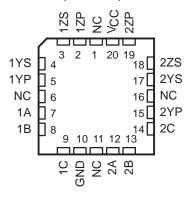

- Choice of Open-Collector, Open-Emitter, or Totem-Pole Outputs
- Single-Ended or Differential AND/NAND Outputs
- Single 5-V Supply
- Dual-Channel Operation
- TTL Compatible
- Short-Circuit Protection
- High-Current Outputs
- Triple inputs
- Clamp Diodes at Inputs and Outputs
- Designed for Use With SN55115 and SN75115 Differential Line Receivers
- Designed to Be Interchangeable With National DS9614 Line Driver


description

The SN55114 and SN75114 dual differential line drivers are designed to provide differential output signals with the high-current capability for driving balanced lines, such as twisted pair, at normal line impedances without high power dissipation. The output stages are similar to TTL totem-pole outputs, but with the sink outputs, YS and ZS, and the corresponding active pullup terminals, YP and ZP, available on adjacent package pins. Since the output stages provide TTL-compatible output levels, these devices can also be used as TTL expanders or phase splitters.

SN55114... J OR W PACKAGE SN75114... D OR N PACKAGE (TOP VIEW)

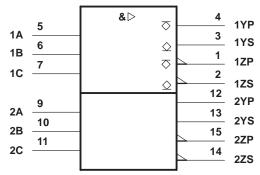
SN55114 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

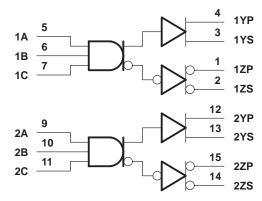
The SN55114 is characterized for operation over the full military temperature range of -55° C to 125°C. The SN75114 is characterized for operation from 0°C to 70°C.

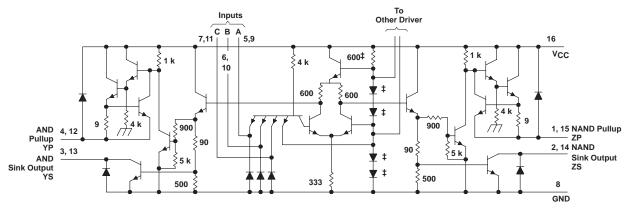
FUNCTION TABLE

	OUTI	PUTS		
Α	В	С	Υ	Z
Н	Н	Н	Н	L
All other	input comb	oinations	L	Н


H = high level, L = low level

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


logic symbol†


[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Pin numbers shown are for the D, J, N, and W packages.

logic diagram (positive logic)

schematic (each driver)

[‡]These components are common to both drivers. Resistor values shown are nominal and in ohms. Pin numbers shown are for the D, J, N, and W packages.

SLLS071C - SEPTEMBER 1973 - REVISED SEPTEMBER 1998

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{CC} (see Note 1)	7 V
Input voltage, V _I	5.5 V
Off-state voltage applied to open-collector outputs	12 V
Continuous total power dissipation	See Dissipation Rating Table
Storage temperature range, T _{Stq}	–65°C to 150°C
Case temperature for 60 seconds, T _c : FK package	260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J or W package	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package	ge 260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values are with respect to the network ground terminal.

DISSIPATION RATING TABLE

PACKAGE	$ \begin{array}{c c} T_{\mbox{A}} \leq 25^{\circ}\mbox{C} & \mbox{DERATING FACTOR} \\ \mbox{POWER RATING} & \mbox{ABOVE } T_{\mbox{A}} = 25^{\circ}\mbox{C} \\ \end{array} $		T _A = 70°C POWER RATING	T _A = 125°C POWER RATING
D	950 mW	7.6 mW/°C	608 mW	_
FK [‡]	1375 mW	11.0 mW/°C	880 mW	275 mW
J‡	1375 mW	11.0 mW/°C	880 mW	275 mW
N	1150 mW	9.2 mW/°C	736 mW	_
w‡	1000 mW	8.0 mW/°C	640 mW	200 mW

[‡] In the FK, J, and W packages, SN55114 chips are either silver glass or alloy mounted.

recommended operating conditions (unless otherwise noted)

