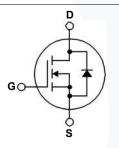


N-Channel SuperFET[®] II MOSFET

800 V, 46 A, 85 mΩ

Features


- Typ. R_{DS(on)} = 67 mΩ
- 850 V @ T_J = 150^oC
- Ultra Low Gate Charge (Typ. Q_g = 196 nC)
- Low E_{OSS}(Typ. 18 uJ @ 400 V)
- Low Effective Output Capacitance (Typ. C_{oss(eff.)} = 568 pF)
- 100% Avalanche Tested
- RoHS Compliant


Applications

- AC-DC Power Supply
- LED Lighting

Description

SuperFET[®] II MOSFET is Fairchild Semiconductor's brand-new high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low on-resistance and lower gate charge performance. This technology is tailored to minimize conduction loss, provide superior switching performance, dv/dt rate and higher avalanche energy. Consequently, SuperFET II MOSFET is very suitable for the switching power applications such as PFC, server/telecom power, FPD TV power, ATX power and industrial power applications.

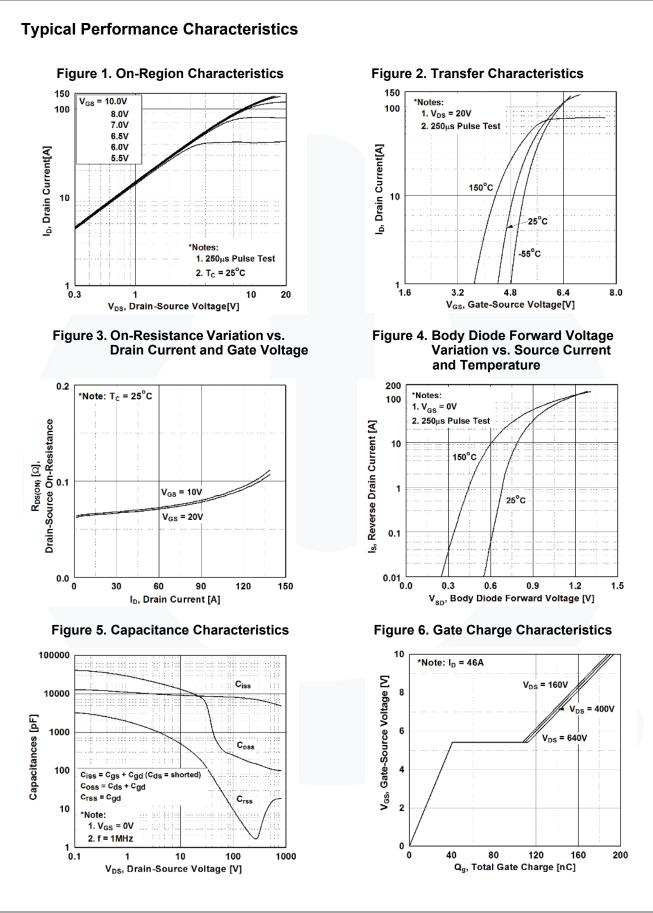
Absolute Maximum Ratings T_C = 25°C unless otherwise noted.

Symbol		FCH085N80_F155	Unit			
V _{DSS}	Drain to Source Voltage	800	V			
V _{GSS}	Cata ta Sauraa Vialtaga	- DC	- DC		V	
	Gate to Source Voltage	- AC	(f > 1 Hz)	±30	- V	
ID	Drain Current	- Continuous (T _C = 25 ^o C)	46	•		
	Drain Current	- Continuous ($T_c = 100^{\circ}C$)		29	A	
I _{DM}	Drain Current	- Pulsed	(Note 1)	138	A	
E _{AS}	Single Pulsed Avalanche Energy (Note 2)			1701	mJ	
I _{AR}	Avalanche Current	9.2	A			
E _{AR}	Repetitive Avalanche Energy (Note 1)			4.4	mJ	
dv/dt	MOSFET dv/dt	100	V/ns			
	Peak Diode Recovery dv/dt (Note 3)			20		
P _D	Dawan Diagin ation	(T _C = 25 ^o C)		446	W	
	Power Dissipation	- Derate Above 25°C		3.5	W/ºC	
T _J , T _{STG}	Operating and Storage Temperature Range			-55 to +150	°C	
TL	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds			300	°C	

Thermal Characteristics

Symbol	Parameter	FCH085N80_F155	Unit	
$R_{\theta JC}$	Thermal Resistance, Junction to Case, Max.	0.28	°C/W	
R _{0JA}	Thermal Resistance, Junction to Ambient, Max.	40.0	-0/00	

