FAIRCHILD

SEMICONDUCTOR

MM74C901 • MM74C902 Hex Inverting TTL Buffer • Hex Non-Inverting TTL Buffer

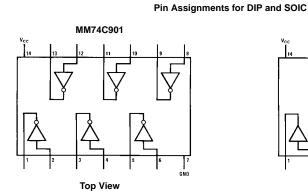
General Description

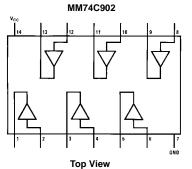
The MM74C901 and MM74C902 hex buffers employ complementary MOS to achieve wide supply operating range, low power consumption, and high noise immunity. These buffers provide direct interface from PMOS into CMOS or TTL and direct interface from CMOS to TTL or CMOS operating at a reduced V_{CC} supply.

Features

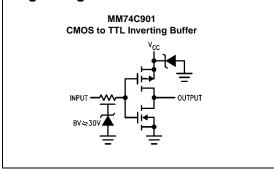
- Wide supply voltage range: 3.0V to 15V
- Guaranteed noise margin: 1.0V
- High noise immunity: 0.45 V_{CC} (typ.)
- TTL compatibility: Fan out of 2 driving standard TTL

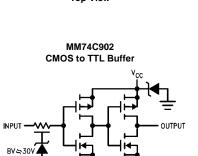
October 1987


Revised January 1999


Ordering Code:

Order Number	Package Number	Package Description
MM74C901M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow
MM74C901N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-011, 0.300" Wide
MM74C902M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow
MM74C902N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-011, 0.300" Wide


Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.


Connection Diagrams

Logic Diagrams

© 1999 Fairchild Semiconductor Corporation DS005909.prf

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

Voltage at Any Pin	–0.3V to $V_{\mbox{\scriptsize CC}}$ + 0.3V
Voltage at Any Input Pin	
MM74C901	-0.3V to +15V
MM74C902	-0.3V to +15V
Storage Temperature Range (T _S)	$-65^{\circ}C$ to $+150^{\circ}C$
Power Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW
Operating Temperature Range (T _A)	
MM74C901, MM74C902,	$-40^{\circ}C$ to $+85^{\circ}C$

Operating V _{CC} Range	3.0V to 15V
Absolute Maximum V _{CC}	18V
Lead Temperature (T _L)	
(Soldering, 10 seconds)	260°C

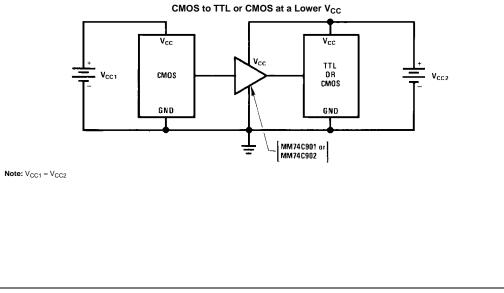
Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