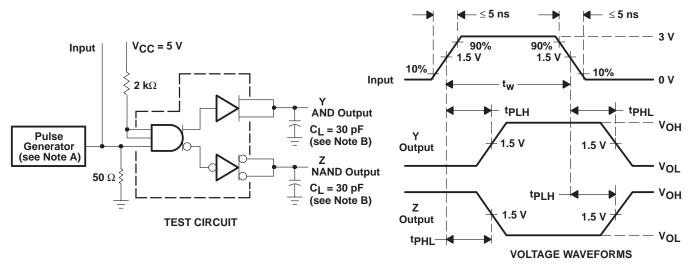
	SN55114			9	UNIT		
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level input voltage, VIH	2			2			V
Low-level input voltage, V _{IL}			0.8			0.8	V
High-level output current, IOH			-40			-40	mA
Low-level output current, IOL			40			40	mA
Operating free-air temperature, T _A	-55		125	0		70	°C

SLLS071C - SEPTEMBER 1973 - REVISED SEPTEMBER 1998

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	_		vet.	,	SN55114	l	;	SN75114	ı	UNIT
	PARAMETER	TEST CONDITIONS [†]				TYP‡	MAX	MIN	TYP‡	MAX	UNII
VIK	Input clamp voltage	$V_{CC} = MIN,$	$I_I = -12 \text{ mA}$			-0.9	-1.5		-0.9	-1.5	V
VOH	High-level output	V _{CC} = MIN,	V _{IH} = 2 V,	$I_{OH} = -10 \text{ mA}$	2.4	3.4		2.4	3.4		V
VOH	voltage	V _{IL} = 0.8 V		$I_{OH} = -40 \text{ mA}$	2	3		2	3		V
V _{OL}	Low-level output voltage	$V_{CC} = MIN,$ $V_{IL} = 0.8 V,$	$V_{IH} = 2 V$, $I_{OL} = 40 \text{ mA}$			0.2	0.4		0.2	0.45	٧
Vou	Output clamp valtage	tage $V_{CC} = 5 \text{ V}, I_O = 40 \text{ mA}, T_A = 25^{\circ}\text{C}$ 6.1 6.5 6.1 6.5 $V_{CC} = \text{MAX}, I_O = -40 \text{ mA}, T_A = 25^{\circ}\text{C}$ -1.1 -1.5 -1.1 -1.5	V								
VOK	Off-state open collecto	$V_{CC} = MAX$,	$I_{O} = -40 \text{ mA},$	T _A = 25°C	25°C –1		-1.5		-1.1	-1.5	V
			V _{OH} = 12 V V _{OH} = 5.25 V	T _A = 25°C		1	100				μΑ
10, 5	Off-state open collector	V _{CC} = MAX		T _A = 125°C			200				
O(off) output current	output current	T VCC = IVIAX		T _A = 25°C					1	100	
			VOH = 3.23 V	T _A = 70°C						200	
łį	Input current at maximum input voltage	V _{CC} = MAX,	V _I = 5.5 V				1			1	mA
lн	High-level input current	$V_{CC} = MAX$,	V _I = 2.4 V				40			40	μА
I _I L	Low-level input current	$V_{CC} = MAX$,	V _I = 0.4 V			-1.1	-1.6		-1.1	-1.6	mA
los	Short-circuit output current§	V _{CC} = MAX,	V _O = 0,	T _A = 25°C	-40	-90	-120	-40	-90	-120	mA
loo	Supply current	All inputs at 0	V, No load,	$V_{CC} = MAX$		37	50		37	50	mA
Icc	(both drivers)	$T_A = 25^{\circ}C$		V _{CC} = 7 V		47	65		47	70	III/A

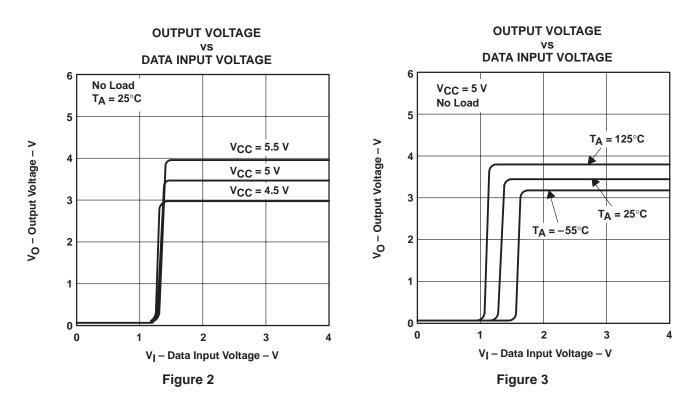
[†] All parameters, with the exception of off-state open-collector output current, are measured with the active pullup connected to the sink output. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.


switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

	PARAMETER	TEST	S	N55114		S	UNIT		
	PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
tPLH	Propagation delay time, low- to high-level output	$C_L = 30 pF$,		15	20		15	30	ns
tPHL	Propagation delay time, high- to low-level output	See Figure 1		11	20		11	30	ns

