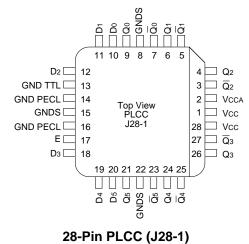


LOW-POWER HEXTTL-TO-PECL TRANSLATOR

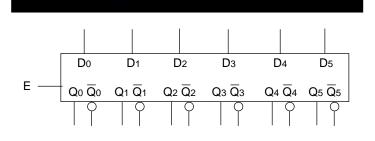
SY100S391


- Operates from a single +5V supply
- **■** Differential PECL outputs
- Function and pinout compatible with Fairchild F100K
- Available in 28-pin PLCC packages

The SY100S391 is a hex TTL-to-PECL translator for converting TTL logic levels to 100K logic levels. The unique feature of this translator is the ability to do this translation using only one +5V supply. The differential outputs allow each circuit to be used as an inverting/non-inverting translator, or as a differential line driver. A common enable (E), when LOW, holds all inverting outputs HIGH and all non-inverting inputs LOW.

The SY100S391 is ideal for those mixed PECL/TTL applications which only have a +5V supply available. When used in the differential mode, the S391, due to its high common mode rejection, overcomes voltage gradients between the TTL and PECL ground systems.

Pin	Function			
D0 — D5	Data Inputs (TTL)			
Q0 — Q5	Data Outputs (PECL)			
$\overline{\mathbb{Q}}_0 - \overline{\mathbb{Q}}_5$	Inverting Data Outputs (PECL)			
E	Enable Input (TTL)			
VCCA	Vcco for ECL Outputs			


Ordering Information

Part Number	Package Type	Operating Range	Package Marking	Lead Finish
SY100S391JC	J28-1	Commercial	SY100S391JC	Sn-Pb
SY100S391JCTR ⁽¹⁾	J28-1	Commercial	SY100S391JC	Sn-Pb
SY100S391JZ ⁽²⁾	J28-1	Commercial	SY100S391JZ with Pb-Free bar-line indicator	Matte-Sn
SY100S391JZTR ^(1, 2)	J28-1	Commercial	SY100S391JZ with Pb-Free bar-line indicator	Matte-Sn

Notes:

- 1. Tape and Reel.
- 2. Pb-Free package is recommended for new designs.

Inp	uts	Outputs				
Dn	E	Qn	Q n			
Н	Н	Н	L			
L	Н	L	Н			
Н	L	L	Н			
ı	1	ı	Н			

Note:

1. H = High Voltage Level, L = Low Voltage Level

Symbol	Rating	Value	Unit
_	TTL Input Voltage(2)	-0.5 to +7.0	V
_	TTL Input Current ⁽²⁾	-30 to +5.0	V
	PECL Output Current (DC Output HIGH)	– 50	V
_	Vcc Pin Potential to Ground Pin	-0.5 to +7.0	٧
Tstore	Storage Temperature	-65 to +150	°C
TJ	Max. Junction Temp. Ceramic Plastic	+175 +150	°C

Symbol	Rating	Value	Unit
ТА	Operating Temperature Commercial	0 to +85	°C
Vcc	Supply Voltage	+4.5 to +5.5	V

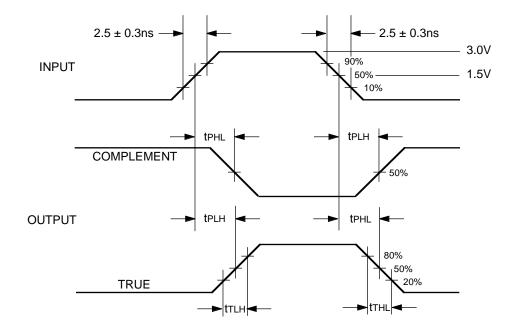
Note:

1. Do not exceed.

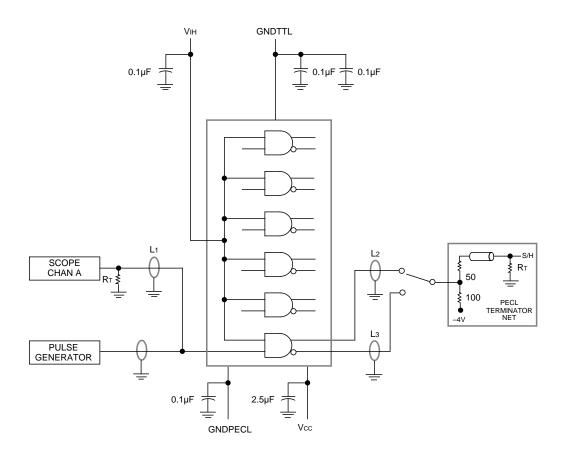
Notes:

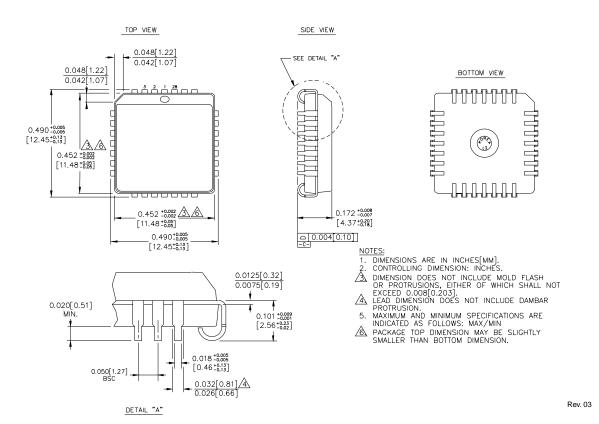
- Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
- 2. Either voltage limit or current limit is siffucient to protect inputs.

 $VCC = +5.0V \pm 10\%$; GND = 0V


Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
Vон	Output HIGH Voltage	Vcc -1025	Vcc -955	Vcc -870	mV	VIN = VIH (Max.) or VIL (Min.)
Vol	Output LOW Voltage	Vcc -1890	Vcc -1705	Vcc -1620		Loading with 50 Ω to Vcc –2V
Vонс	Output HIGH Voltage Corner Point High	Vcc -1035	_	_	mV	VIN = VIH (Min.) or VIL (Max.) Loading with 50Ω to Vcc $-2V$
Volc	Output LOW Voltage Corner Point Low	_	_	Vcc -1610	mV	
VIH	Input HIGH Voltage	2.0	_	5.0	V	Over VTTL, VEE, TA Range
VIL	Input LOW Voltage	0	_	0.8	V	Over VTTL, VEE, TA Range
Iн	Input HIGH Current	_	_	10	μΑ	VIN = +2.7V
	Breakdown Current	_		100	μΑ	VIN = +5.5V, VCC = Max.
lı∟	Input LOW Current Dn E	_	_	-0.8 -4.2	mA	VIN = +0.5V
Vcd	Input Clamp Diode Voltage	_	_	-1.2	V	lin = −18mA
Icc	Vcc Supply Current	25		69	mA	Inputs Open

Note:


1. The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.


 $VCC = +5.0V \pm 10\%$

		TA = 0°C		TA = +25°C		TA = +85°C			
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit	Condition
tPLH tPHL	Propagation Delay Data and Enable to Output	400	1400	400	1400	400	1400	ps	
tTLH tTHL	Transition Time 20% to 80%, 80% to 20%	350	1700	350	1700	350	1700	ps	

Propagation Delay and Transition Times

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com

The information furnished by Micrel in this datasheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use.

Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2006 Micrel, Incorporated.