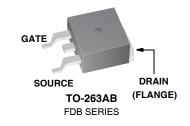
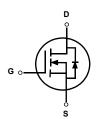


# FDB8876

# N-Channel PowerTrench® MOSFET

**30V**, **71A**, **8.5m**Ω


# **General Descriptions**


This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low  $r_{DS(ON)}$  and fast switching speed.



#### **Features**

- $r_{DS(ON)} = 8.5 \text{m}\Omega$ ,  $V_{GS} = 10 \text{V}$ ,  $I_D = 40 \text{A}$
- $r_{DS(ON)}$  = 10.3mΩ,  $V_{GS}$  = 4.5V,  $I_D$  = 40A
- High performance trench technology for extremely low r<sub>DS(ON)</sub>
- Low gate charge
- High power and current handling capability
- RoHS Compliant





# MOSFET Maximum Ratings T<sub>A</sub> = 25°C unless otherwise noted

| Symbol                            | Parameter                                                 | Ratings    | Units |
|-----------------------------------|-----------------------------------------------------------|------------|-------|
| $V_{DSS}$                         | Drain to Source Voltage                                   | 30         | V     |
| $V_{GS}$                          | Gate to Source Voltage                                    | ±20        | V     |
|                                   | Drain Current                                             |            |       |
|                                   | Continuous (T <sub>C</sub> = 25°C, V <sub>GS</sub> = 10V) | 71         | Α     |
| ID                                | Continuous ( $T_C = 25^{\circ}C$ , $V_{GS} = 4.5V$ )      | 65         | Α     |
|                                   | Pulsed                                                    | Figure 4   | Α     |
| E <sub>AS</sub>                   | Single Pulse Avalanche Energy (Note 1)                    | 180        | mJ    |
| $P_{D}$                           | Power dissipation                                         | 70         | W     |
| T <sub>J</sub> , T <sub>STG</sub> | Operating and Storage Temperature                         | -55 to 175 | °C    |

## **Thermal Characteristics**

| $R_{\theta JC}$ | Thermal Resistance Junction to Case TO-263                                     | 2.14 | °C/W |
|-----------------|--------------------------------------------------------------------------------|------|------|
| $R_{\theta JA}$ | Thermal Resistance Junction to Ambient TO-263,1in <sup>2</sup> copper pad area | 43   | °C/W |

# Package Marking and Ordering Information

| Device Marking | Device  | Package  | Reel Size | Tape Width | Quantity  |
|----------------|---------|----------|-----------|------------|-----------|
| FDB8876        | FDB8876 | TO-263AB | 330mm     | 24mm       | 800 units |

# Electrical Characteristics T<sub>A</sub> = 25°C unless otherwise noted

| Symbol              | Parameter                         | Test Conditions                 |         | Min | Тур | Max  | Units |
|---------------------|-----------------------------------|---------------------------------|---------|-----|-----|------|-------|
| Off Characteristics |                                   |                                 |         |     |     |      |       |
| B <sub>VDSS</sub>   | Drain to Source Breakdown Voltage | $I_D = 250 \mu A, V_{GS} = 0 V$ |         | 30  | -   | -    | V     |
| 1                   | Zero Gate Voltage Drain Current   | V <sub>DS</sub> = 24V           |         |     |     | 1    | μΑ    |
| DSS                 | Zero Gate voltage Drain Current   | $V_{GS} = 0V$ $T_A$             | = 150°C | -   | -   | 250  |       |
| I <sub>GSS</sub>    | Gate to Source Leakage Current    | V <sub>GS</sub> = ±20V          |         | -   | -   | ±100 | nA    |

## **On Characteristics**

| V <sub>GS(TH)</sub> | Gate to Source Threshold Voltage | $V_{GS} = V_{DS}, I_{D} = 250 \mu A$                                  | 1.2 | -   | 2.5  | V     |
|---------------------|----------------------------------|-----------------------------------------------------------------------|-----|-----|------|-------|
|                     | Drain to Source On Resistance    | I <sub>D</sub> = 40A, V <sub>GS</sub> = 10V                           | -   | 5.7 | 8.5  |       |
| r                   |                                  | I <sub>D</sub> = 40A, V <sub>GS</sub> = 4.5V                          | -   | 7.3 | 10.3 | mΩ    |
| r <sub>DS(ON)</sub> |                                  | I <sub>D</sub> = 40, V <sub>GS</sub> = 10V,<br>T <sub>A</sub> = 175°C | -   | 11  | 14   | 11122 |