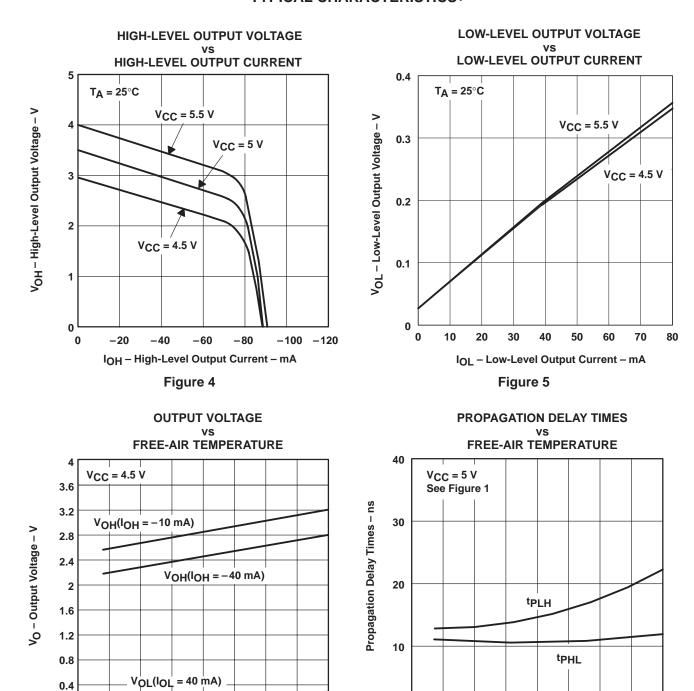
 $^{^{\}ddagger}$ All typical values are at T_A = 25°C and V_{CC} = 5 V, with the exception of I_{CC} at 7 V.

[§] Only one output should be shorted at a time, and duration of the short circuit should not exceed one second.


PARAMETER MEASUREMENT INFORMATION

- NOTES: A. The pulse generator has the following characteristics: $Z_0 = 500 \Omega$, PRR $\leq 500 \text{ kHz}$, $t_W \leq 100 \text{ ns}$.
 - B. C_I includes probe and jig capacitance.

Figure 1. Test Circuit and Voltage Waveforms


TYPICAL CHARACTERISTICS†

[†] Operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. These parameters were measured with the active pullup connected to the sink output.

TYPICAL CHARACTERISTICS[†]

-75 -50

0

-25

50

75

100

125

25

 T_A – Free-Air Temperature – $^{\circ}$ C

Figure 7

-75 -50

-25

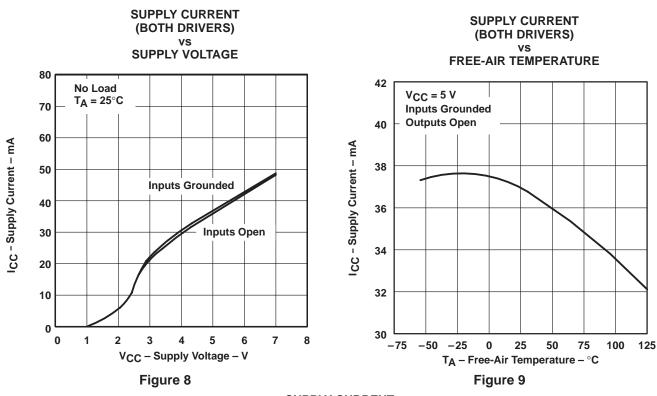
0

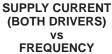
25

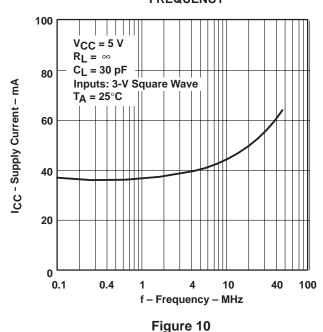
 T_A – Free-Air Temperature – $^{\circ}$ C

Figure 6

50

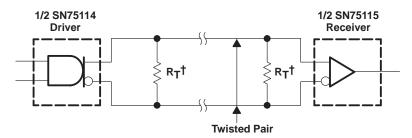

75


100


125

[†] Operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. These parameters were measured with the active pullup connected to the sink output.

TYPICAL CHARACTERISTICS†



† Operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. These parameters were measured with the active pullup connected to the sink output.

APPLICATION INFORMATION

 $^{^{\}dagger}$ R_T = Z_O. A capacitor can be connected in series with R_T to reduce power dissipation.