DC Electrical Characteristics

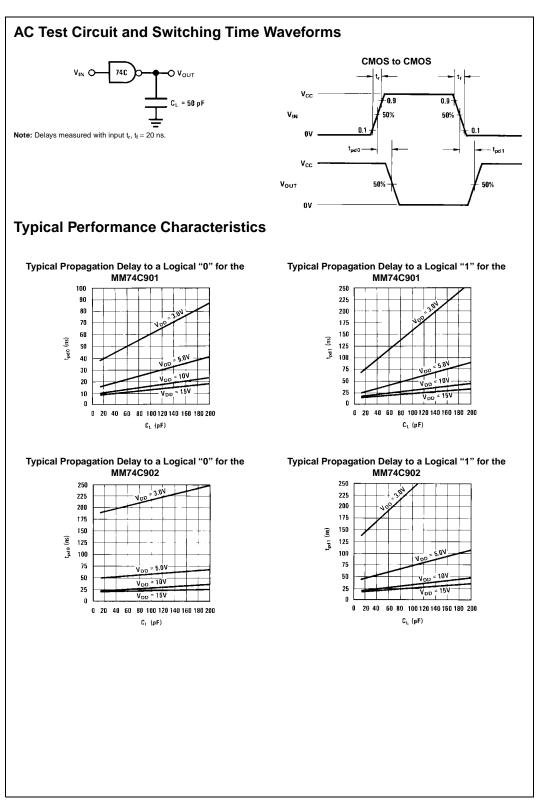
Symbol	Parameter	Conditions	Min	Тур	Max	Units
MOS TO	CMOS					1
/ IN(1)	Logical "1" Input Voltage	V _{CC} = 5.0V	3.5			V
()		$V_{CC} = 10V$	8.0			V
/ IN(0)	Logical "0" Input Voltage	V _{CC} = 5.0V			1.5	V
		$V_{CC} = 10V$			2.0	V
OUT(1)	Logical "1" Output Voltage	$V_{CC} = 5.0V, I_{O} = -10 \mu A$	4.5			V
		$V_{CC} = 10V, I_{O} = -10 \ \mu A$	9.0			V
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 5.0V$			0.5	V
(-)		$V_{CC} = 10V$			1.0	V
IN(1)	Logical "1" Input Current	V _{CC} = 15V, V _{IN} = 15V		0.005	1.0	μA
IN(0)	Logical "0" Input Current	V _{CC} = 15V, V _{IN} = 0V	-1.0	-0.005		μA
cc	Supply Current	V _{CC} = 15V		0.05	15	μA
TL TO CN	ios	1 **				1
/ IN(1)	Logical "1" Input Voltage	V _{CC} = 4.75V	V _{CC} – 1.5			V
(IN(0)	Logical "0" Input Voltage	V _{CC} = 4.75V			0.8	V
MOS TO	TTL					1
IN(1)	Logical "1" Input Voltage					
	MM74C901	V _{CC} = 4.75V	4.25			V
	MM74C902	V _{CC} = 4.75V	V _{CC} – 1.5			V
IN(0)	Logical "0" Input Voltage					
	MM74C901	V _{CC} = 4.75V			1.0	V
	MM74C902	V _{CC} = 4.75V			1.5	V
OUT(1)	Logical "1" Output Voltage	$V_{CC} = 4.75$ V, $I_{O} = -800 \mu$ A	2.4			V
OUT(0)	Logical "0" Output Voltage					
	MM74C901	$V_{CC} = 4.75V, I_{O} = 2.6 \text{ mA}$			0.4	V
	MM74C902	$V_{CC} = 4.75$ V, $I_{O} = 3.2$ mA			0.4	V
UTPUT D	RIVE (See Family Characteristics	Data Sheet) (Short Circuit Current)				1
(MM74C	901)					
SOURCE	Output Source Current	$V_{CC} = 5.0V, V_{OUT} = 0V$	-5.0			mA
	(P-Channel)	$T_{A} = 25^{\circ}C, V_{IN} = 0V$				
SOURCE	Output Source Current	$V_{CC} = 10V, V_{OUT} = 0V$	-20			mA
SOURCE	(P-Channel)	$T_{A} = 25^{\circ}C, V_{IN} = 0V$				
SINK	Output Sink Current	$V_{CC} = 5.0V, V_{OUT} = V_{CC}$	9.0			mA
0	(N-Channel)	$T_A = 25^{\circ}C, V_{IN} = V_{CC}$				
SINK	Output Sink Current	$V_{CC} = 5.0V, V_{OUT} = 0.4V$	3.8			mA
0.111	(N-Channel)	$T_A = 25^{\circ}C, V_{IN} = V_{CC}$				