## **Dynamic Characteristics**

| C <sub>ISS</sub> | Input Capacitance                | V <sub>DS</sub> = 15V, V <sub>GS</sub> = 0V,<br>f = 1MHz |                       | - | 1700 | -   | pF |
|------------------|----------------------------------|----------------------------------------------------------|-----------------------|---|------|-----|----|
| C <sub>OSS</sub> | Output Capacitance               |                                                          |                       | - | 340  | -   | pF |
| C <sub>RSS</sub> | Reverse Transfer Capacitance     | 1 1101112                                                |                       | - | 220  | -   | pF |
| $R_G$            | Gate Resistance                  | V <sub>GS</sub> =0.5V, f = 1MHz                          |                       | - | 2.1  | -   | Ω  |
| $Q_{g(TOT)}$     | Total Gate Charge at 10V         | $V_{GS}$ = 0V to 10V                                     | V <sub>DD</sub> = 15V | - | 32   | 45  | nC |
| $Q_{g(5)}$       | Total Gate Charge at 5V          | $V_{GS}$ = 0V to 5V                                      | I <sub>D</sub> = 40A  | - | 17   | 24  | nC |
| $Q_{g(TH)}$      | Threshold Gate Charge            | $V_{GS}$ = 0V to 1V                                      | $I_g = 1.0 \text{mA}$ | - | 1.6  | 2.4 | nC |
| $Q_{gs}$         | Gate to Sourse Gate Charge       |                                                          |                       | - | 4.7  | -   | nC |
| Q <sub>gs2</sub> | Gate Charge Threshold to Plateau |                                                          |                       | - | 3.1  | -   | nC |
| Q <sub>gd</sub>  | Gate to Drain "Miller" Charge    |                                                          |                       | - | 6.8  | -   | nC |

# **Switching Characteristics** $(V_{GS} = 10V)$

| $t_{ON}$            | Turn-On Time        |                                             | - | -   | 183 | ns |
|---------------------|---------------------|---------------------------------------------|---|-----|-----|----|
| t <sub>d(ON)</sub>  | Turn-On Delay Time  |                                             | - | 9   | -   | ns |
| t <sub>r</sub>      | Rise Time           | V <sub>DD</sub> = 15V, I <sub>D</sub> = 40A | - | 113 | -   | ns |
| t <sub>d(OFF)</sub> | Turn-Off Delay Time | $V_{GS}$ = 10V, $R_{GS}$ = 10 $\Omega$      | - | 50  | -   | ns |
| t <sub>f</sub>      | Fall Time           |                                             | - | 41  | -   | ns |
| t <sub>OFF</sub>    | Turn-Off Time       |                                             | - | -   | 137 | ns |

#### **Drain-Source Diode Characteristic**

| V <sub>SD</sub> Source to Drain Diode Voltage | Course to Duein Diede Veltere | I <sub>SD</sub> = 40A                      | - | -   | 1.25 | V  |
|-----------------------------------------------|-------------------------------|--------------------------------------------|---|-----|------|----|
|                                               | I <sub>SD</sub> = 3.2A        | -                                          | - | 1.0 | V    |    |
| t <sub>rr</sub>                               | Reverse Recovery Time         | $I_{SD} = 40A$ , $dI_{SD}/dt = 100A/\mu s$ | - | -   | 22   | ns |
| $Q_{RR}$                                      | Reverse Recovered Charge      | $I_{SD} = 40A, dI_{SD}/dt = 100A/\mu s$    | - | -   | 8    | nC |

#### Notes:

1: Starting  $T_J$ =25 $^{O}$ C,L=1mH,I $_{AS}$ =19A,V $_{DD}$ =27V,V $_{GS}$ =10V



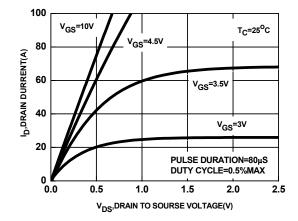



Figure 1. On Region Characteristics

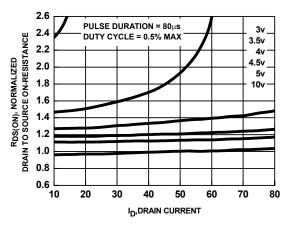



Figure 2. On-Resistance Variation with Drain Current and Gate Voltage

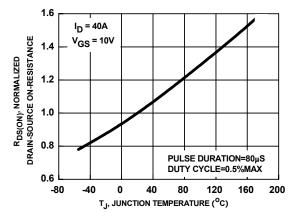



Figure 3. On Resistance Variation with Temperature

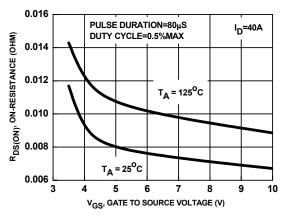



Figure 4. On-Resistance Variation with Gate-to-Source Votlage

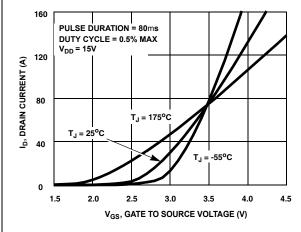



Figure 5. Transfer Characteristics




Figure 6. Body Diode Forward Voltage Variation With Source Current and Temperature