Figure 11. Basic Party-Line or Data-Bus Differential Data Transmission

6-Feb-2020

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Sample
5962-88744022A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	5962- 88744022A SNJ55 114FK	Sample
5962-8874402EA	ACTIVE	CDIP	J	16	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	5962-8874402EA SNJ55114J	Sample
5962-8874402FA	ACTIVE	CFP	W	16	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	5962-8874402FA SNJ55114W	Sample
JM38510/10403BEA	ACTIVE	CDIP	J	16	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	JM38510 /10403BEA	Sample
M38510/10403BEA	ACTIVE	CDIP	J	16	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	JM38510 /10403BEA	Sample
SN55114J	ACTIVE	CDIP	J	16	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	SN55114J	Sampl
SN75114D	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	0 to 70	SN75114 9614CD	Sampl
SN75114DE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	0 to 70	SN75114 9614CD	Sampl
SN75114DG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	0 to 70	SN75114 9614CD	Sampl
SN75114N	ACTIVE	PDIP	N	16	25	Green (RoHS & no Sb/Br)	NIPDAU	N / A for Pkg Type	0 to 70	SN75114N	Sampl
SNJ55114FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	5962- 88744022A SNJ55 114FK	Sampl
SNJ55114J	ACTIVE	CDIP	J	16	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	5962-8874402EA SNJ55114J	Samp
SNJ55114W	ACTIVE	CFP	W	16	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	5962-8874402FA SNJ55114W	Samp

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

PACKAGE OPTION ADDENDUM

6-Feb-2020

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

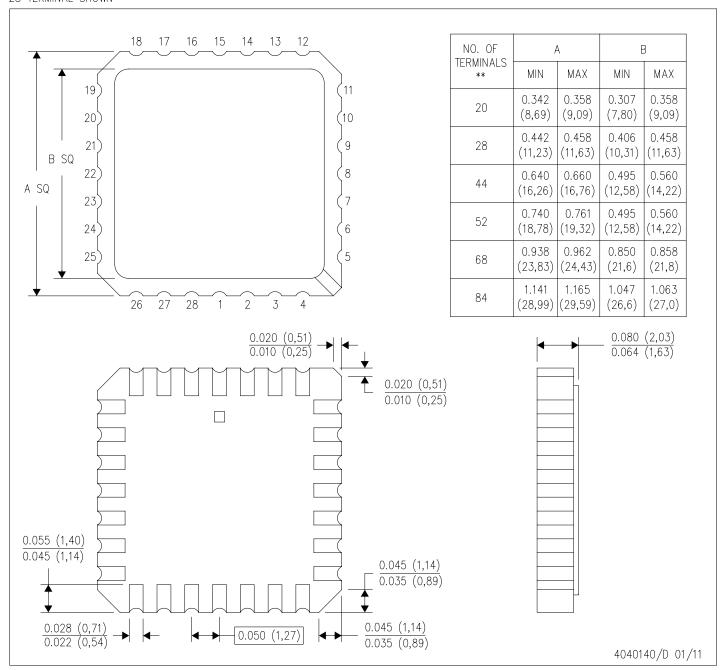
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN55114, SN75114:

