If necessary, adjust the shear and die tooling as follows:

- 1. Make sure that the electrical power and air supply is disconnected from the base machine.
- 2. Manually raise the inserter assembly to its fully raised position.
- 3. Manually open the inserter clamp (refer to Paragraph 3.6).
- 4. Manually feed a terminal by pushing the feed cylinder forward (in the direction of feed), then close the inserter clamp (refer to Paragraph 3.6).
- 5. Manually extend the die cylinder, then extend the feed cylinder; and shear a terminal from the strip.
- 6. Repeat Steps 2 through 5—discarding the first terminal sheared.
- 7. Measure the length of the cut-off tab of the terminal in the inserter assembly. If the cut-off tab length is not to specification, loosen the gib-plate screws, then rotate the gib-plate adjustment screw *clockwise* to adjust the gib-plate forward (reduce the cut-off tab length) or *counter-clockwise* to adjust the gib-plate backward (increase the cut-off tab length).
- 8. Tighten the gib plate screws, and repeat Steps 2 through 5 two more times, then re—check the terminal for the correct cut—off tab length.

Shear and Die Position (Terminal Cut-Off Tab) Adjustment

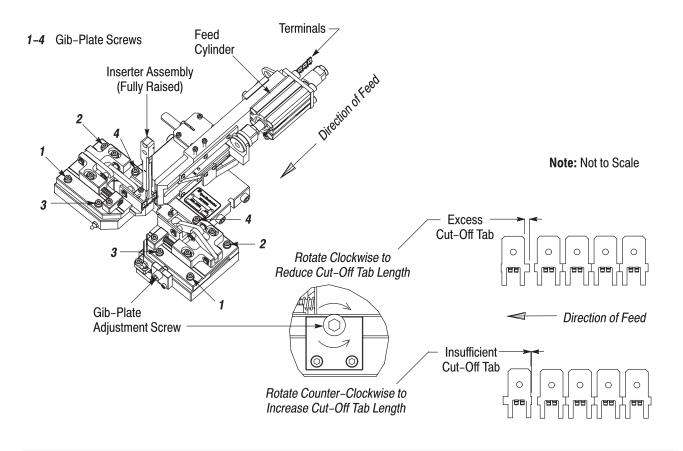


Figure 14

5.10. Lower Tooling Tip Height Adjustment

Important: The succeeding process is affected by this adjustment—make sure to adjust the succeeding process after this adjustment. Refer to Section 5 for the proper sequence of adjustments.

For instructions on adjusting the lower tooling tip, refer to Customer Manual 409–10089 (included with the machine).

5.11. Power Unit Height (Terminal Insertion Depth) Adjustment (Refer to Figure 15)

Important: The succeeding process is affected by this adjustment—make sure to adjust the succeeding process after this adjustment. Refer to Section 5 for the proper sequence of adjustments.

After installing the lower tooling tip (refer to Paragraph 3.2,B) and adjusting the lower tooling position and height (refer to 409–10089), verify that the depth of the terminal into the pc board is accurate. If it is not, proceed as follows:

- 1. Make sure that the electrical power and air supply is disconnected from the base machine.
- 2. Loosen the four power unit height adjustment screws located at the front of the power unit. DO NOT loosen the mounting screws that attach the power unit to the machine gantry.
- 3. Loosen the jam nut located at the back of the power unit.
- 4. Turn the stop bolt up or down to adjust the power unit height as required. Then, re–tighten the jam nut.
- 5. Re-tighten the four power unit height adjustment screws.

Power Unit Height (Terminal Insertion Depth) Adjustment

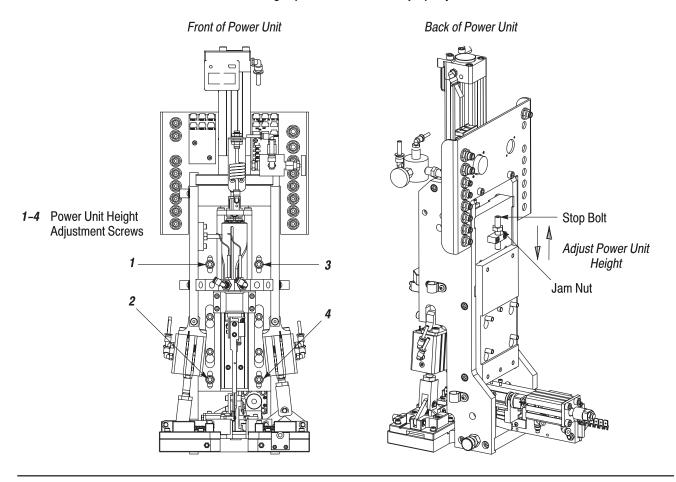


Figure 15

5.12. Magnetic Cylinder Switch Adjustment

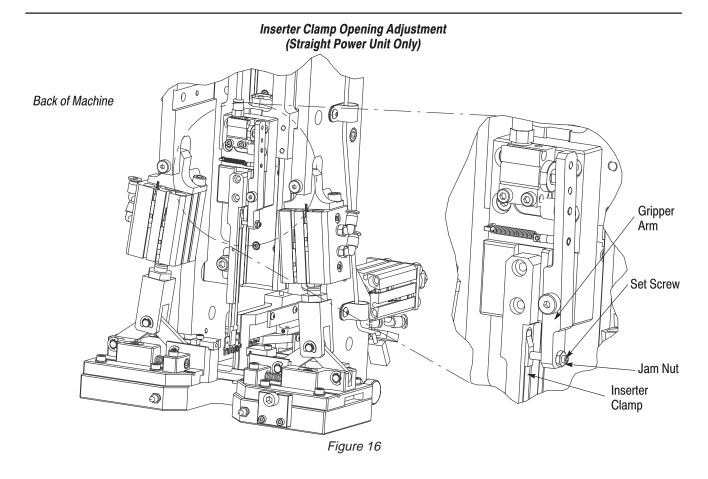
Verify that the two switches mounted to the each air cylinder of the power unit are positioned to detect whether the cylinder shafts have fully extended or fully retracted. If they do not, proceed as follows:

To avoid damage to the tooling, the electrical power and air supply must be turned "ON" and "OFF" during the adjustment procedure when indicated in the following steps.

- 1. Turn the air supply to the base machine "OFF," and turn the electrical power to the base machine "ON."
- 2. Manually move the inserter cylinder to its fully extended position.
- 3. Using a small flat blade screwdriver, loosen the switch locking screw, and manually slide the switch along the cylinder track until the LED light on the switch lights "ON", then tighten the switch locking screw.
- 4. Repeat Steps 2 and 3 for the die cylinder, shear cylinder, and feed cylinder.
- 5. Make sure all guards are in place, and turn the air supply to the base machine "ON."
- 6. Using the manual input screen of the machine, extend and retract each cylinder while ensuring that the appropriate cylinder switch is "ON."

5.13. Inserter Clamp Opening Adjustment

The opening of the inserter clamp is pre–set and should not require adjustment; however, if necessary, adjust the inserter clamp opening as follows:


A. Straight Power Unit (Refer to Figure 16)

Verify that the there is space between the inserter clamp and inserter body and that the inserter clamp opens enough so to pass the terminal when it feeds forward. If the inserter clamp does not open to the required distance, proceed as follows:

- 1. Using the manual operation screen, energize the gripper opener air cylinder (refer to customer manual 409–10089).
- 2. If the inserter clamp is not opening adequately to feed terminals, de-energize the machine and disconnect the air and electrical supply.
- 3. Loosen the jam nut located on the set screw of the gripper lever.
- 4. Adjust the set screw to open or close the inserter clamp to the required distance. DO NOT adjust the set screw so that it pushes the inserter clamp against the inserter body; otherwise, damage to the power unit or tool set could occur.
- 5. Re-tighten the jam nut.
- 6. Reconnect the air and electrical supply.
- 7. Energize the machine and repeat steps 1 through 6 until the gripper opens correctly.

