NSSH NBO

R1240x Series

1.2 A, 30 V Step-Down DC/DC Converter

NO.EA-190-230522

OUTLINE

The R1240x is a CMOS-based Step-down DC/DC converter with internal Nch high side Tr. $(0.35~\Omega)$, which can provide the maximum 1.2 A output current. The ICs consists of an Oscillator, a PWM control circuit, a Reference Voltage unit, an Error amplifier, phase compensation circuits, a slope circuit, a soft-start circuit, protection circuits, internal voltage regulators, and a switch for boot strap circuit. The ICs can make up a Step-Down DC/DC Converter with the following external components: an inductor, resistors, a diode, and capacitors. The R1240x is a current mode operating type DC/DC converter which does not require external current sense resistor, and it works high speed response time, high efficiency and compatible with ceramic capacitors. Oscillator frequency is internally set at 1.25 MHz.

As a protection function, it has cycle by cycle peak current limit function, short protection function, thermal shutdown function and UVLO.

There are two types for short protection, A version has latch protection function with 2 ms delay time, and B version has fold-back protection function that keep operating at short condition with lower operating frequency and limiting the Lx current.

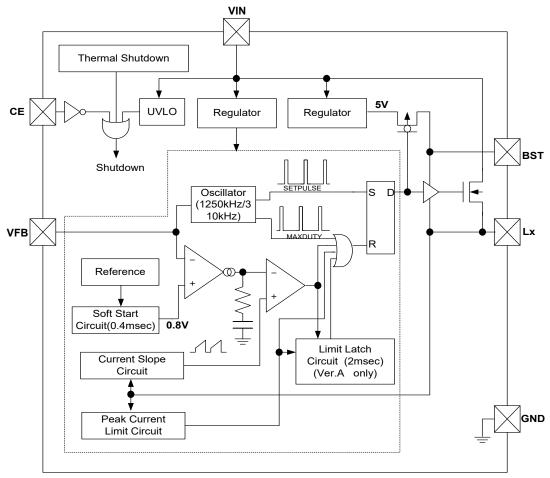
FEATURES

•	Operating Voltage ······4.5 V to 30 V
•	Internal Nch MOSFET Driver ······Typ. $Ron = 0.35 \Omega$
•	Adjustable Output Voltage with External Resistor ··· 0.8 V to 15 V
•	Feedback Voltage······0.8 V ±1.5%
•	Peak Current Limit Function·····Typ. 2.0 A
•	UVLO Function
•	Operating Frequency ············1.25 MHz (Ver. B: 310 kHz, Fold-back Condition)
•	Short Protection for Output ······Ver. A: Latch with 2 ms delay or Ver. B: Fold-back
•	Ceramic Capacitor Compatible
•	Stand-by Function ·····Typ. 0 μA
•	Package · · · · SOT-23-6W, DFN(PL)2527-10

APPLICATIONS

- Digital Home Appliances: Digital TVs, DVD Players
- OA Equipment: Printers, Fax
- Hand-held Communication Equipment, Cameras, VCRs, Camcorders
- Battery-powered Equipment

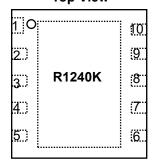
SELECTION GUIDE

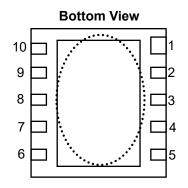

In the R1240x, the Package, type of short protection (Latch or Fold-back) can be selected at the user's request.

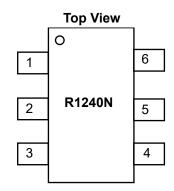
Selection Guide

Product Name	Package	Quantity per Reel	Pb Free	Halogen Free
R1240K003*-TR	DFN(PL)2527-10	5,000 pcs	Yes	Yes
R1240N001*-TR-FE	SOT-23-6W	3,000 pcs	Yes	Yes

- *: Designation of Optional Function at off state are options as follows.
 - (A) Latch Type protection
 - (B) Fold-back Type protection