Catalog: SN75114

Military: SN55114

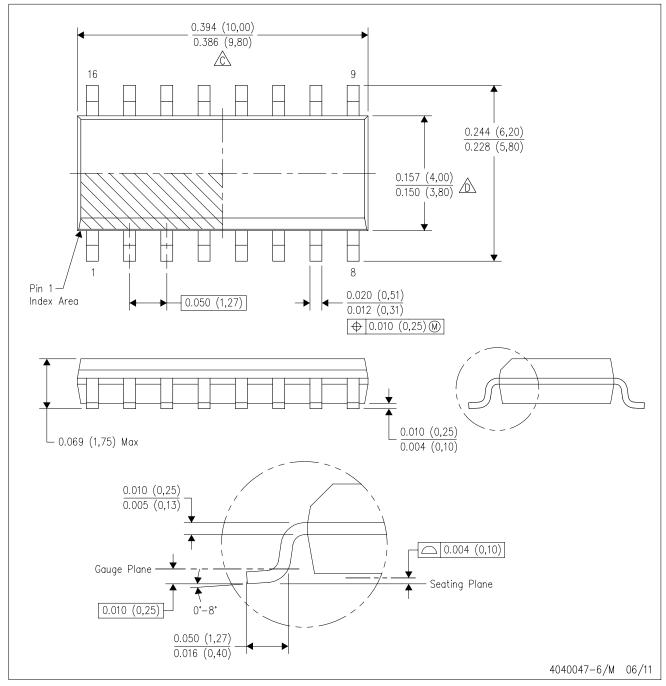

NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER

28 TERMINAL SHOWN



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

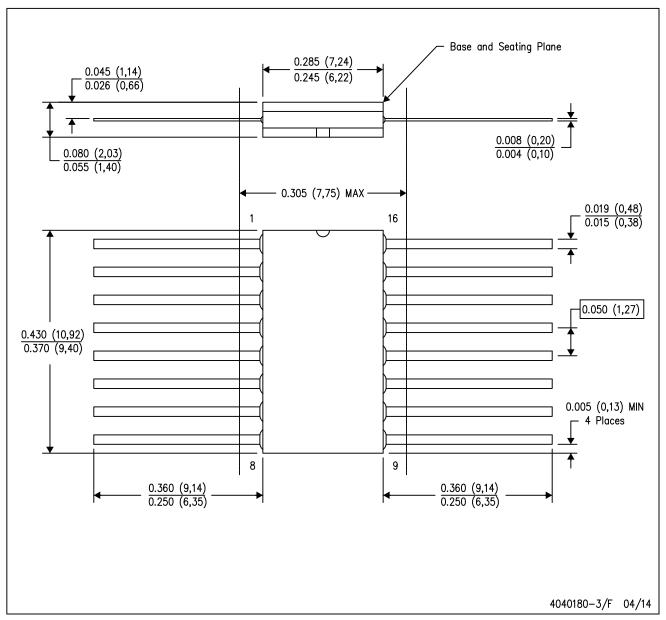
D (R-PDS0-G16)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

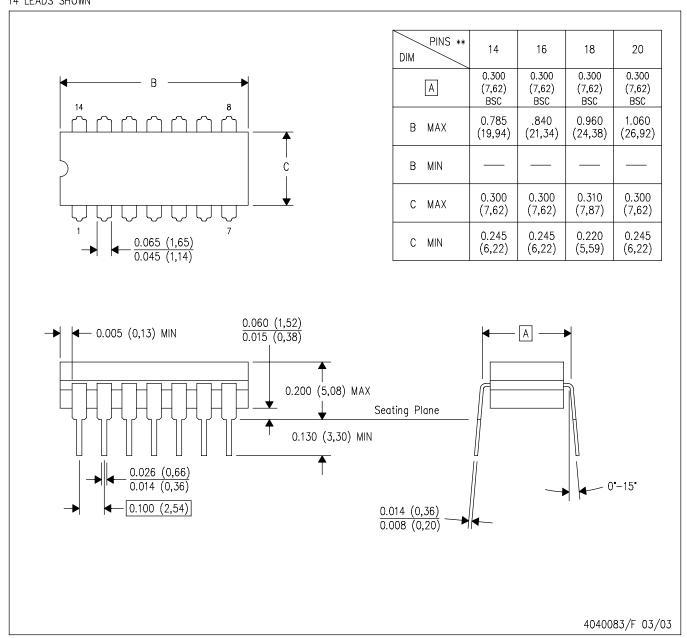
D (R-PDSO-G16)

PLASTIC SMALL OUTLINE



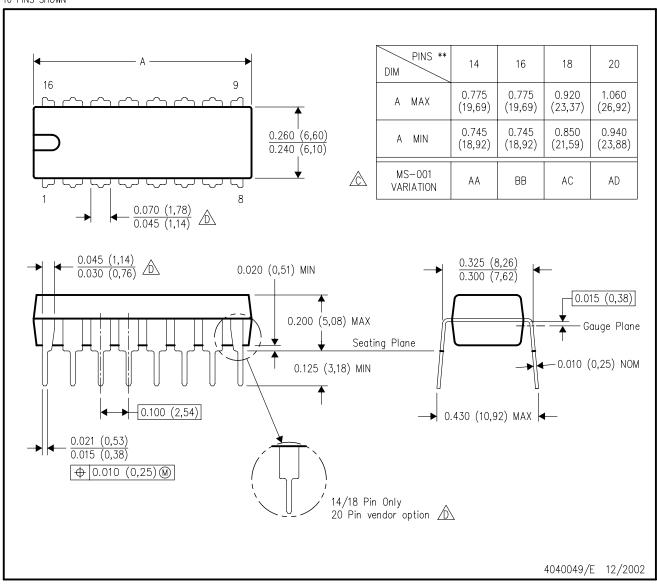
- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

W (R-GDFP-F16)


CERAMIC DUAL FLATPACK

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL STD 1835 GDFP2-F16

14 LEADS SHOWN



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated