

January 16, 2009 Datasheet No. - PD97376

IRS21856S

High(Dual Mode) and Low Side Driver

Features

- High side Programmable ramp gate drive
- High side generic gate driver integrated using the same high side output pin
- Low side generic gate driver
- Under voltage lockout for VCC & VBS
- 5V input logic compatible
- Tolerant to negative transient voltage on VS
- Shoot through prevention
- RoHS compliant

Product Summary

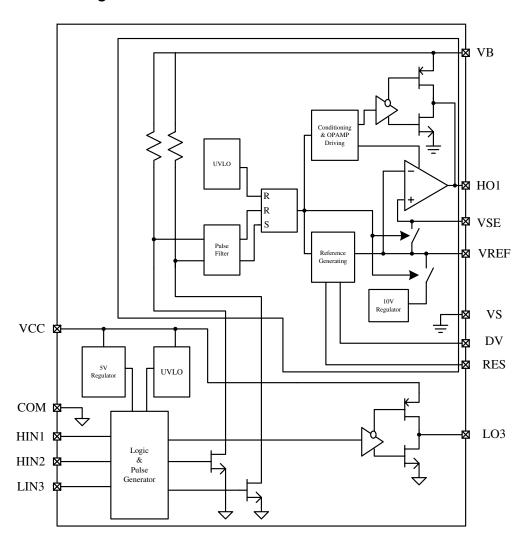
- 1 - a a - c - c a - c - c - c - c - c - c					
Topology	PDP				
V _{OFFSET}	≤ 600 V				
HO1 SR+	4.5V/us				
I _{o+} & I _{o-} (typical)	0.5A & 0.5A				
t _{ON} & t _{OFF} (typical)	160ns & 160ns				

Package Options

14-Lead SOIC (narrow body)

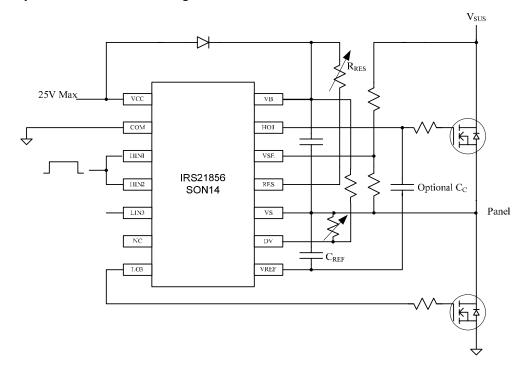
Table of Contents	Page
Description	3
Simplified Block Diagram	4
Typical Application Diagram	5
Qualification Information	7
Absolute Maximum Ratings	8
Recommended Operating Conditions	8
Static Electrical Characteristics	9
DV / Linear (Stepwise) Mode	10
Dynamic Electrical Characteristics	10
Timing Diagram and logic truth table	11
Input/Output Pin Equivalent Circuit Diagram	16
Lead Definitions	17
Lead Assignments	17
Package Details	18
Tape and Reel Details	19
Part Marking Information	20
Ordering information	21

Not recommended for new designs. No replacement is available International IRS21856S

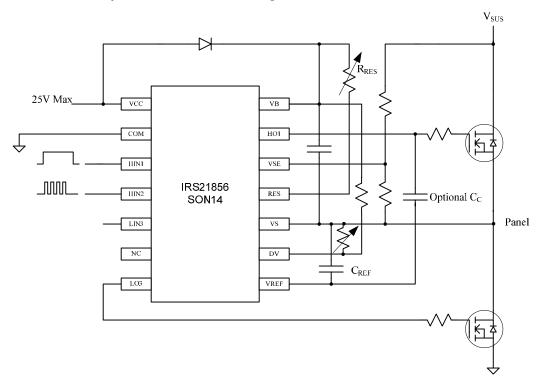

IOR Rectifier

Description

The IRS21856 is high voltage and programmable ramp slope control gate driver for MOSFET and IGBT with single high side dual mode driver and low side driver. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with 5V standard CMOS or LSTTL output. The output driver features a programmable slope control by external R/C and input signal. The floating channels can be used to drive an N-channel power MOSFET or IGBT in the high side configuration, which operates up to 600 volts above the COM ground.