B. Rotary Power Unit

The Rotary Power Unit uses an air cylinder to open the inserter clamp; therefore, the opening of the inserter clamp opening cannot be adjusted.

5.14. Terminal Drag Pressure Adjustment (Refer to Figure 17)

The terminal drag pressure is pre–set and should not require adjustment; however, if necessary, adjust the pressure as follows:

- 1. Make sure that the electrical power and air supply is disconnected from the base machine.
- 2. Loosen the jam nut located on the adjustment set screw of the drag housing.
- 3. Rotate the adjustment set screw *clockwise* (moves "in") to increase the drag pressure and *counter–clockwise* (moves "out") to decrease the drag pressure. The drag pressure should be set to the minimum amount required for consistent operation.
- 4. Re-tighten the jam nut.

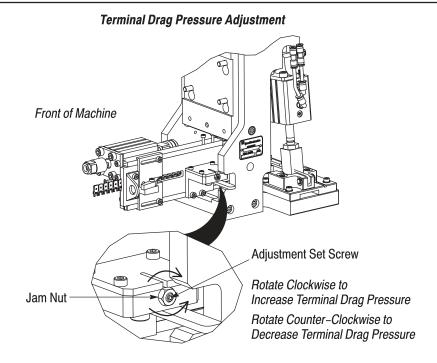


Figure 17

6. PREVENTIVE MAINTENANCE

Preventive maintenance consists of cleaning, inspecting, and lubricating the AIM. A program of regular, scheduled maintenance ensures efficient operation of the AIM with minimum downtime. The maintenance schedule recommended is based on typical operating conditions; however, the schedule may be adjusted, especially if experience shows that lubrication is required more often.

To avoid personal injury, ALWAYS DISCONNECT the electrical power and air supply from the base machine before performing any preventive maintenance to tooling.

6.1. Cleaning and Inspection

Clean and inspect the AIM regularly as follows:

A. Daily or Every 100,000 Cycles

- 1. Disconnect the electrical power and air supply from the base machine.
- 2. If equipped, check the scrap tube for restrictions twice each shift.
- 3. Using a soft bristled brush, remove dirt and other contaminants from within the AIM.
- 4. Using a dry air supply, blow any metal particles from within the AIM.

To avoid personal injury, compressed air used for cleaning must be reduced to less than 200 kPa (30 psi) and effective chip guarding and personal protective equipment (including eye protection) must be used.

B. Weekly or Every 700,000 Cycles

- 1. Disconnect the electrical power and air supply from the base machine.
- 2. Inspect all screws and nuts to ensure that they are secure.
- 3. Check the magnetic cylinder switches. If necessary, adjust them as described in Paragraph 5.10.

C. Monthly or Every 3,000,000 Cycles

- 1. Disconnect the electrical power and air supply from the base machine.
- 2. Remove the terminal strip guide, inserter assembly, die insert, and shear insert. Check these parts under magnification for wear or damage. Replace any worn or damaged parts.
- 3. Visually inspect the remaining components for wear or damage. Replace any worn or damaged parts.

The presence of metal particles within the AIM indicates misaligned parts, damage, or a lack of lubrication.

- 4. Manually operate the inserter slide, die slide, and shear slide; and check that all slides operate freely without any roughness or excessive side clearance. If there is any indication of wear or roughness, further disassembly and cleaning, lubrication, or replacement of these parts is recommended.
- 5. Before re-assembling the AIM, thoroughly clean the removed parts with solvent.
- 6. Re–assemble the terminal strip guide, inserter assembly, die insert, and shear insert.
- 7. Lubricate the AIM as described in Paragraph 6.2. Make any necessary adjustments before operating the AIM.

