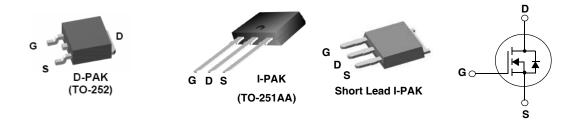


# FDD8796/FDU8796 N-Channel PowerTrench<sup>®</sup> MOSFET 25V, 35A, $5.7m\Omega$



# **General Description**


This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low  $r_{\text{DS}(\text{on})}$  and fast switching speed.

# **Application**

- Vcore DC-DC for Desktop Computers and Servers
- VRM for Intermediate Bus Architecture

### **Features**

- Max  $r_{DS(on)} = 5.7 \text{m}\Omega$  at  $V_{GS} = 10 \text{V}$ ,  $I_D = 35 \text{A}$
- Max  $r_{DS(on)}$  = 8.0m $\Omega$  at  $V_{GS}$  = 4.5V,  $I_D$  = 35A
- Low gate charge: Q<sub>q(10)</sub> = 37nC(Typ), V<sub>GS</sub> = 10V
- Low gate resistance
- Avalanche rated and 100% tested
- RoHS Compliant



# **MOSFET Maximum Ratings** $T_C$ = 25°C unless otherwise noted

| Symbol                            | Parameter                                   | Ratings  | Units      |    |
|-----------------------------------|---------------------------------------------|----------|------------|----|
| $V_{DS}$                          | Drain to Source Voltage                     | 25       | V          |    |
| $V_{GS}$                          | Gate to Source Voltage                      | ±20      | V          |    |
|                                   | Drain Current -Continuous (Package Limited) |          | 35         |    |
| I <sub>D</sub>                    | -Continuous (Die Limited)                   |          | 98         | Α  |
|                                   | -Pulsed                                     | (Note 1) | 305        |    |
| E <sub>AS</sub>                   | Single Pulse Avalanche Energy               | 91       | mJ         |    |
| $P_{D}$                           | Power Dissipation                           | 88       | W          |    |
| T <sub>J</sub> , T <sub>STG</sub> | Operating and Storage Temperature           |          | -55 to 175 | °C |

### **Thermal Characteristics**

| $R_{	heta JC}$  | Thermal Resistance, Junction to Case TO_252, TO_251                             | 1.7 | °C/W |
|-----------------|---------------------------------------------------------------------------------|-----|------|
| $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient TO_252, TO_251                          | 100 | °C/W |
| $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient TO-252,1in <sup>2</sup> copper pad area | 52  | °C/W |

# **Package Marking and Ordering Information**

| Device Marking | Device       | Package  | Reel Size  | Tape Width | Quantity   |
|----------------|--------------|----------|------------|------------|------------|
| FDD8796        | FDD8796      | TO-252AA | 13"        | 12mm       | 2500 units |
| FDU8796        | FDU8796      | TO-251AA | N/A (Tube) | N/A        | 75 units   |
| FDU8796        | FDU8796_F071 | TO-251AA | N/A (Tube) | N/A        | 75 units   |