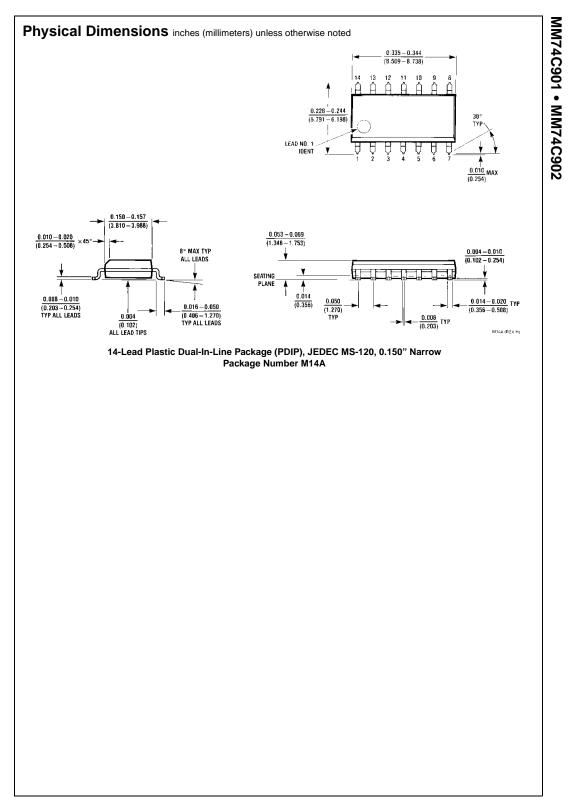
www.fairchildsemi.com

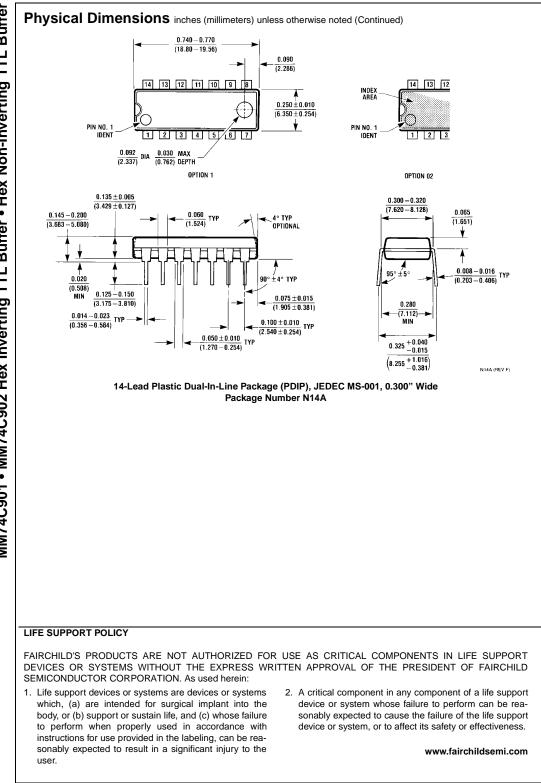
	Parameter	Conditions	Min	Тур	Max	Units
SOURCE	Output Source Current	$V_{CC} = 5.0V, V_{OUT} = 0V$	-5.0			mA
	(P-Channel)	$T_A = 25^{\circ}C, V_{IN} = V_{CC}$				
SOURCE	Output Source Current	$V_{CC} = 10V, V_{OUT} = 0V$	-20			mA
	(P-Channel)	$T_A = 25^{\circ}C, \ V_{IN} = V_{CC}$				
SINK	Output Sink Current	$V_{CC} = 5.0V, V_{OUT} = V_{CC}$	9.0			mA
	(N-Channel)	$T_A = 25^{\circ}C, \ V_{IN} = 0V$				
SINK	Output Sink Current	$V_{CC} = 5.0V, V_{OUT} = 0.4V$	3.8			mA
	(N-Channel)	$T_A = 25^{\circ}C, V_{IN} = 0V$				


MM74C001 7

21 5.0\ ns t _{pd0} CC = 35 opagation D $V_{CC} = 10V$ 13 20 ns to a Logical "0" C_{IN} Input Capacitance Any Input (Note 3) 14 pF Per Buffer (Note 4) C_{PD} Power Dissipation Capacity 30 pF MM74C902 57 90 Propagation Delay Time $V_{CC} = 5.0V$ ns t _{pd1} $V_{CC} = 10V$ to a Logical "1" 27 40 ns V_{CC} = 5.0V Propagation Delay Time 54 90 ns t _{pd0} $V_{CC} = 10V$ 25 40 to a Logical "0" ns Any Input (Note 3) pF Input Capacitance 5.0 C IN C _{PD} Per Buffer (Note 4) 50 Power Dissipation Capacity рF Note 2: AC Parameters are guaranteed by DC correlated testing.


Note 3: Capacitance is guaranteed by periodic testing.


Note 4: CPD determines the no load AC power consumption of any CMOS device. For complete explanation see Family Characteristics application note AN-90.


Typical Application

www.fairchildsemi.com

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.