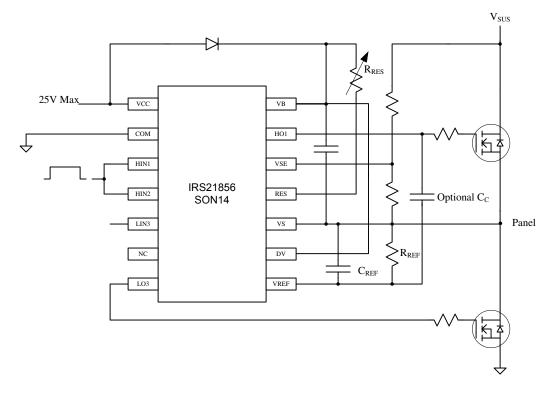

IRS21856S

Simplified Block Diagram



IRS21856S

Typical Connection DiagramsA) Linear Ramp driver's connection diagram



B) Stepwise Linear Ramp driver's connection diagram

IRS21856S

C) Exponential Ramp driver's connection diagram

Not recommended for new designs. No replacement is available International

IOR Rectifier

IRS21856S

Qualification Information[†]

			Industrial ^{††}		
Qualification Level		Comments: This family of ICs has passed JEDEC's Industrial qualification. IR's Consumer qualification level is granted by extension of the higher Industrial level.			
Moisture Sensitivity	Level	SOIC14N	MSL2 ^{†††} 260°C (per IPC/JEDEC J-STD-020)		
ESD	Machine Model	Class A (per JEDEC standard JESD22-A115)			
Human Body Model		Class 2 (per EIA/JEDEC standard EIA/JESD22-A114)			
IC Latch-Up Test		Class I, Level A			
то		(per JESD78)			
RoHS Compliant			Yes		

- Qualification standards can be found at International Rectifier's web site http://www.irf.com/
- †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information.
- ††† Higher MSL ratings may be available for the specific package types listed here. Please contact your International Rectifier sales representative for further information.

© 2008 International Rectifier www.irf.com

7

IRS21856S

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages <u>referenced to COM</u>.

Symbol	Definition	Min	Max	Units
V_{CC}	Low side supply voltage	-0.3	25	V
V_{IN}	Logic input voltage (HIN1, HIN2, LIN3)	COM-0.3	VCC +0.3	V
V_{LO}	Low side gate drive output voltage	COM-0.3	VCC +0.3	>
V_{DV} , V_{VREF}	High side inputs voltage	VS-0.3	VB+0.3	V
V_{VSE} , V_{RES}	High side inputs voltage	VS-0.3	VB+0.3	V
V _B	High side floating well supply voltage	-0.3	625	V
Vs	High side floating well supply return voltage	VB-25	VB+0.3	V
V _{HO1}	Floating gate drive output voltage	VS-0.3	VB+0.3	V
dV _S /dt	Allowable VS offset supply transient relative to COM	-	50	V/ns
P_{D}	Package Power Dissipation @ TA<=+25°C	-	1.0	W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	-	120	°C/W
TJ	Junction Temperature	-55	150	°C
T _S	Storage Temperature	-55	150	°C
T _L	Lead temperature (Soldering, 10 seconds)	-	300	°C

Recommended Operating Conditions

For proper operation, the device should be used within the recommended conditions. All voltage parameters are absolute voltages <u>referenced to COM</u>. The offset rating are tested with supplies of (VCC-COM) = (VB-VS)=15V.

Symbol	Definition	Min	Max	Units
V _{CC}	Low side supply voltage	10	20	V
V _{IN}	HIN1, HIN2, LIN3 input voltage	COM	V_{CC}	V
V_{LO3}	Low side gate drive output voltage	COM	V_{CC}	V
V_B	High side floating well supply voltage	V _S +10	V _S +20	V
V _{RES}	RES input voltage	Vs	V_{B}	V
V_{DV}	DV input voltage	Vs	V_{B}	V
$V_{VREF, VSE}$	VREF and VSE input voltage	Vs	V_B -3	V
Vs	High side floating well supply offset voltage	Note2††	600	V
V _{HO1}	Floating gate drive output voltage	Vs	V_{B}	V
T _A	Ambient Temperature	-40	125	°C

 $[\]dagger$ V_S and V_B voltages will be tolerant to short negative transient spikes. These will be defined and specified in the future.