BLOCK DIAGRAM




R1240x Block Diagram

PIN DESCRIPTIONS

Top View

DFN(PL)2527-10 Pin Configuration

SOT-23-6W Pin Configuration

R1240N001x Pin Description

Pin No.	Symbol	Description		
1	CE	Chip Enable Pin, Active with "H"		
2	VIN	Power Supply Pin		
3	Lx	Lx Switching Pin		
4	BST	Bootstrap Pin		
5	GND	Ground Pin		
6	VFB	Feedback Pin		

R1240K003x Pin Description

Pin No.	Symbol	Description		
1	Lx	Lx Switching Pin		
2	VIN	Power Supply Pin		
3	VIN	Power Supply Pin		
4	CE	Chip Enable Pin, Active with "H"		
5	TEST	Test Pin (Open, do not connect to any line.)		
6	GND	Ground Pin		
7	NC	No Connection		
8	VFB	Feedback Pin		
9	NC	No Connection		
10	BST	Bootstrap Pin		

Tab is GND level. (They are connected to the reverse side of this IC.) The tab is better to be connected to the GND, but leaving it open is also acceptable.

ABSOLUTE MAXIMUM RATINGS

Absolute Maximum Ratings

(GND = 0 V)

Symbol	Item		Rating		Unit
VIN	Input Voltage		-0.3 to 32		V
V _{BST}	BST Pin Voltage		V_{LX} -0.3 to V_{LX}	+6	V
V _L X	Lx Pin Voltage		−0.3 to V _{IN} +0.	3	V
I _{LX}	Lx Pin Current		2		Α
V _{CE}	CE Pin input Voltage		−0.3 to V _{IN} + 0.3		V
V _{FB}	VFB Pin Voltage		−0.3 to 4		V
		SOT-23-6W	Standard Land Pattern	430	
P_{D}	Power Dissipation*		Standard Land Pattern	910	mW
	·	DFN(PL)2527-10	High Wattage Land Pattern	1400	
Tj	Junction Temperature Range		-40 to 125		°C
Tstg	Storage Temperature Range		−55 to 125		°C

^{*} Refer to *Power Dissipation* for detailed information.

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.

RECOMMENDED OPERATING CONDITIONS

Recommended Operating Conditions

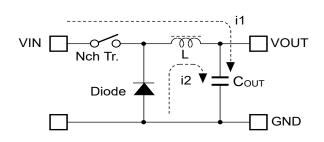
Symbol	Item	Rating	Unit
V_{IN}	Operating Input Voltage	4.5 to 30	V
Та	Operating Temperature Range	−40 to 85	°C

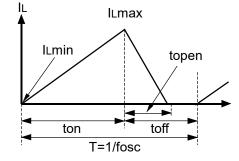
RECOMMENDED OPERATING CONDITIONS

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

ELECTRICAL CHARACTERISTICS

Electrical Characteristics


(Otherwise notified, V_{IN} = 12 V, Ta = 25°C)


Symbol Item		Conditions	Min.	Тур.	Max.	Unit
I _{IN}	VIN Consumption Current	V _{IN} = 30 V, V _{FB} = 1.0 V		0.5	1.0	mA
V _{UVLO1}	UVLO Detect Voltage	Falling	3.6	3.8	4.0	V
V _{UVLO2}	UVLO Released Voltage	Rising		V _{UVLO1} +0.2	4.2	V
V_{FB}	VFB Voltage Tolerance		0.788	0.800	0.812	V
ΔV _{FB} /ΔTa	VFB Voltage Temperature Coefficient	-40°C ≤ Ta ≤ 85°C		±150		ppm/ºC
fosc	Oscillator Frequency		1000	1250	1500	kHz
V_{FLB}	Fold-back Frequency (Ver. B)	V _{FB} < 0.56 V		310		kHz
Maxduty	Oscillator Max. Duty Cycle		75	85	90	%
tmin	Minimum On Time			100		nsec
tss	Soft-start Time	V _{FB} = 0.72 V	0.2	0.4	0.6	ms
tdly	Delay Time for Latch Protection (Ver. A)		1	2	4	ms
RLXH	Lx High Side Switch ON Resistance			0.35		Ω
I _{LXHOFF}	Lx High Side Switch Leakage Current			0	5	μΑ
ILIMLXH	Lx High Side Switch Limited Current			2.0		Α
Vcel	CE "L" Input Voltage				0.3	V
Vceh	CE "H" Input Voltage		1.6			V
I _{FB}	VFB Input Current		-1.0		1.0	μΑ
ICEL	CE "L" Input Current		-1.0		1.0	μΑ
Ісен	CE "H" Input Current		-1.0		1.0	μA
T _{TSD}	Thermal Shutdown Detect Temperature	Hysteresis 30°C		160		°C
Istandby	Standby Current	V _{IN} = 30 V		0	5	μΑ

