
INTEGRATED CIRCUITS

Product specification IC24 Data Handbook 1998 Jul 29

74ALVCH162245

FEATURES

- Wide supply voltage range of 1.2V to 3.6V
- Complies with JEDEC standard no. 8-1A
- CMOS low power consumption
- MULTIBYTETM flow-through standard pin-out architecture
- Low inductance multiple V_{CC} and ground pins for minimum noise and ground bounce
- Direct interface with TTL levels
- Bus hold on all data inputs
- Integrated 30Ω termination resistor

DESCRIPTION

The 74ALVCH162245 is a 16-bit transceiver featuring non-inverting 3-State bus compatible outputs in both send and receive directions.

The 74ALVCH162245 features two output enable (nOE) inputs for easy cascading and two send/receive (nDIR) inputs for direction control. nOE controls the outputs so that the buses are effectively isolated. This device can be used as two 8-bit transceivers or one 16-bit transceiver.

The 74ALVCH162245 is designed with 30Ω series resistors in both HIGH and LOW output states.

The 74ALVCH162245 has active bus hold circuitry which is provided to hold unused or floating data inputs at a valid logic level. This feature eliminates the need for external pull-up or pull-down resistors.

PIN CONFIGURATION

		1
1DIR	1	48 1 0E
1B0	2	47 1A0
1B1	3	46 1A1
GND	4	45 GND
1B2	5	44 1A2
1B3	6	43 1A3
V _{CC1}	7	42 V _{CC2}
184	8	41 1A4
1B5	9	40 1A5
GND	10	39 GND
186	5 11	38 1A6
1B7	12	37 1A7
280	13	36 2A0
2B1	14	35 2A1
GND	15	34 GND
282	16	33 2A2
283	17	32 2A3
V _{CC1}	18	31 V _{CC2}
2B4	19	30 2A4
2B5	20	29 2A5
GND	21	28 GND
286	22	27 2A6
2B7	23	26 2A7
2DIR	24	25 2 0E
	SW00	1 98

QUICK REFERENCE DATA

GND = 0V; $T_{amb} = 25^{\circ}C$; $t_r = t_f \le 2.5$ ns

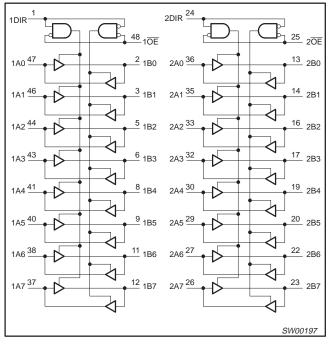
SYMBOL	PARAMETER	CONDITION	NS	TYPICAL	UNIT
t _{PHL} /t _{PLH}	Propagation delay An to Bn; Bn to An	$V_{CC} = 2.5V, C_L = 30pF$ $V_{CC} = 3.3V, C_L = 50pF$		2.4	ns
Cl	Input capacitance			4.0	pF
C _{I/O}	Input/output capacitance			8.0	pF
C	Power dissipation capacitance per buffer	$V_{I} = GND$ to V_{CC}^{1}	Outputs enabled	27	pF
C _{PD}	Power dissipation capacitance per buller	VI = GIND to VCC.	Outputs disabled	4	pF

NOTES:

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} + \Sigma (C_{L} \times V_{CC}^{2} \times f_{o}) \text{ where: } f_{i} = \text{input frequency in MHz; } C_{L} = \text{output load capacitance in pF;}$ $f_{o} = \text{output frequency in MHz; } V_{CC} = \text{supply voltage in V; } \Sigma (C_{L} \times V_{CC}^{2} \times f_{o}) = \text{sum of the outputs.}$

ORDERING INFORMATION


PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	DWG NUMBER
48-Pin Plastic SSOP Type III	–40°C to +85°C	74ALVCH162245 DL	ACH162245 DL	SOT370-1
48-Pin Plastic TSSOP Type II	–40°C to +85°C	74ALVCH162245 DGG	ACH162245 DGG	SOT362-1