^{††} Logic operation for Vs of -5 to 600V. Logic state held for Vs of -5V to $-V_{BS}$. (Please refer to Design Tip DT97-3 for more details).

Static Electrical Characteristics

(VCC-COM) = (VB-VS)=15V. TA = 25°C. The V_{IN}, V_{IN} TH and I_{IN} parameters are referenced to COM. The Vo and Io parameters are referenced to respective VS, COM and are applicable to the respective output leads HO1, LO3. The V_{CCUV} parameters are referenced to COM. The V_{BSUV} parameters are referenced to V_S.

Symbol	Definition	Min	Тур	Max	Units	Test Conditions
V _{CCUV} +	V _{CC} supply undervoltage positive going threshold	8.1	9.0	9.9		
Vccuv-	V _{CC} supply undervoltage negative going threshold	7.5	8.3	9.1	V	
V _{BSUV+}	V _{BS} supply undervoltage positive going threshold	8.1	9.0	9.9	V	
V _{BSUV} -	V _{BS} supply undervoltage negative going threshold	7.5	8.3	9.1		
I _{LK}	High side floating well offset supply leakage current	l		50	μA	V _B = V _S = 600V
I _{QBS}	Quiescent VBS supply current		4.7	8.5	mA	IN1, 2 = 5V, RES=130kohm
	Quiescent VB3 supply current		800	1400		IN1, 2 = 0V, RES=130kohm
I _{QCC}	Quiescent VCC supply current		120	250	μA	IN1,2,3 = 0V or 5V
V _{IH}	Logic "1" input voltage	3.5				
VIL	Logic "0" input voltage			0.8	V	
lın+	Logic "1" input bias current		5			VIN =5V
lin -	Logic "0" input bias current		0		μA	VIN =0V
Io+_ HO1,LO3	Output high short circuit pulsed current		0.5		A	Vo=15V,ViN=5V, PW<=10us
lo _{HO1,LO3}	Output low short circuit pulsed current		0.5		Α	Vo=0V,VIN=0V, PW<=10us
V _{OL} HO1, LO3	Low level output voltage		35	150	mV	lo=2mA
V _{OH} _ HO1, LO3	High level output voltage, Vbias-Vo		15	80	mV	lo=2mA
DV exp+	Positive DV input threshold for exponential ramp		9.5		V	C _{REF} =1nF, V _{SE} open R _{RES} =130K

DV / Linear (Stepwise) Mode

Symbol	Definition	Min	Тур	Max	Units	Test Conditions
VREF,	' I I IV reterence Voltage		0.5	0.6	V	DV=500mV, C_{REF} =1nF, V_{SE} open R_{RES} =130K,
hold		2.82	3	3.18		DV=3V, C_{REF} =1nF, V_{SE} open R_{RES} =130K,

Dynamic Electrical Characteristics

(VCC-COM)= (VB-VS)=15V. TA = 25°C. CL = 1000pF unless otherwise specified. All parameters are reference to COM.

reference to		1	1	1	1	<u> </u>
Symbol	Definition	Min	Тур	Max	Units	Test Conditions
Internal C	perational Amplifier Characteristic					
t ref_In_ramp	Linear ramp reference 10% to 90%	110	170	230	μs	C_{REF} =1nF, V_{SE} open, R_{RES} =130K, V_{DV} =VS=COM
Gm	OTA transconductance		12		mS	$CL_LO=1nF$, $V_{DV}=V_{B}$, $R_{RES}=130K$, dc bias 5V
G _{open loop}	Open loop gain	45	60		dB	$Cc = 1nF, V_{DV} = V_{B,}$ $R_{RES} = 130K$
BW_SS	Small signal bandwidth		3.5		MHz	$Cc = 1nF V_{DV} = V_{B}$, $R_{RES} = 130K$
V_{OS}	Input offset voltage		10		mV	$V_{DV} = V_{B,} R_{RES} = 130 K$
HO1 _{SR+}	Output positive slew rate		4.5		V/µs	$CL_HO1=1nF, V_{DV}=V_{B,}$ $R_{RES}=130K$
CMRR	Common mode rejection ratio	55	65		dB	$V_{DV} = V_{B,} R_{RES} = 130 K$
PSRR	Power supply rejection ratio	55	65		dB	$V_{DV} = V_{B,} R_{RES} = 130 K$
Propagat	ion Delay Characteristics					
t on	Turn-on delay (HO1, LO3)		150	250		
t off	Turn-off delay (HO1, LO3)		160	260		
t _r	Turn-on rise from 10% to 90%		30	70	ns	Gate Drive Mode C _L =1nF
t _f	Turn-off fall from 90% to 10%		20	70		
MT	Delay matching, HO1 & LO3 turn- on/off		_	50		