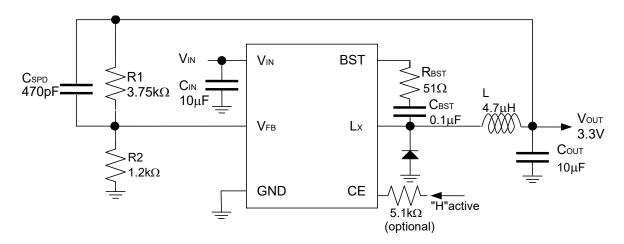
OPERATING DESCRIPTIONS

OPERATION OF STEP-DOWN DC/DC CONVERTER AND OUTPUT CURRENT

The step-down DC/DC converter charges energy in the inductor (L) when the LX transistor turns on, and discharges the energy from the inductor when LX transistor turns off and controls with less energy loss, so that a lower output voltage (V_{OUT}) than the input voltage (V_{IN}) can be obtained. The operation of the step-down DC/DC converter is explained in the following figures.

Basic Circuit

Inductor Current flowing through Inductor


- **Step1.** The Nch transistor turns on and the inductor current (i1) flows, L is charged with energy. At this moment, i1 increases from the minimum inductor current (ILmin), which is 0 A, and reaches the maximum inductor current (ILmax) in proportion to the on-time period (ton) of the Nch transistor.
- **Step2.** When the Nch transistor turns off, L tries to maintain IL at ILmax, so L turns the diode on and the inductor current (i2) flows into L.
- Step3. i2 decreases gradually and reaches ILmin after the open-time period (topen) of the Nch transistor, and then the diode turns off. This is called discontinuous current mode.

 As the output current (Iout) increases, the off-time period (toff) of the Nch transistor runs out before IL reaches ILmin. The next cycle starts, and the Nch transistor turns on and the diode turns off, which means IL starts increasing from ILmin. This is called continuous current mode.

In the case of PWM mode, V_{OUT} is maintained by controlling ton. During PWM mode, the oscillator frequency (fosc) is being maintained constant.

APPLICATION INFORMATION

TYPICAL APPLICATION CIRCUIT

R1240x Typical Application Circuit

External Parts

C _{IN} 10 μF, KTS500B106M55N0T00 (Nippon Chemi-Con)			
Cout 10 μF, GRM31CR71E106K (Murata)			
C _{BST} 0.1 μF, GRM21BB11H104KA01L (Murata)			
L	4.7 μH, SLF7045T-4R7M2R0-PF (TDK)		
D	CMS11 (TOSHIBA)		

OUTPUT CURRENT AND SELECTION OF EXTERNAL COMPONENTS

The following equations explain the relationship between output current and peripheral components.

Ripple Current P-P value is described as I_{RP} , ON resistance of switch is described as R_{ONP} , forward drop voltage is described as V_F , and DC resistance of inductor is described as R_L .

First, when the switch is turned on, the following equation is satisfied.

$$V_{IN} = V_{OUT} + (R_{ONH} + R_L) \times I_{OUT} + L \times I_{RP} / ton$$
 Equation 1

Second, when the switch is turned off, the diode is turned on, the following equation is satisfied.

Put Equation 2 into Equation 1 to solve the ON duty of the switch (DoN = ton / (toff + ton)):

$$D_{ON} = (V_{OUT} + V_F + R_L \times I_{OUT}) / (V_{IN} + V_F - R_{ONH} \times I_{OUT}) \cdots Equation 3$$

Ripple Current is described as follows:

$$I_{RP} = (V_{IN} - V_{OUT} - R_{ONH} \times I_{OUT} - R_{L} \times I_{OUT}) \times D_{ON} / fosc / L \cdots Equation 4$$

Peak current that flows through L and the switch is described as follows:

Notes: Please consider ILmax when setting conditions of input and output, as well as selecting the external components. The above calculation formulas are based on the ideal operation of the ICs in continuous mode.