| Symbol                                 | Parameter                                                   | Test Conditions                                                        | Min | Тур  | Max      | Units |
|----------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------|-----|------|----------|-------|
| Off Chara                              | cteristics                                                  |                                                                        |     | •    | •        |       |
| B <sub>VDSS</sub>                      | Drain to Source Breakdown Voltage                           | $I_D = 250 \mu A, V_{GS} = 0 V$                                        | 25  |      |          | V     |
| $\frac{\Delta B_{VDSS}}{\Delta T_{J}}$ | Breakdown Voltage Temperature<br>Coefficient                | I <sub>D</sub> = 250μA, referenced to 25°C                             |     | 7    |          | mV/°C |
| I <sub>DSS</sub>                       | Zero Gate Voltage Drain Current                             | V <sub>DS</sub> = 20V<br>V <sub>GS</sub> = 0V                          |     |      | 1<br>250 | μΑ    |
| I <sub>GSS</sub>                       | Gate to Source Leakage Current                              | V <sub>GS</sub> = ±20V                                                 |     |      | ±100     | nA    |
|                                        | cteristics                                                  |                                                                        |     | 1    |          | 1     |
| V <sub>GS(th)</sub>                    | Gate to Source Threshold Voltage                            | $V_{GS} = V_{DS}, I_D = 250 \mu A$                                     | 1.2 | 1.8  | 2.5      | V     |
| $\Delta V_{GS(th)}$ $\Delta T_J$       | Gate to Source Threshold Voltage<br>Temperature Coefficient | I <sub>D</sub> = 250μA, referenced to 25°C                             |     | -6.7 |          | mV/°C |
| •                                      |                                                             | V <sub>GS</sub> = 10V, I <sub>D</sub> = 35A                            |     | 4.5  | 5.7      | mΩ    |
| _                                      | Drain to Source On Resistance                               | V <sub>GS</sub> = 4.5V, I <sub>D</sub> = 35A                           |     | 6.0  | 8.0      |       |
| r <sub>DS(on)</sub>                    | Drain to Source On Resistance                               | $V_{DS} = 10V, I_{D} = 35A$<br>$T_{J} = 175^{\circ}C$                  |     | 6.9  | 9.5      |       |
| Dynamic                                | Characteristics                                             |                                                                        |     |      | •        |       |
| C <sub>iss</sub>                       | Input Capacitance                                           | ., ,,,,,                                                               |     | 1960 | 2610     | pF    |
| C <sub>oss</sub>                       | Output Capacitance                                          | ─V <sub>DS</sub> = 13V, V <sub>GS</sub> = 0V,<br>—f = 1MHz             |     | 455  | 605      | pF    |
| C <sub>rss</sub>                       | Reverse Transfer Capacitance                                | 1 - 1101112                                                            |     | 315  | 475      | pF    |
| $R_G$                                  | Gate Resistance                                             | f = 1MHz                                                               |     | 1.1  |          | Ω     |
| Switching                              | Characteristics                                             |                                                                        |     |      |          | •     |
| t <sub>d(on)</sub>                     | Turn-On Delay Time                                          |                                                                        |     | 10   | 20       | ns    |
| t <sub>r</sub>                         | Rise Time                                                   | V <sub>DD</sub> =13V, I <sub>D</sub> = 35A                             |     | 24   | 39       | ns    |
| t <sub>d(off)</sub>                    | Turn-Off Delay Time                                         | $V_{GS} = 10V, R_{GS} = 20\Omega$                                      |     | 99   | 158      | ns    |
| t <sub>f</sub>                         | Fall Time                                                   |                                                                        |     | 57   | 91       | ns    |
| Q <sub>g</sub>                         | Total Gate Charge                                           | $V_{GS} = 0 \text{ to } 10V$ $V_{GS} = 0 \text{ to } 5V$ $I_{D} = 35A$ |     | 37   | 52       | nC    |
| Qg                                     | Total Gate Charge                                           | $V_{GS} = 0 \text{ to } 5V$ $V_{DD} = 13V$ ,                           |     | 19   | 27       | nC    |
| Q <sub>gs</sub>                        | Gate to Source Gate Charge                                  | I <sub>D</sub> = 35A,<br>I <sub>q</sub> = 1.0mA                        |     | 6    |          | nC    |
| Q <sub>gd</sub>                        | Gate to Drain Charge                                        |                                                                        |     | 6    |          | nC    |
| Drain-Soເ                              | urce Diode Characteristics                                  |                                                                        |     |      |          |       |
| \/                                     | Source to Drain Diede Voltage                               | V <sub>GS</sub> = 0V, I <sub>S</sub> = 35A                             |     | 0.9  | 1.25     | V     |
| $V_{SD}$                               | Source to Drain Diode Voltage                               | V <sub>GS</sub> = 0V, I <sub>S</sub> = 15A                             |     | 8.0  | 1.0      | V     |
| t <sub>rr</sub>                        | Reverse Recovery Time                                       | $I_F = 35A$ , di/dt = $100A/\mu s$                                     |     | 30   | 45       | ns    |
| Q <sub>rr</sub>                        | Reverse Recovery Charge                                     | $I_F = 35A$ , di/dt = 100A/ $\mu$ s                                    |     | 23   | 35       | nC    |

<sup>|</sup>  $Q_{TT}$  | Notes: 1: Pulse time < 300μs, Duty cycle = 2%. 2: Starting  $T_J = 25^{\circ}$ C, L = 0.3mH,  $I_{AS} = 24.7$ A,  $V_{DD} = 23$ V,  $V_{GS} = 10$ V.