6.2. Lubrication

Proper and regular lubrication is essential for optimum performance of the AIM. To keep the AIM operating efficiently, it is just as important to avoid over–lubricating as it is lubricating. The following lubrication schedule is based on a 24–hour running time or 100,000 cycles. Therefore, if the AIM operates three shifts a day, it should be lubricated every day; if it operates one shift a day, it should be lubricated every third day (or after 100,000 cycles, whichever comes first). Adjustments to this schedule might be required, according to specific operating conditions. If the AIM has not been operated for several days, it should be lubricated before placing it into operation.

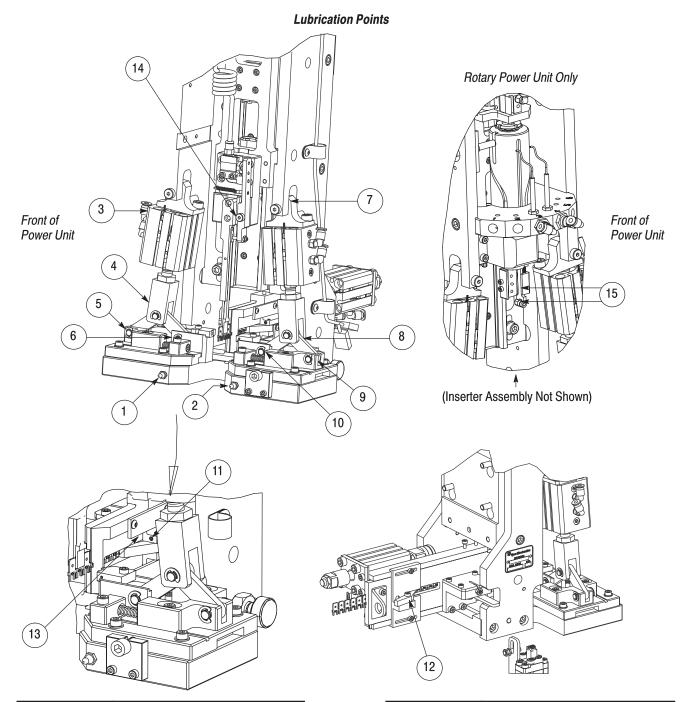
Refer to Figure 18, and proceed as follows:

- 1. Disconnect the electrical power and air supply from the base machine.
- 2. Verify that the die cylinder and shear cylinder are fully retracted.
- 3. Using a manually–operated grease gun filled with a NLGI Grade 2 grease (such as Chevron Ultra Duty EP), apply grease to each of the grease fittings located at the front of the tool set. Stop when grease begins to flow from around the die slide and shear slide. DO NOT use an excessive amount of grease. Remove any excess grease.

It is NOT recommended to use a pneumatic or automatic grease gun for lubrication. The amount of grease required for proper lubrication is minimal and the use of powered grease guns will likely result in excess lubrication.

- 4. Apply 1 or 2 drops of light machine oil to each pivot point of the shear linkage, die linkage, feed finger, and anti-backup finger. Remove any excess oil.
- 5. Using a small brush or cotton swab, apply grease to the center of the feed slide.
- 6. For the Straight Power Unit, extend the insertion cylinder, and apply grease to the gripper arm and roller. For the Rotary Power Unit, apply a coating of grease to a small area of the gripper slide and roller bearing.

7. REPLACEMENT



To avoid personal injury, ALWAYS DISCONNECT the electrical power and air supply from the base machine before replacing any parts.