TECHNICAL NOTES

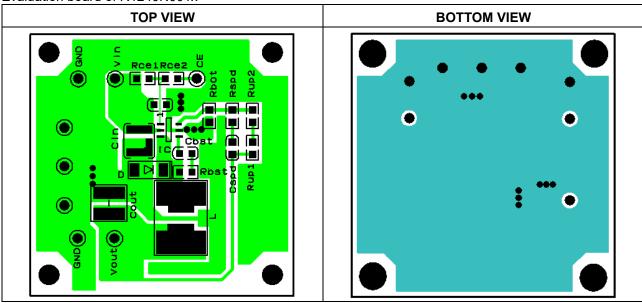
The performance of a power source circuit using this device is highly dependent on a peripheral circuit. A peripheral component or the device mounted on PCB should not exceed its voltage, current or power ratings. When designing a peripheral circuit, please be fully aware of the following points. (Refer to our PCB layout for detailed information).

- External components must be connected as close as possible to the ICs and make wiring as short as possible. Especially, the capacitor connected in between VIN and GND pin must be wiring the shortest. The operating may be unstable due to the change of the electric potential of internal ICs by the switching current when the impedance of the power supply line and GND line is high. Make the power supply and GND lines sufficient. It is also necessary to give careful consideration to design the wiring of the power supply, GND, Lx, VOUT and the inductor because of the large current by the function of switching is flowing into them. Besides, the wiring between the resistance (R1), which set the output voltage, and the wiring of the inductor must separate from the load wiring.
- The ceramic capacitors have low ESR (Equivalent Series Resistance) type are recommended for the ICs. The recommendation of C_{IN} capacitor between VIN and GND is more than 10 μ F, and C_{OUT} capacitor is more than 10 μ F in the case $V_{OUT} \ge 1.8$ V or more than 20 μ F in the case 1.8 V > V_{OUT} . Please check the bias dependence and the temperature variations of the ceramic capacitors.
- Normally, please select the inductor value in the range between 4.7 μH and 10μH in the case of V_{OUT} ≥ 5 V, 4.7 μH in the case of 5 V > V_{OUT} ≥ 1.8 V and 2.2 μH in the case of 1.8 V > V_{OUT}. The internal phase compensation of this IC is designed with the above-mentioned inductor value and C_{OUT} ceramic capacitor value. When the inductor value is small, there is a possibility to trigger the over-current protection circuit by the peak switching current. As the peak switching current might reach to the limited value when the load current increase a lot.
- Please note; the over-current protection circuit is influenced by the temperature shift caused by operation of the IC.
- For the diode, please use the schottky diode, which parasitic capacitance is small as possible. there is a possibility that the operating of IC becomes unstable by the large switching current, if a diode with a large capacitance between terminals is used. The appropriate total capacitance value of the diode is 100pF or less at 10V(Reverse voltage). Also If a schottky diode with large Vf is used and output is shortened to GND, Lx pin voltage may be beyond the negative voltage rating, and IC may be damaged. Specifically, if Vf value is larger than 0.7V at If = 4A to 5A, the Vf value is too large and risky for using with this IC.
- Output voltage is set by $V_{OUT} = V_{FB} \times (R1 + R2) / R2$. If the values of R1 and R2 are large, the impedance of VFB pin increases, and pickup the noise may result. The recommendation value range of R2 is approximately between 1.2 k Ω to 16 k Ω . If the operation may be unstable, reduce the impedance of VFB pin.

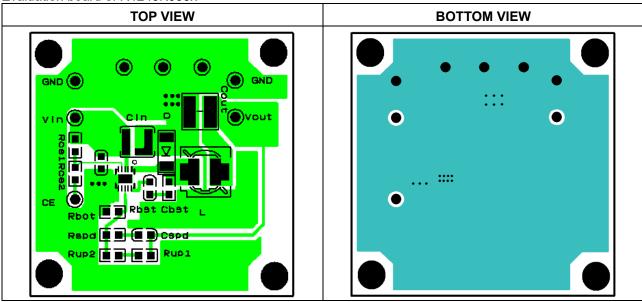
Recommended Value for Each Output Voltage