## Typical Characteristics T<sub>J</sub> = 25°C unless otherwise noted

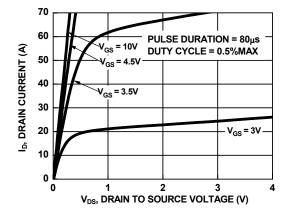



Figure 1. On Region Characteristics

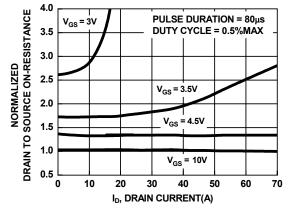



Figure 2. Normalized On-Resistance vs Drain Current and Gate Voltage



Figure 3. Normalized On Resistance vs Junction Temperature

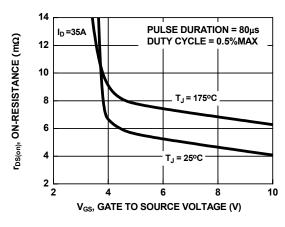



Figure 4. On-Resistance vs Gate to Source Voltage

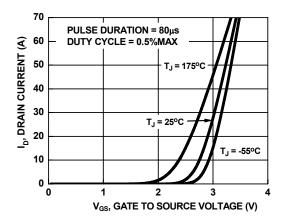



Figure 5. Transfer Characteristics

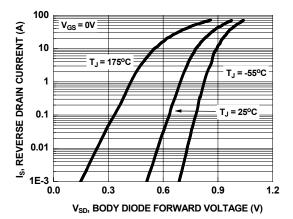



Figure 6. Source to Drain Diode Forward Voltage vs Source Current



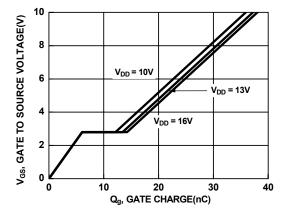



Figure 7. Gate Charge Characteristics

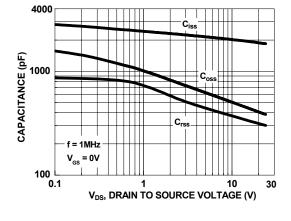



Figure 8. Capacitance vs Drain to Source Voltage

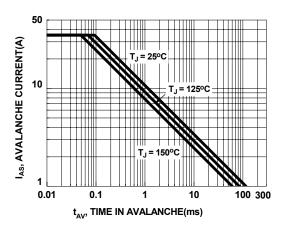



Figure 9. Unclamped Inductive Switching Capability

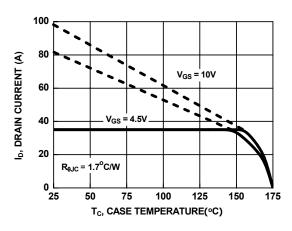



Figure 10. Maximum Continuous Drain Current vs Case Temperature

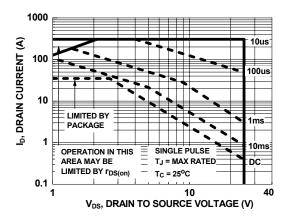



Figure 11. Forward Bias Safe Operating Area

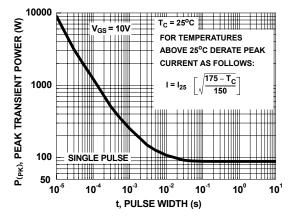



Figure 12. Single Pulse Maximum Power Dissipation

10<sup>1</sup>

10°

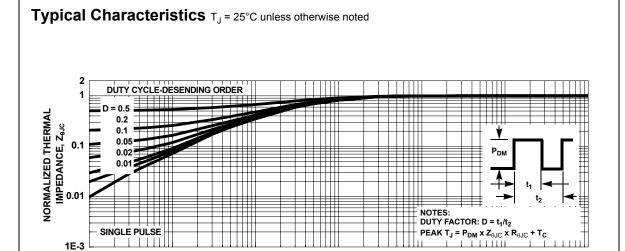



Figure 13. Transient Thermal Response Curve

10<sup>-2</sup>

t, RECTANGULAR PULSE DURATION(s)

10<sup>-1</sup>

10<sup>-3</sup>

10<sup>-5</sup>

10<sup>-4</sup>

### **TRADEMARKS**

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

| ACEx™                                | FAST <sup>®</sup>   | ISOPLANAR™             | PowerSaver™              | SuperSOT™-6            |
|--------------------------------------|---------------------|------------------------|--------------------------|------------------------|
| ActiveArray™                         | FASTr™              | LittleFET™             | PowerTrench <sup>®</sup> | SuperSOT™-8            |
| Bottomless™                          | FPS™                | MICROCOUPLER™          | QFET <sup>®</sup>        | SyncFET™               |
| Build it Now™                        | FRFET™              | MicroFET™              | QS™                      | TCM™                   |
| CoolFET™                             | GlobalOptoisolator™ | MicroPak™              | QT Optoelectronics™      | TinyLogic <sup>®</sup> |
| CROSSVOLT™                           | GTO™                | MICROWIRE™             | Quiet Series™            | TINYOPTO™              |
| DOME™                                | HiSeC™              | MSX™                   | RapidConfigure™          | TruTranslation™        |
| EcoSPARK™                            | I <sup>2</sup> C™   | MSXPro™                | RapidConnect™            | UHC™                   |
| E <sup>2</sup> CMOS™                 | i-Lo™               | OCX™                   | µSerDes™                 | UltraFET <sup>®</sup>  |
| EnSigna™                             | ImpliedDisconnect™  | OCXPro™ _              | ScalarPump™              | UniFET™                |
| FACT™                                | IntelliMAX™         | OPTOLOGIC <sup>®</sup> | SILENT SWITCHER®         | VCX <sup>TM</sup>      |
| FACT Quiet Series™                   |                     | OPTOPLANAR™            | SMART START™             | Wire™                  |
|                                      |                     | PACMAN™                | SPM™                     |                        |
| Across the board. Around the world.™ |                     | POP™                   | Stealth™                 |                        |
| The Power Franchise <sup>®</sup>     |                     | Power247™              | SuperFET™                |                        |
| Programmable Active Droop™           |                     | PowerEdge™             | SuperSOT™-3              |                        |

### **DISCLAIMER**

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

### As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

# PRODUCT STATUS DEFINITIONS Definition of Terms

| Datasheet Identification | Product Status            | Definition                                                                                                                                                                                                            |
|--------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Advance Information      | Formative or In<br>Design | This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.                                                                                    |
| Preliminary              | First Production          | This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. |
| No Identification Needed | Full Production           | This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.                                                       |
| Obsolete                 | Not In Production         | This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.                                                   |

FDD8796/FDU8796 Rev. B **6** www.fairchildsemi.com