

Features

- High Frequency Operation
- High Surge Forward Current Capability
- Halogen Free. "Green" Device (Note 1)
- Epoxy Meets UL 94 V-0 Flammability Rating
- Moisture Sensitivity Level 1
- Lead Free Finish/RoHS Compliant(Note 2) ("P" Suffix Designates RoHS Compliant. See Ordering Information)
- Planar Structure Die and Soft Recovery Characteristics

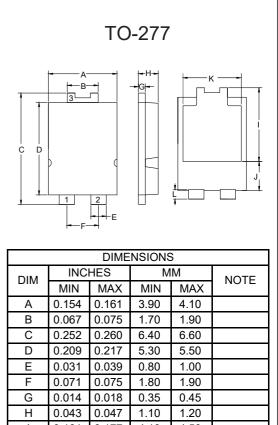
Maximum Ratings

- Operating Junction Temperature Range: -65°C to +175°C
- Storage Temperature Range: -65°C to +175°C
- Maximum thermal Resistance:3.0°C/W Junction to Lead
- Maximum thermal Resistance:85°C/W Junction to Ambient

MCC Part Number	Device Marking	Maximum Recurrent Peak Reverse Voltage	Maximum RMS Voltage	Maximum DC Blocking Voltage
TES6DH	TES6DH	200V	140V	200V

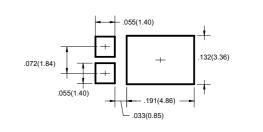
Electrical Characteristics @ 25°C Unless Otherwise Specified

Average Forward Current	I _{F(AV)}	6A	T _L = 155°C
Peak Forward Surge Current	I _{FSM}	150A	8.3ms, Half Sine
Forward Voltage Drop Per Element	V _F	0.94V(Max.) 0.87V(Typ.) 0.80V(Max.) 0.70V(Typ.)	I _F =6A ;T _J = 25°C I _F =6A ;T _J = 25°C I _F =6A ;T _J = 125°C I _F =6A ;T _J = 125°C
DC Reverse Current At Rated DC Blocking Voltage	I _R	2µА(Мах.) 2.5µА(Тур.) 15µА(Мах.)	T _J = 25°C T _J = 125°C T _J = 125°C
Typical Junction Capacitance	CJ	140pF	Measured at 1.0MHz, V _R =4.0V


Dynamic Recovery Characteristics @ 25°C Unless Otherwise Specified

Reverse Recovery Time	t _{rr}	18ns(Typ.) 25ns(Max.)	I _F =0.5A; I _R =1.0A; I _{RR} =0.25A		
		29ns(Typ.) 34ns(Typ.)	Tյ=25⁰C Tյ=125⁰C		
Peak recovery current	I _{RRM}	3.3A(Typ.) 5.9A(Typ.)	TJ=25⁰C TJ=125⁰C	I _F = 6 A di _F /dt = 200 A/µs V _R = 200 V	
Reverse recovery charge	Q _{rr}	49nC(Typ.) 105nC(Typ.)	T _J =25⁰C T _J =125⁰C		

Note:


Halogen free "Green"products are defined as those which contain <900ppm bromine,
<900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.
High Temperature Solder Exemptions Applied, See EU Directive Annex 7a.

6 Amp FRED Rectifiers 200 Volts

I	0.161	0.177	4.10	4.50	
J	0.059	0.075	1.50	1.90	
К	0.114	0.134	2.90	3.40	
L	0.022	0.030	0.55	0.75	

Suggested Solder Pad Layout

Curve Characteristics

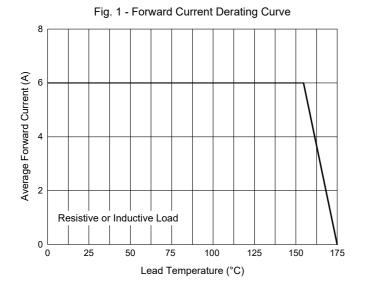


Fig. 3 - Typical Instantaneous Forward Characteristics

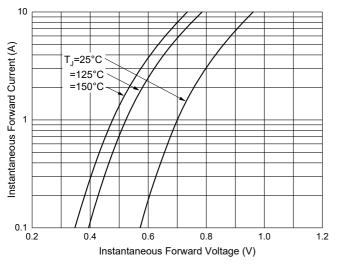
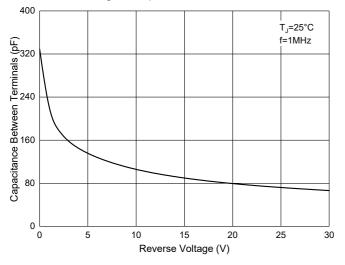



Fig. 5 - Capacitance Characteristics

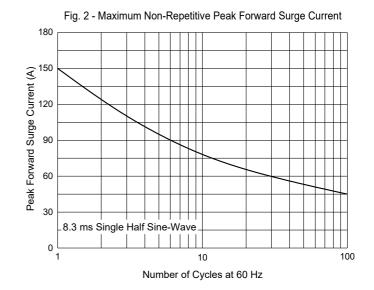


Fig. 4 - Typical Reverse Leakage Characteristics

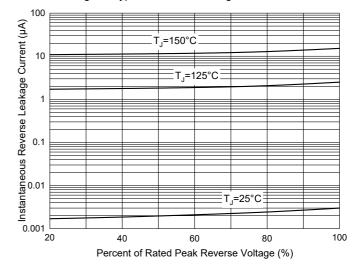
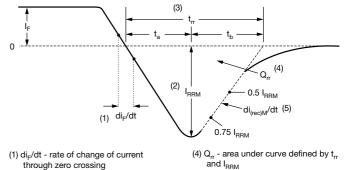



Fig. 6 - Reverse Recovery Waveform and Definitions

through zero crossing

(2) I_{RRM} - peak reverse recovery current

(3) t_{rr} - reverse recovery time measured from zero crossing point of negative going I_F to point where a line passing through 0.75 I_{RRM} and 0.50 I_{RRM} extrapolated to zero current. (5) $di_{(rec)M}/dt$ - peak rate of change of current during t_b portion of t_{rr}

 $\mathsf{Q}_{\mathsf{rr}} = \frac{\mathsf{t}_{\mathsf{rr}} \times \mathsf{I}_{\mathsf{RRM}}}{\mathsf{I}_{\mathsf{RRM}}}$

2

Ordering Information

Device	Packing	
Part Number-TP	Tape&Reel: 4Kpcs/Reel	

IMPORTANT NOTICE

Micro Commercial Components Corp. reserves the right to make changes without further notice to any product herein to make corrections, modifications, enhancements, improvements, or other changes. *Micro Commercial Components Corp*. does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold *Micro Commercial Components Corp*. and all the companies whose products are represented on our website, harmless against all damages. *Micro Commercial Components Corp*. products are sold subject to the general terms and conditions of commercial sale, as published at

https://www.mccsemi.com/Home/TermsAndConditions.

LIFE SUPPORT

MCC's products are not authorized for use as critical components in life support devices or systems without the express written approval of Micro Commercial Components Corporation.

CUSTOMER AWARENESS

Counterfeiting of semiconductor parts is a growing problem in the industry. Micro Commercial Components (MCC) is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. MCC strongly encourages customers to purchase MCC parts either directly from MCC or from Authorized MCC Distributors who are listed by country on our web page cited below. Products customers buy either from MCC directly or from Authorized MCC Distributors are genuine parts, have full traceability, meet MCC's quality standards for handling and storage. **MCC will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources**. MCC is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.