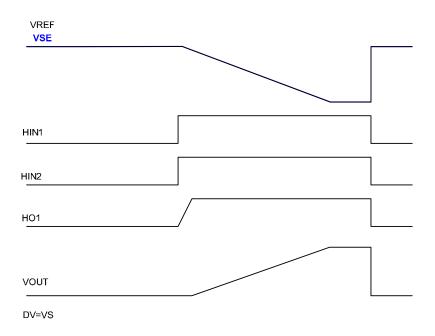


Figure 1A1 Input/Output Timing Diagram: Linear Ramp

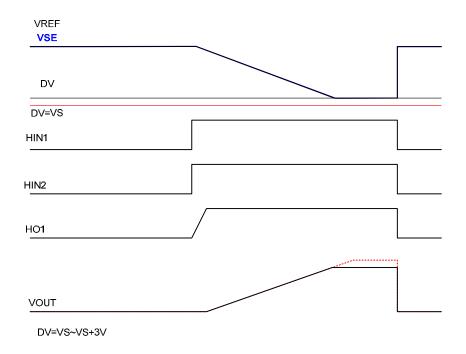


Figure 1A2 Input/Output Timing Diagram: Linear Ramp with voltage difference

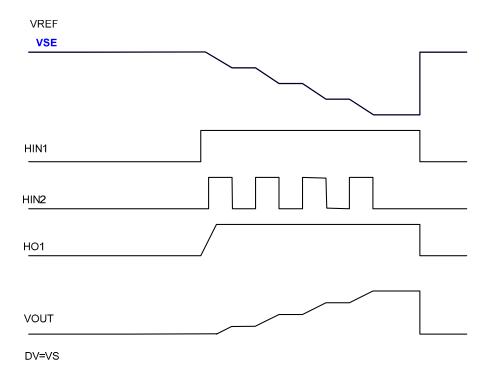


Figure 1B Input/Output Timing Diagram: Stepwise linear Ramp



Figure 1C Input/Output Timing Diagram: Exponential Ramp

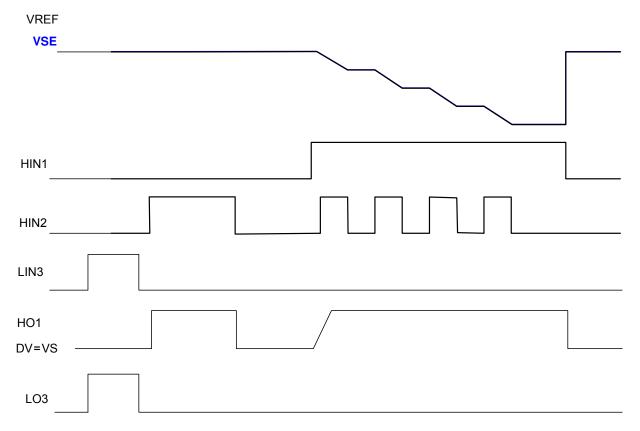


Figure 1D Input/Output Timing Diagram: HO1/LO3 outputs

Logic Truth Table

HIN1	HIN2	LIN3	LO3	OTA of HO1	Gate driver of HO1
0	0	0	0	High impedance (HIZ)	0
0	0	1	1	High impedance (HIZ)	0
0	1	0	0	High impedance (HIZ)	1
0	1	1	0	High impedance (HIZ)	0
1	1	0	0	Linear/Exp ramp depend on DV pin	High impedance (HIZ)
1	1	1	0	High impedance (HIZ)	0
1	Step(0/1)	0	0	Stepwise linear if DV pin is Vs	High impedance (HIZ)
1	Step(0/1)	1	0	High impedance (HIZ)	0