74ALVCH162245

PIN DESCRIPTION

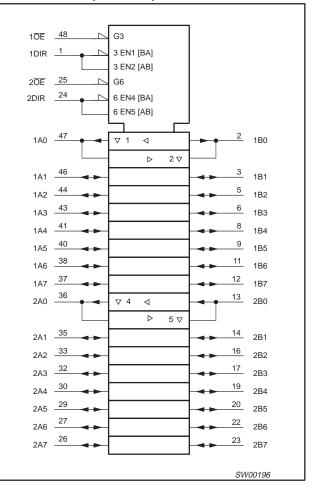
PIN NUMBER	SYMBOL	NAME AND FUNCTION
1	1DIR	Direction control
2, 3, 5, 6, 8, 9, 11, 12	1B0 to 1B7	Data inputs/outputs
4, 10, 15, 21, 28, 34, 39, 45	GND	Ground (0V)
7, 18, 31, 42	V _{CC}	Positive supply voltage
13, 14, 16, 17, 19, 20, 22, 23	2B0 to 2B7	Data inputs/outputs
24	2DIR	Direction control
25	2 0E	Output enable input (active LOW)
36, 35, 33, 32, 30, 29, 27, 26	2A0 to 2A7	Data inputs/outputs
47, 46, 44, 43, 41, 40, 38, 37	1A0 to 1A7	Data inputs/outputs
48	1 0E	Output enable input (active LOW)

LOGIC SYMBOL

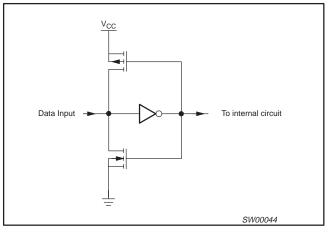
FUNCTION TABLE

INPUTS		INPUTS/OUTPUT		
nOE	nDIR	nAn	nBn	
L	L	A = B	inputs	
L	Н	inputs	B = A	
Н	Х	Z	Z	

H = HIGH voltage level


L = LOW voltage level

X = don't care


1998 Jun 29

Z = high impedance OFF-state

LOGIC SYMBOL (IEEE/IEC)

BUS HOLD CIRCUIT

74ALVCH162245

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	LIM	UNIT	
STWBOL	PARAMETER	CONDITIONS	MIN	MAX	UNIT
N	DC supply voltage 2.5V range (for max. speed performance @ 30 pF output load)		2.3	2.7	V
V _{CC}	DC supply voltage 3.3V range (for max. speed performance @ 50 pF output load)		3.0	3.6	V
VI	DC Input voltage range		0	V _{CC}	V
Vo	DC output voltage range		0	V _{CC}	V
T _{amb}	Operating free-air temperature range		-40	+85	°C
t _r , t _f	Input rise and fall times	$V_{CC} = 2.3 \text{ to } 3.0 \text{V}$ $V_{CC} = 3.0 \text{ to } 3.6 \text{V}$	0 0	20 10	ns/V

ABSOLUTE MAXIMUM RATINGS

In accordance with the Absolute Maximum Rating System (IEC 134) Voltages are referenced to GND (ground = 0V)

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to +4.6	V
I _{IK}	DC input diode current	V ₁ < 0	-50	mA
V _I DC input voltage		For data inputs with bus hold ¹	–0.5 to V _{CC} +0.5	V
vI	DC input voltage	For control pins ¹	-0.5 to +4.6	v
I _{OK}	DC output diode current	$V_{O} > V_{CC} \text{ or } V_{O} < 0$	±50	mA
Vo	DC output voltage	Note 1	–0.5 to V _{CC} +0.5	V
Ι _Ο	DC output source or sink current	$V_{O} = 0$ to V_{CC}	±50	mA
I _{GND} , I _{CC}	DC V _{CC} or GND current		±100	mA
T _{stg}	Storage temperature range		-65 to +150	°C
P _{TOT}	Power dissipation per package -plastic medium-shrink (SSOP) -plastic thin-medium-shrink (TSSOP)	For temperature range: -40 to +125 °C above +55°C derate linearly with 11.3 mW/K above +55°C derate linearly with 8 mW/K	850 600	mW

NOTE:

1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

74ALVCH162245

16-bit bus transceiver with direction pin and 30Ω termination resistor (3-State)

DC ELECTRICAL CHARACTERISTICS

Over recommended operating conditions. Voltage are referenced to GND (ground = 0 V).