Customer–replaceable parts are listed on the customer drawings and parts lists supplied with the AIM. Spare parts kit is also available for each AIM. The kit contains all of the recommended spare parts. A complete inventory should be stocked and controlled to prevent lost time when replacement of parts is necessary. Parts other than those listed should be replaced by Tyco Electronics Corporation to ensure quality and reliability. Order replacement parts through your representative, or call 1–800–526–5142, or send a facsimile of your purchase order to 717–986–7605, or write to:

CUSTOMER SERVICE (038–035) TYCO ELECTRONICS CORPORATION PO BOX 3608 HARRISBURG PA 17105–3608

Chevron is a trademark of Chevron Corporation

APPLY GREASE HERE	COMPONENT
1–2	Grease Fittings
13	Feed Slide
15	Gripper Slide and Roller Bearing

APPLY OIL HERE	COMPONENT
3–6	Pivot Points of Shear Linkage
7–10	Pivot Points of Die Linkage
11	Pivot Point of Feed Finger
12	Pivot Point of Anti-Backup Finger
14	Gripper Arm and Shoulder Bolt

Figure 18

7.1. Die Insert Replacement (See Figure 19)

- 1. Disconnect the electrical power and air supply from the base machine.
- 2. Remove the screw securing the die insert cover (if equipped) and die insert. Remove the die insert cover (if equipped) and die insert.
- 3. Clean the mounting surface of the die slide. The mounting surface must be free of dirt, corrosion and any debris.
- 4. Inspect the suction tube port for any trapped debris or terminal scrap slugs, and remove any obstructions with compressed air.

To avoid personal injury, compressed air used for removing any obstructions must be reduced to less than 200 kPa (30 psi) and effective chip quarding and personal protective equipment (including eye protection) must be used.

- 5. If present, remove the protective wax coating from the new die insert. Then, carefully install the new die insert. Make sure that it is properly seated in the die slide.
- 6. Re–install the existing die insert cover (if equipped). Secure the die insert cover (if equipped) and new die insert with the screw.
- 7. Manually extend the die cylinder and shear cylinder, and check the new die insert for clearance with the shear blade.

7.2. Shear Insert Replacement (See Figure 19)

- 1. Disconnect the electrical power and air supply from the base machine.
- 2. Remove the screw securing the shear insert. Remove the shear insert.
- 3. Clean the mounting surface of the shear slide. The mounting surface must be free of dirt, corrosion and any debris.
- 4. Remove the protective wax coating (if present) from the new shear insert. Then, carefully install the new shear insert. Make sure that it is properly seated in the shear slide.
- 5. Secure the new shear insert with the screw.
- 6. Manually extend the die cylinder and shear cylinder, and check the new shear insert for clearance with the die insert.

Die Insert Replacement and Shear Insert Replacement

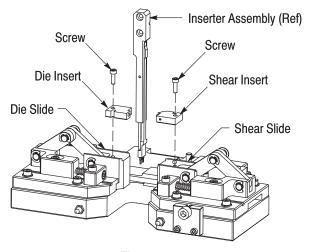


Figure 19

7.3. Inserter Assembly Replacement

- 1. Disconnect the electrical power and air supply from the base machine.
- 2. Remove the two screws securing the inserter assembly to the power unit. Carefully remove the inserter assembly by pulling it straight forward from the power unit. To avoid damage to the inserter assembly or power unit, DO NOT twist or pry the inserter assembly.
- 3. For the Rotary Power Unit, inspect the gripper slide for wear and debris. If necessary, replace the gripper slide and/or remove the debris. Lubricate the gripper slide with grease.
- 4. Clean and inspect the inserter assembly mounting surface of the power unit.
- 5. Using the two mounting screws, install the new inserter assembly to the power unit.
- 6. For the Straight Power Unit, check and adjust the inserter clamp opening.

7.4. Strip Guide Insert Replacement

Make sure that the new strip guide insert is designed for the terminal being used.

- 1. Disconnect the electrical power and air supply from the base machine.
- 2. Rotate the drag release lever outward until it stops.
- 3. Push and hold the anti-backup finger until it is clear of the strip guide.
- 4. Using the strip guide handle, pull the strip guide insert to the back of the feed package (refer to Figure 8). Remove the strip guide insert.
- 5. Push the new strip guide insert into the back of the feed package.
- 6. Rotate the drag release lever inward until it stops.

8. REVISION SUMMARY

Revisions to this customer manual were made to include a product enhancement, by which the module operates the same as the rotary module.