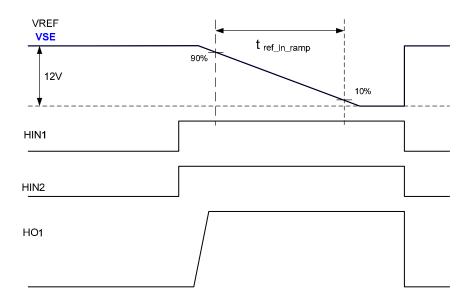


Figure 2 Timing Definitions of V_{REF}

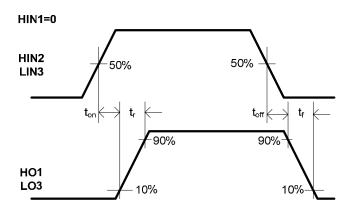
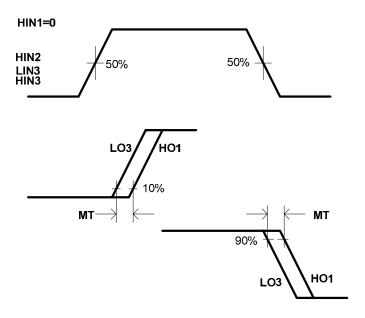
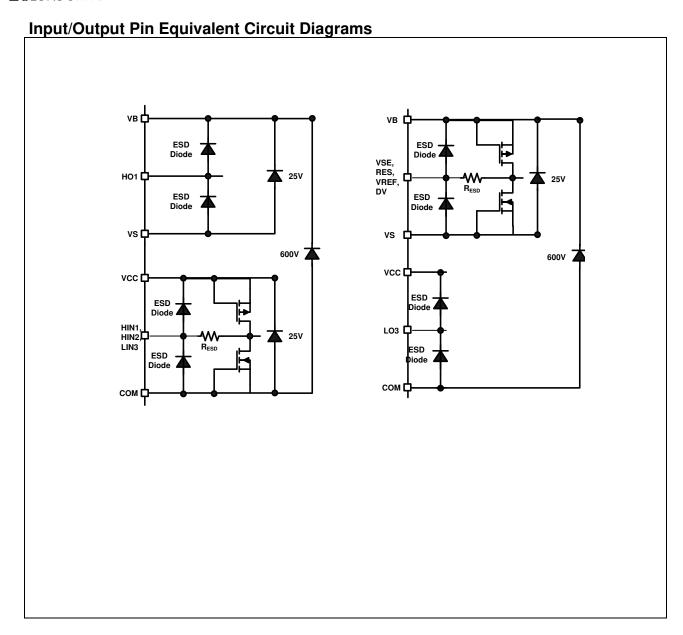
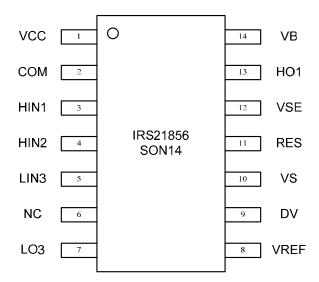




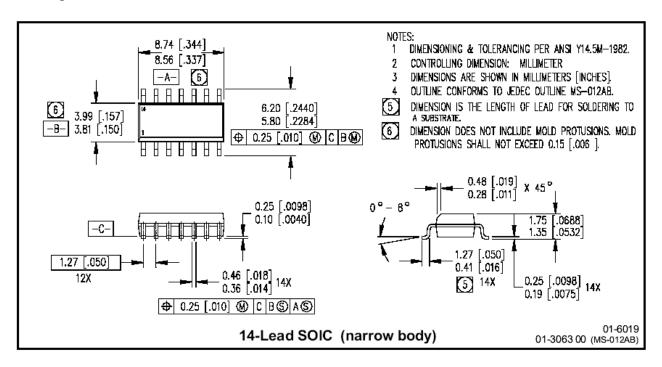
Figure 3 Switching Time Waveform Definitions of HO1 and LO3