				LIMITS		
SYMBOL	PARAMETER	TEST CONDITIONS	Temp =	= -40°C to +8	5°C	
		MIN	MIN TYP ¹		1	
		V _{CC} = 2.3 to 2.7V	1.7	1.2		
VIH	HIGH level Input voltage	V _{CC} = 2.7 to 3.6V	2.0	1.5		V
		V _{CC} = 2.3 to 2.7V		1.2	0.7	.,
VIL	LOW level Input voltage	V _{CC} = 2.7 to 3.6V		1.5	0.8	V
		$V_{CC} = 2.3$ to 3.6V; $V_I = V_{IH}$ or V_{IL} ; $I_O = -100\mu A$	V _{CC} -0.2	V _{CC}		
		V_{CC} = 2.3V; V_I = V_{IH} or V_{IL} ; I_O = -4mA	V _{CC} -0.4	V _{CC} -0.11		1
		V_{CC} = 2.3V; V_{I} = V_{IH} or V_{IL} ; I_{O} = -6mA	V _{CC} -0.6	V _{CC} -0.17		1
V _{OH}	HIGH level output voltage	V_{CC} = 2.7V; V_I = V_{IH} or V_{IL} ; I_O = -4mA	V _{CC} -0.5	V _{CC} -0.09		V
		V_{CC} = 2.7V; V_I = V_{IH} or V_{IL} ; I_O = -8mA	V _{CC} -0.7	V _{CC} -0.19		1
		$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL}; I_O = -6mA$	V _{CC} -0.6	V _{CC} -0.13		1
		$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL}; I_O = -12mA$	V _{CC} -1.0	V _{CC} -0.27		1
	V _{OL} LOW level output voltage	V_{CC} = 2.3 to 3.6V; V_I = V_{IH} or V_{IL} ; I_O = 100 μ A		GND	0.20	
		V_{CC} = 2.3V; V_I = V_{IH} or V_{IL} ; I_O = 4mA		0.07	0.40	1
		V_{CC} = 2.3V; V_{I} = V_{IH} or V_{IL} ; I_{O} = 6mA		0.11	0.55	1
V _{OL}		V_{CC} = 2.7V; V_I = V_{IH} or V_{IL} ; I_O = 4mA		0.06	0.40	V
		V_{CC} = 2.7V; V_I = V_{IH} or V_{IL} ; I_O = 8mA		0.13	0.60	1
	$V_{CC} = 3.0V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = 6mA$			0.09	0.55	1
		V_{CC} = 3.0V; V_I = V_{IH} or V_{IL} ; I_O = 12mA		0.19	0.80	1
I _I	Input leakage current per data pin with bus hold	$V_{CC} = 2.3 \text{ to } 3.6 \text{V};$ $V_{I} = V_{CC} \text{ or GND}$		0.1	5	μΑ
I _{OZ}	3-State output OFF-state current			0.1	10	μΑ
I _{CC}	Quiescent supply current	V_{CC} = 2.3 to 3.6V; V_{I} = V_{CC} or GND; I_{O} = 0		0.2	40	μA
ΔI_{CC}	Additional quiescent supply current given per data I/O pin with bus hold	V_{CC} = 2.3V to 3.6V; V_{I} = V_{CC} – 0.6V; I_{O} = 0		150	750	μΑ
1 2	Pue held I OW exerciping current	$V_{CC} = 2.3V; V_I = 0.7V$	45	-		
I _{BHL} ²	Bus hold LOW sustaining current	$V_{CC} = 3.0V; V_1 = 0.8V$	75	150		μA
12	Bue hold HIGH sustaining surrent	$V_{CC} = 2.3V; V_1 = 1.7V$	-45			
I _{BHH} ²	Bus hold HIGH sustaining current	$V_{CC} = 3.0V; V_1 = 2.0V$	-75	-175		μA
I _{BHLO} 2	Bus hold LOW overdrive current	$V_{CC} = 3.6V$	500			μA
I _{BHHO} ²	Bus hold HIGH overdrive current	V _{CC} = 3.6V	-500			μA

NOTES:

1. All typical values are at $T_{amb} = 25^{\circ}C$. 2. Valid for data inputs of bus hold parts.

74ALVCH162245

AC CHARACTERISTICS FOR V_{CC} = 2.3V TO 2.7V RANGE

 $GND = 0V; t_r = t_f \le 2.0ns; C_L = 30pF$

				LIMITS		
SYMBOL	SYMBOL PARAMETER		V	UNIT		
			MIN	TYP ^{1, 2}	MAX	
t _{PHL} /t _{PLH}	Propagation delay nAn to nBn; nBn to nAn	NO TAG, 3	1.0	2.5	4.9	ns
t _{PZH} /t _{PZL}	3-State output enable time nOE to nAn; nOE to nBn	NO TAG, NO TAG	1.0	2.9	6.8	ns
t _{PHZ} /t _{PLZ}	3-State output disable time nOE to nAn; nOE to nBn	NO TAG, NO TAG	1.0	3.0	6.3	ns

NOTES:

1. All typical values are measured $T_{amb} = 25^{\circ}C$.

2. Typical value is measured at V_{CC} = 2.5V

AC CHARACTERISTICS FOR V_{CC} = 3.0V TO 3.6V RANGE AND V_{CC} = 2.7V

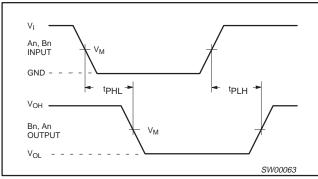
GND = 0V; $t_r = t_f \le 2.5ns$; $C_L = 50pF$