Vout (V)	0.8	1	1.2	1.3	1.5	1.8~6	6~15
R1 (kΩ)	0	$= (V_{OUT} / 0.8 - 1) \times 1.2$					
R2 (kΩ)	open	1.20	1.20	1.20	1.20	1.20	1.20
C _{SPD} (pF)	open	3300	2200	1500	470	470	330
Соυт (μF)	22 × 2	10 × 2	10 × 2	10 × 2	10 × 2	10	10
L (μH)	2.2	2.2	2.2	2.2	2.2	4.7	10.0 (4.7)

Recommended External Components

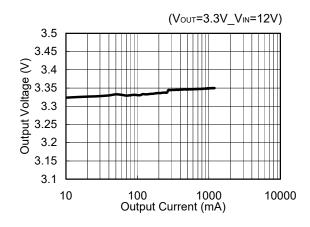

Symbol	Condition	Value	Parts Name	MFR		
Cin		10 μF/ 50 V	UMK325BJ106MM-P	TAIYO YUDEN		
		10 μF/ 50 V	CGA6P3X7S1H106K	TDK		
		10 μF/ 50 V	KTS500B106M55N0T00	Nippon Chemi-Con		
Соит	V _{OUT} > 10 V	10 μF/ 50 V	UMK325BJ106MM-P	TAIYO YUDEN		
		10 μF/ 50 V	CGA6P3X7S1H106K	TDK		
		10 μF/ 50 V	KTS500B106M55N0T00	Nippon Chemi-Con		
	10 V > V _{OUT} > 1.8 V	10 μF/ 25 V	GRM31CR71E106K	Murata		
	V _{OUT} < 1.8 V	22 μF/ 10 V	GRM31CR71A226M	Murata		
			NOTE: The value of Cout			
			depends on the setting output			
C _{BST}		0.1[/50.1/	voltage. GRM21BB11H104KA01L	Murata		
		0.1 μF/ 50 V	GRIVIZ IBB I ITI 104KAU IL	iviurala		
R _{BST}		51.0 Ω				
L			SLF6045T-100M1R6-3PF	TDK		
		4.7 μΗ	SLF7045T-4R7M2R0-PF	TDK		
		2.2 μΗ	VLCF4020T-2R2N1R7	TDK		
D	30 V/ 2.0 A	0.32 V	CMS06	TOSHIBA		
	40 V/ 2.0 A	0.49 V	CMS11	TOSHIBA		
			NOTE: Diode depends on the			
			input voltage and output			
	Current.					
RCE	The diode is connected between the CE pin and the VIN pin as the ESD protection element.					
	If there is the possibility that the voltage of the CE pin becomes higher than the voltage of the VIN pin, it is recommended to connect the 5 k Ω resistance with the CE pin for preventing a					
	large current flows into the VIN pin from the CE pin.					

THE NOTE OF LAYOUT PATTERN

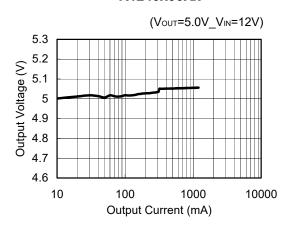

- 1. The wire of Power line (V_{IN} , GND) should be broad to minimize the parasitic inductance. The Bypass capacitor must be connected as close as possible in between V_{IN} GND
- 2. The wire between Lx pin and the inductor as short as possible to minimize the parasitic inductance (This Evaluation Board is designed for the product evaluation board. Therefore large inductors or diodes can be set and the large space of Lx area has been secured.)
- 3. The ripple current flows through the output capacitor. If the GND side of the output capacitor is connected very close to GND pin of the IC, the noise might have a bad impact on the IC. Therefore, the GND side of the output capacitor is better to connect to the outside of the GND of the C_{IN}, or connect to the GND plain layer.
- 4. R1, R2, Cspd and Rspd should be mounted on the position as close as possible to the FB pin, and away from the inductor and BST pin.
- 5. The feed-back must be made as close as possible from the Output capacitor (Cout)