Figure 4 Delay Matching Waveform Definitions

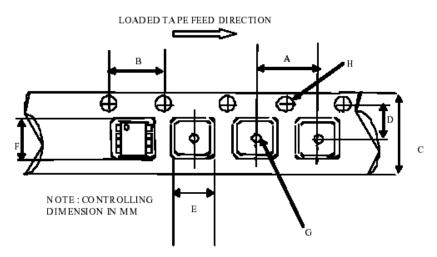
IRS21856S



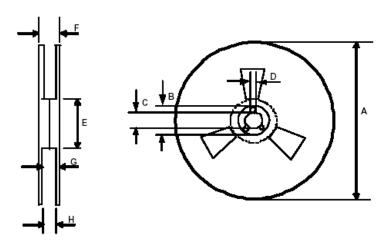
IRS21856S


Lead Definitions

PIN#	Symbol	Description
1	VCC	Low side supply voltage
2	COM	Low side supply return
3	HIN1	Logic input for HO1 ramp reference control
4	HIN2	Logic input for high side gate driver outputs, in phase
5	LIN3	Logic input for low side gate driver output
6	NC	No Connection
7	LO3	Low side gate driver output
8	VREF	External programmable R/C input for ramp generation
9	DV	Ramp selection and programmable difference voltage (DV) input
10	VS	High side gate drive floating supply return
11	RES	Adjustable current source resistor input
12	VSE	Voltage sense input
13	HO1	High side gate driver output
14	VB	High side gate drive floating supply

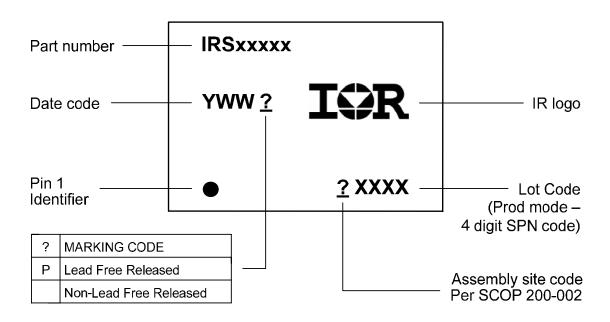

Lead Assignments

Package Details: SOIC14



Tape and Reel Details: SOIC14

CARRIER TAPE DIMENSION FOR 14SOICN


	Ме	tric	lm p	erial
Code	Min	Max	Min	Max
Α	7.90	8.10	0.311	0.318
В	3.90	4.10	0.153	0.161
С	15.70	16.30	0.618	0.641
D	7 .4 0	7.60	0.291	0.299
E	6.40	6.60	0.252	0.260
F	9.40	9.60	0.370	0.378
G	1.50	n/a	0.059	n/a
Н	1.50	1.60	0.059	0.062

REEL DIMENSIONS FOR 14SOICN

	M etric		lm p erial		
Code	M in	Max	Min	Max	
Α	329.60	330.25	12.976	13.001	
В	20.95	21.45	0.824	0.844	
С	12.80	13.20	0.503	0.519	
D	1.95	2.45	0.767	0.096	
E	98.00	102.00	3.858	4.015	
F	n/a	22.40	n/a	0.881	
G	18.50	21.10	0.728	0.830	
Н	16.40	18.40	0.645	0.724	

Part Marking Information

Not recommended for new designs. No replacement is available International IRS21856S

IOR Rectifier

Ordering Information

Base Part Number	Package Type	Standard Pack		Ocamentata Bant Number
		Form	Quantity	Complete Part Number
IRS21856S	SOIC14	Tube/Bulk	55	IRS21856SPBF
		Tape and Reel	2500	IRS21856STRPBF

The information provided in this document is believed to be accurate and reliable. However, International Rectifier assumes no responsibility for the consequences of the use of this information. International Rectifier assumes no responsibility for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of International Rectifier. The specifications mentioned in this document are subject to change without notice. This document supersedes and replaces all information previously supplied.

For technical support, please contact IR's Technical Assistance Center http://www.irf.com/technical-info/

WORLD HEADQUARTERS:

233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105