					LIM	TS			
SYMBOL	PARAMETER	WAVEFORM	٧ _C	_C = 3.3 ± 0	.3V	\	/ _{CC} = 2.7\	/	UNIT
			MIN	TYP ^{1, 2}	MAX	MIN	TYP ¹	MAX	
t _{PHL} /t _{PLH}	Propagation delay nAn to nBn; nBn to nAn	NO TAG, 3	1.0	2.4	4.2	1.0	2.7	4.7	ns
t _{PZH} /t _{PZL}	3-State output enable time nOE to nAn; nOE to nBn	NO TAG, NO TAG	1.0	3.0	5.6	1.0	3.9	6.7	ns
t _{PHZ} /t _{PLZ}	3-State output disable time nOE to nAn; nOE to nBn	NO TAG, NO TAG	1.0	2.6	5.5	1.0	2.9	5.7	ns

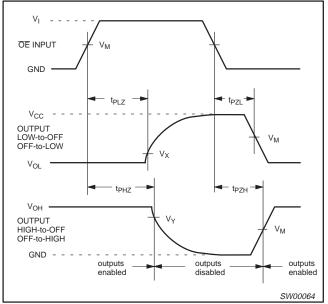
NOTES:

1. All typical values are measured $T_{amb} = 25^{\circ}C$.

2. Typical value is measured at $V_{CC} = 3.3V$

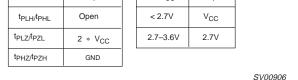

74ALVCH162245

AC WAVEFORMS FOR V_{CC} = 2.3V TO 2.7V AND V_{CC} < 2.3V RANGE


 $V_{M} = 0.5 V_{CC}$ $V_{X} = V_{OL} + 0.15V$ $V_{Y} = V_{OH} - 0.15V$ $V_{OL} \text{ and } V_{OH} \text{ are the typical output voltage drop that occur with the output load.}$ $V_{I} = V_{CC}$

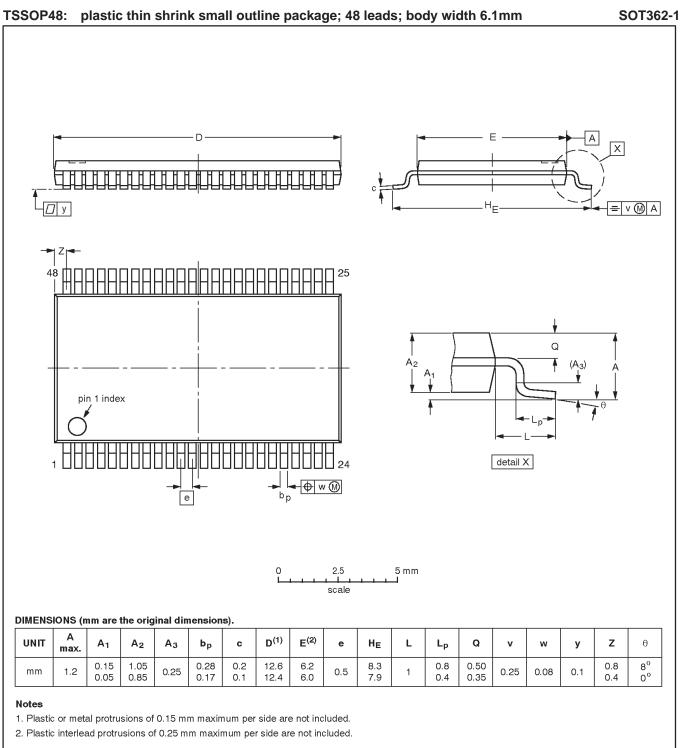
AC WAVEFORMS FOR V_{CC} = 3.0V TO 3.6V AND V_{CC} = 2.7V RANGE

 $\begin{array}{l} V_M = 1.5 \ V \\ V_X = V_{OL} + 0.3 V \\ V_Y = V_{OH} - 0.3 V \\ V_{OL} \ \text{and} \ V_{OH} \ \text{are the typical output voltage drop that occur with the output load.} \\ \end{array}$


Waveform 1. Input (nAn, nBn) to output (nBn, nAn) propagation delay times

Waveform 2. 3-State enable and disable times


TEST CIRCUIT



Waveform 3. Load circuitry for switching times

74ALVCH162245

74ALVCH162245

OUTLINE	REFERENCES			EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	EIAJ		PROJECTION	1550E DATE
SOT362-1		MO-153ED				-93-02-03 95-02-10

74ALVCH162245

NOTES

74ALVCH162245

Data sheet status

Data sheet status	Product status	Definition [1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

print code

Document order number:

Date of release: 08-98 9397-750-04283

Let's make things better.