April 2016

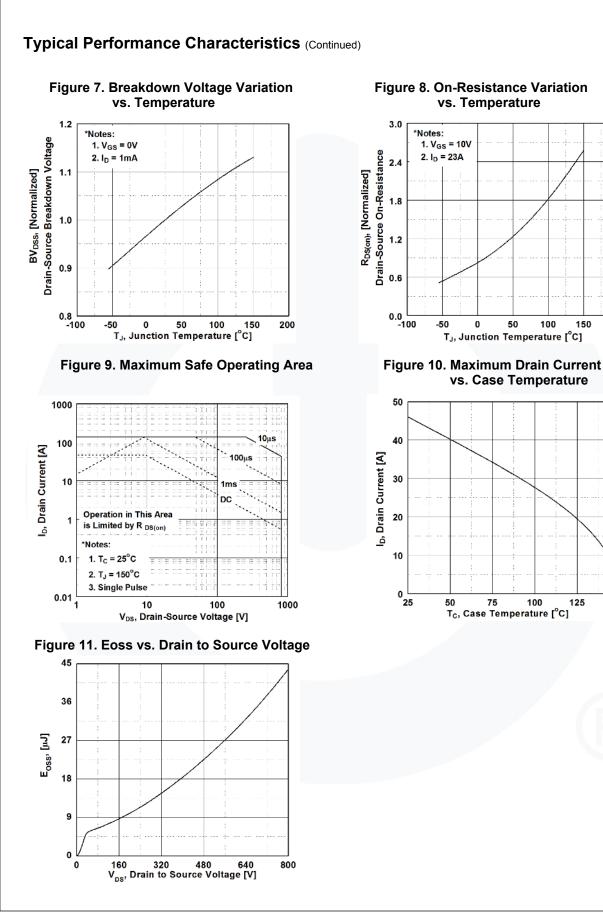

Part Nu	Part Number Top Mark		Package	Packing Method Reel Size		Тар	e Width	Quar	ntity
FCH085N8	· · · · · · · · · · · · · · · · · · ·		TO-247 G03		N/A	N/A		30 units	
Electrica	I Chara	acteristics ⊤ c =	= 25ºC unless c	otherwise noted.					
Symbol		Parameter		Test Condit	tions	Min.	Тур.	Max.	Unit
Off Charac	teristics	5							
BV _{DSS}	Drain to Source Breakdown Voltage		/oltage	V _{GS} = 0 V, I _D = 1 mA, T _J = 25°C		800	-	-	V
ΔBV_{DSS}	Breakdown Voltage Temperature Coefficient		0	$I_D = 1$ mA, Referenced to 25°C					
$/\Delta T_J$						-	0.8	-	V/°C
I	Zoro Co	Coto Valtago Droin Current		V_{DS} = 800 V, V_{GS} = 0	V	-	-	25	
DSS	Zero Gate Voltage Drain Current		ent	$V_{DS} = 640 \text{ V}, V_{GS} = 0 \text{ V}, T_{C} = 125^{\circ}\text{C}$		-	-	250	μΑ
I _{GSS}	Gate to Body Leakage Current		nt	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$		-	-	±100	nA
On Charac	toristics							·	-
V _{GS(th)}		reshold Voltage		$V_{GS} = V_{DS}, I_{D} = 4.6 \text{ m}$	ıA	2.5	-	4.5	V
R _{DS(on)}		rain to Source On Re	sistance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 23 \text{ A}$		-	67	85	mΩ
9FS	_	Transconductance		$V_{DS} = 20 \text{ V}, \text{ I}_{D} = 23 \text{ A}$		-	55	-	S
Dynamic C	haracte	ristics							
C _{iss}	Input Ca	pacitance		V _{DS} = 100 V, V _{GS} = 0 V, f = 1 MHz		-	8140	10825	pF
C _{oss}	Output 0	Capacitance				-	255	340	pF
C _{rss}	Reverse	Transfer Capacitanc	,e			-	10	-	pF
C _{oss}	Output Capacitance		V_{DS} = 480 V, V_{GS} = 0			1000		pF	
C _{oss(eff.)}	Effective Output Capacitance			V_{DS} = 0 V to 480 V, V_{GS} = 0 V		-	728	-	pF
Q _{g(tot)}	Total Ga	ate Charge at 10V		$V_{DS} = 640 \text{ V}, \text{ I}_{D} = 46 \text{ A},$		-	196	255	nC
Q _{gs}	Gate to	Source Gate Charge		V _{GS} = 10 V		-	40	-	nC
Q _{gd}	Gate to	Drain "Miller" Charge		(Note 4)		-	72	-	nC
ESR	Equivale	ent Series Resistance		f = 1 MHz		-	0.8	-	Ω
Switching	Charact	eristics							
t _{d(on)}	Turn-On	Delay Time				-	45	100	ns
t _r	Turn-On	Rise Time		$V_{DD} = 400 \text{ V}, \text{ I}_{D} = 46 \text{ A},$ $V_{GS} = 10 \text{ V}, \text{ R}_{g} = 4.7 \Omega$		-	55	120	ns
t _{d(off)}	Turn-Off	Delay Time					160	330	ns
t _f	Turn-Off	Fall Time		(Note 4)			35	80	ns
Drain-Sou	rce Diod	le Characteristic	s						
I _S	Maximum Continuous Drain to Source Diode Forward Current					-	-	46	Α
I _{SM}	Maximum Pulsed Drain to Source Diode For			rward Current		-	-	138	Α
V _{SD}	Drain to Source Diode Forward Voltage		V _{GS} = 0 V, I _{SD} = 46 A		-	-	1.2	V	
t _{rr}	Reverse	Reverse Recovery Time $V_{GS} = 0 V, I_{SD} = 46 A,$		-	800	-	ns		
Q _{rr}	Reverse			$dI_{F}/dt = 100 A/\mu s$		-	32	-	μC