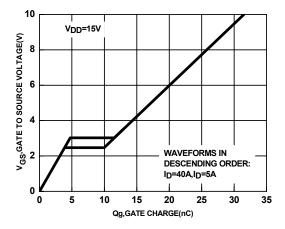



Figure 7. Gate Charge characteristics

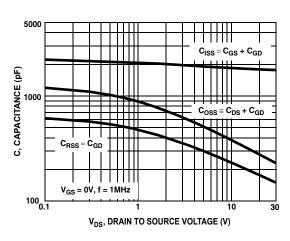



Figure 8. Saturation characteristics

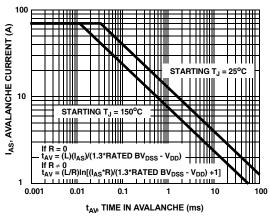



Figure 9. Unclamped Inductive Switching Capability

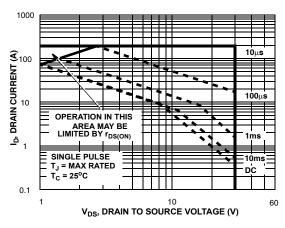



Figure 10. Safe Operating Area

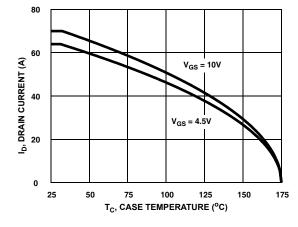



Figure 11. Maximum Continuous Drain Current vs Case Temperature

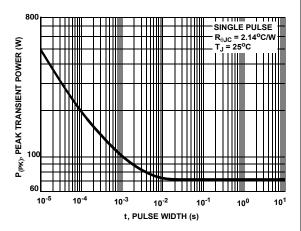



Figure 12. Normalized Drain to Source Breake Down Voltage vs Junction Temperature

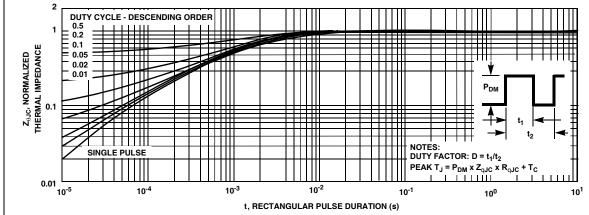



Figure 13. Normolized Maximum Transient Thermal Impedance

#### **TRADEMARKS**

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

 $ACEx^{TM}$ PowerSaver™ **FAST®** ISOPLANAR™ SuperSOT™-6 ActiveArray™  $\mathsf{PowerTrench}^{\circledR}$ SuperSOT™-8  $FASTr^{\intercal_{M}}$ LittleFET™ Bottomless™ FPS™ QFET<sup>®</sup> SyncFET™ MICROCOUPLER™ Build it Now™  $MicroFET^{TM}$ QSTM TinyLogic<sup>®</sup> FRFET™ TINYOPTO™ CoolFET™ MicroPak™ QT Optoelectronics™ GlobalOptoisolator™ TruTranslation™  $CROSSVOLT^{TM}$ MICROWIRE™ Quiet Series™  $\mathsf{GTO}^\mathsf{TM}$ UHC™ RapidConfigure™  $\mathsf{DOME}^\mathsf{TM}$ MSX™ HiSeC™ UltraFET<sup>®</sup>  $\mathsf{EcoSPARK}^{\mathsf{TM}}$ RapidConnect™  $MSXPro^{TM}$  $I^2C^{TM}$ E<sup>2</sup>CMOS<sup>TM</sup>  $OCX^{TM}$ uSerDes™ UniFET™ i-Lo™ ScalarPump™  $VCX^{TM}$ EnSigna™  $OCXPro^{TM}$ ImpliedDisconnect™  $\mathsf{OPTOLOGIC}^{\circledR}$ SILENT SWITCHER® FACT™ Wire™ IntelliMAX™ OPTOPLANAR™ SMART START™ FACT Quiet Series™ PACMAN™ SPM™ Across the board. Around the world.™  $POP^{TM}$ Stealth™ The Power Franchise® Power247™ SuperFET™ Programmable Active Droop™ SuperSOT™-3 PowerEdge™

#### DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS. NOR THE RIGHTS OF OTHERS.

#### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

#### PRODUCT STATUS DEFINITIONS

#### **Definition of Terms**

| Datasheet Identification | Product Status            | Definition                                                                                                                                                                                                            |
|--------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Advance Information      | Formative or<br>In Design | This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.                                                                                    |
| Preliminary              | First Production          | This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. |
| No Identification Needed | Full Production           | This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.                                                       |
| Obsolete                 | Not In Production         | This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.                                                   |