PCB LAYOUT

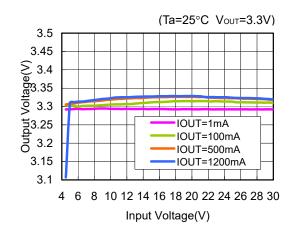
Evaluation board of R1240N001x



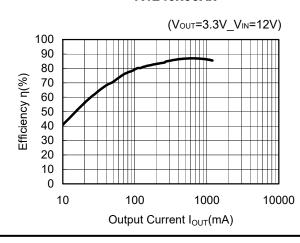
Evaluation board of R1240K003x

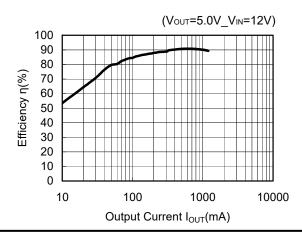


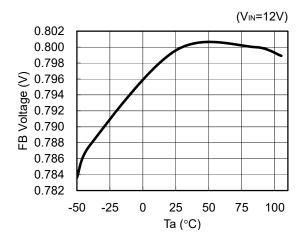
TYPICAL CHARACTERISTICS

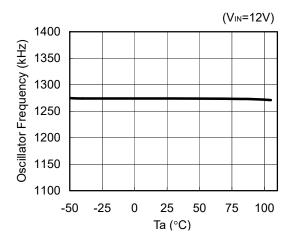

1) Output Voltage VS. Output Current R1240x00Xx

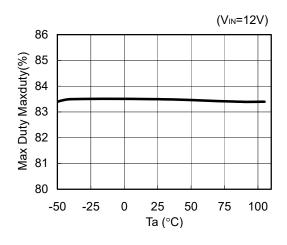
R1240x00Xx

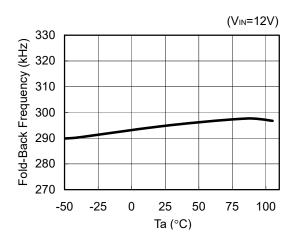

2) Output Voltage VS. Input Voltage R1240x00Xx


R1240x00Xx


3) Efficiency VS. output Current R1240x00Xx


R1240x00Xx


4) FB Voltage VS. Temperature R1240x00Xx

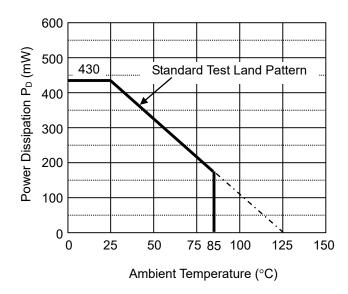

5) Oscillator Frequency VS. Temperature R1240x00Xx

6) Maxduty VS. Temperature R1240x00Xx

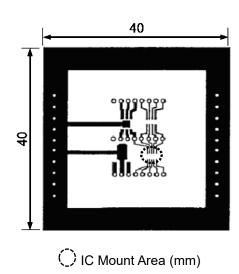
7) Fold-Back Frequency VS. Temperature R1240x00XB

PD-SOT-23-6W-(85125)-JE-A

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following conditions are used in this measurement.

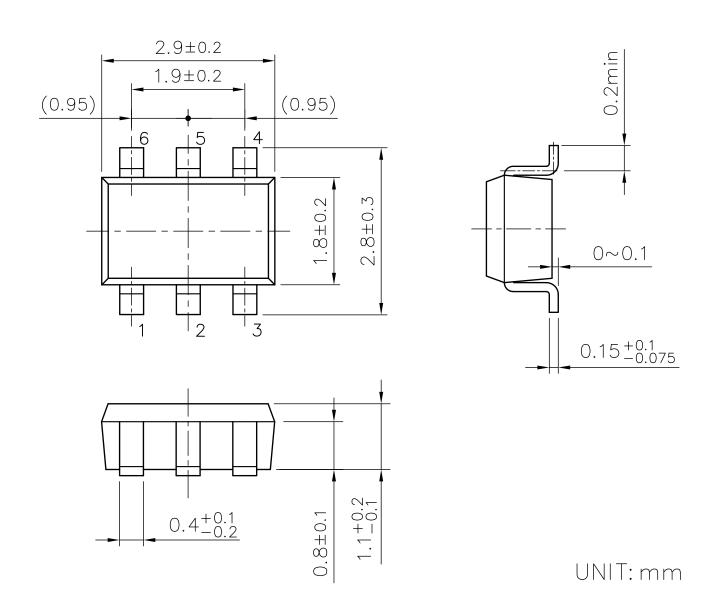

Measurement Conditions

	Standard Test Land Pattern
Environment	Mounting on Board (Wind Velocity = 0 m/s)
Board Material	Glass Cloth Epoxy Plastic (Double-Sided Board)
Board Dimensions	40 mm × 40 mm × 1.6 mm
Cannar Datia	Top Side: Approx. 50%
Copper Ratio	Bottom Side: Approx. 50%
Through-holes	φ 0.5 mm × 44 pcs


Measurement Result

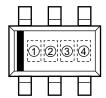
 $(Ta = 25^{\circ}C, Tjmax = 125^{\circ}C)$

	Standard Test Land Pattern
Power Dissipation	430 mW
Thermal Resistance	θja = (125 - 25°C) / 0.43 W = 233°C/W



Power Dissipation vs. Ambient Temperature

Measurement Board Pattern


DM-SOT-23-6W-JE-A

SOT-23-6W Package Dimensions (Unit: mm)

R1240N SERIES MARK SPECIFICATION

• SOT-23-6W

①, ② : Product Code (Refer to Part Number vs. Product Code)

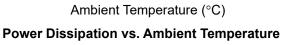
③, ④: Lot Number

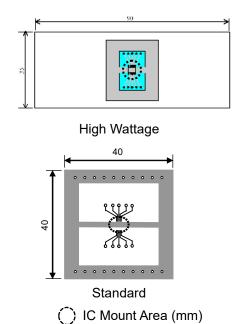
• Part Number vs. Product Code

5 (1)	Product Code		
Part Number	1	2	
R1240N001A	8	Α	
R1240N001B	8	В	

PD-DFN(PL)2527-10-(85125)-4040-JE-A

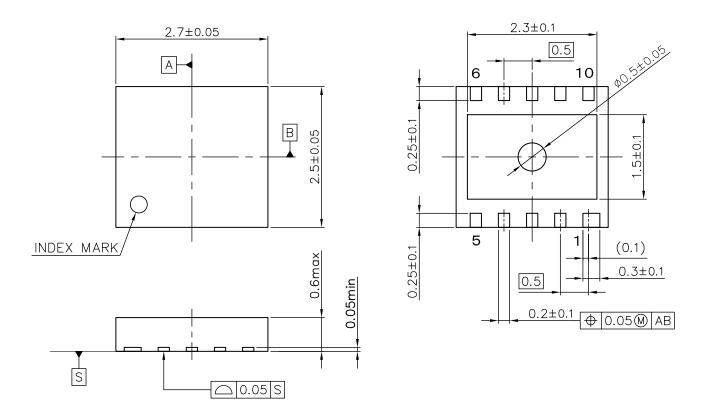

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following conditions are used in this measurement.


Measurement Conditions

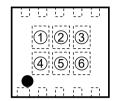

	High Wattage Land Pattern	Standard Land Pattern	
Environment	Mounting on Board (Wind Velocity = 0 m/s)	Mounting on Board (Wind Velocity = 0 m/s)	
Board Material	Glass Cloth Epoxy Plastic (Four-Layer Board)	Glass Cloth Epoxy Plastic (Double-Sided Board)	
Board Dimensions	35 mm × 90 mm × 0.8 mm	40 mm × 40 mm × 1.6 mm	
Copper Ratio	Outer Layers (First and Fourth Layers): Approx.15% Inner Layers (Second and Third Layers): Approx.15%	Top Side: Approx. 50% Bottom Side: Approx. 50%	
Copper Foil Thickness	Outer Layers (First and Fourth Layers): Approx. 35 µm Inner Layers (Second and Third Layers): Approx. 18 µm	Top Side: Approx. 35 μm Bottom Side: Approx. 35 μm	
Through-holes	φ 0.3 mm × 9 holes (connecting outer and inner layers to a package tab) φ 0.5 mm × 10 holes (connecting pins)	φ 0.54 mm × 30 holes	

Measurement Result (Ta = 25°C, Tjmax = 125°C)

	High Wattage Land Pattern Standard Land Pattern	
Power Dissipation	1400 mW (Tjmax = 125°C)	910 mW (Tjmax = 125°C)
Thermal Resistance	θja = (125 – 25°C) / 1.4 W = 71°C/W	θjc = (125 – 25°C) / 0.91 W = 110°C/W



Measurement Board Pattern


DM-DFN(PL)2527-10-JE-C

DFN(PL)2527-10 Package Dimensions (mm)

R1240K SERIES MARK SPECIFICATION

• DFN(PL)2527-10

① to ④ : Product Code (Refer to Part Number vs. Product Code)

⑤ , ⑥ : Lot Number

• Part Number vs. Product Code

Down Normalian	Product Code			
Part Number	1	2	3	4
R1240K003A	Α	Q	0	3
R1240K003B	Α	Q	0	4

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to our sales representatives for the latest information thereon
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without the prior written consent of us.
- 3. This product and any technical information relating thereto are subject to complementary export controls (so-called KNOW controls) under the Foreign Exchange and Foreign Trade Law, and related politics ministerial ordinance of the law. (Note that the complementary export controls are inapplicable to any application-specific products, except rockets and pilotless aircraft, that are insusceptible to design or program changes.) Accordingly, when exporting or carrying abroad this product, follow the Foreign Exchange and Foreign Trade Control Law and its related regulations with respect to the complementary export controls.
- 4. The technical information described in this document shows typical characteristics and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under our or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death should first contact us.
 - Aerospace Equipment
 - Equipment Used in the Deep Sea
 - · Power Generator Control Equipment (nuclear, steam, hydraulic, etc.)
 - · Life Maintenance Medical Equipment
 - · Fire Alarms / Intruder Detectors
 - Vehicle Control Equipment (automotive, airplane, railroad, ship, etc.)
 - Various Safety Devices
 - Traffic control system
 - Combustion equipment

In case your company desires to use this product for any applications other than general electronic equipment mentioned above, make sure to contact our company in advance. Note that the important requirements mentioned in this section are not applicable to cases where operation requirements such as application conditions are confirmed by our company in writing after consultation with your company.

- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. The products have been designed and tested to function within controlled environmental conditions. Do not use products under conditions that deviate from methods or applications specified in this datasheet. Failure to employ the products in the proper applications can lead to deterioration, destruction or failure of the products. We shall not be responsible for any bodily injury, fires or accident, property damage or any consequential damages resulting from misuse or misapplication of the products.
- 8. Quality Warranty
 - 8-1. Quality Warranty Period
 - In the case of a product purchased through an authorized distributor or directly from us, the warranty period for this product shall be one (1) year after delivery to your company. For defective products that occurred during this period, we will take the quality warranty measures described in section 8-2. However, if there is an agreement on the warranty period in the basic transaction agreement, quality assurance agreement, delivery specifications, etc., it shall be followed.
 - 8-2. Quality Warranty Remedies
 - When it has been proved defective due to manufacturing factors as a result of defect analysis by us, we will either deliver a substitute for the defective product or refund the purchase price of the defective product.
 - Note that such delivery or refund is sole and exclusive remedies to your company for the defective product.
 - 8-3. Remedies after Quality Warranty Period
 - With respect to any defect of this product found after the quality warranty period, the defect will be analyzed by us. On the basis of the defect analysis results, the scope and amounts of damage shall be determined by mutual agreement of both parties. Then we will deal with upper limit in Section 8-2. This provision is not intended to limit any legal rights of your company.
- 9. Anti-radiation design is not implemented in the products described in this document.
- 10. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
- 11. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
- 12. Warning for handling Gallium and Arsenic (GaAs) products (Applying to GaAs MMIC, Photo Reflector). These products use Gallium (Ga) and Arsenic (As) which are specified as poisonous chemicals by law. For the prevention of a hazard, do not burn, destroy, or process chemically to make them as gas or power. When the product is disposed of, please follow the related regulation and do not mix this with general industrial waste or household waste.
- 13. Please contact our sales representatives should you have any questions or comments concerning the products or the technical information.

Official website

https://www.nisshinbo-microdevices.co.jp/en/

Purchase information

https://www.nisshinbo-microdevices.co.jp/en/buy/