1. Repetitive rating: pulse width limited by maximum junction temperature.

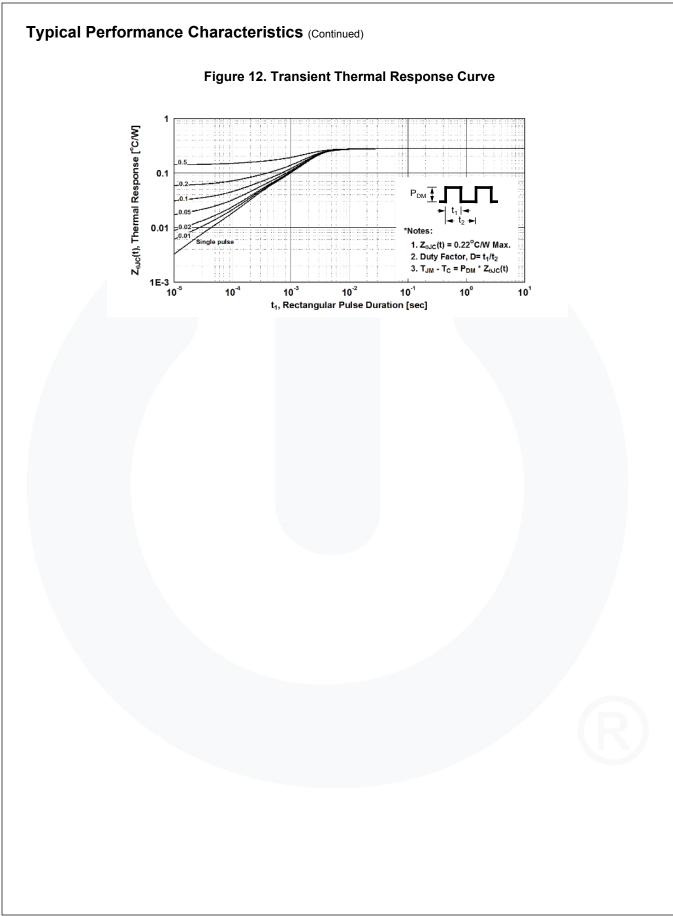
 $\begin{array}{l} 2. \ I_{AS} = 9.2 \ \text{A}, \ V_{DD} = 50 \ \text{V}, \ \text{R}_{G} = 25 \ \Omega, \ \text{Starting} \ \text{T}_{J} = 25^{\circ}\text{C} \\ 3. \ I_{SD} \leq 46 \ \text{A}, \ \text{di/dt} \leq 200 \ \text{A} / \mu\text{s}, \ \text{V}_{DD} \leq \text{BV}_{DSS}, \ \text{Starting} \ \text{T}_{J} = 25^{\circ}\text{C} \\ \end{array}$

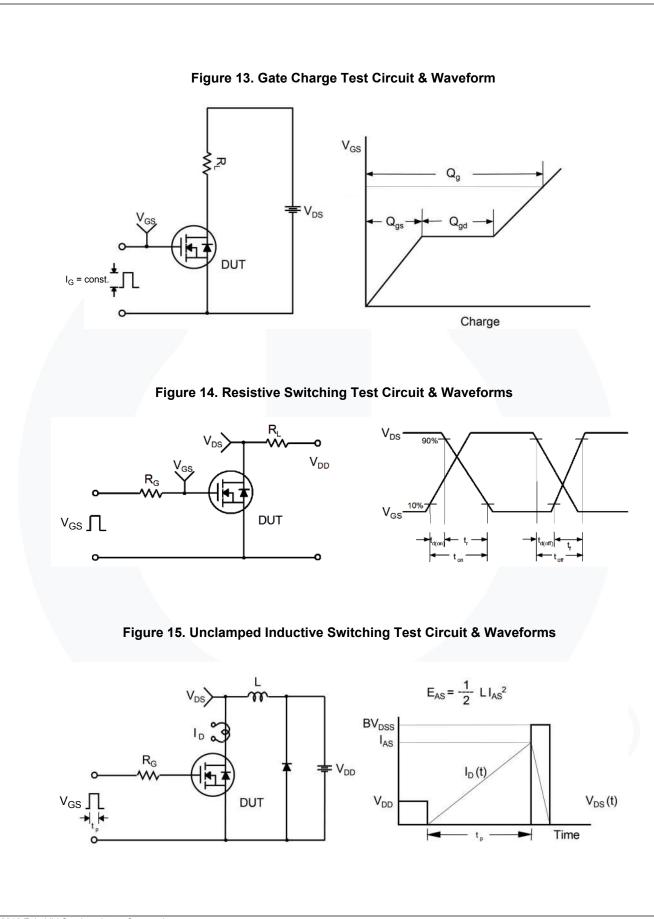
Essentially independent of operating temperature typical characteristics.

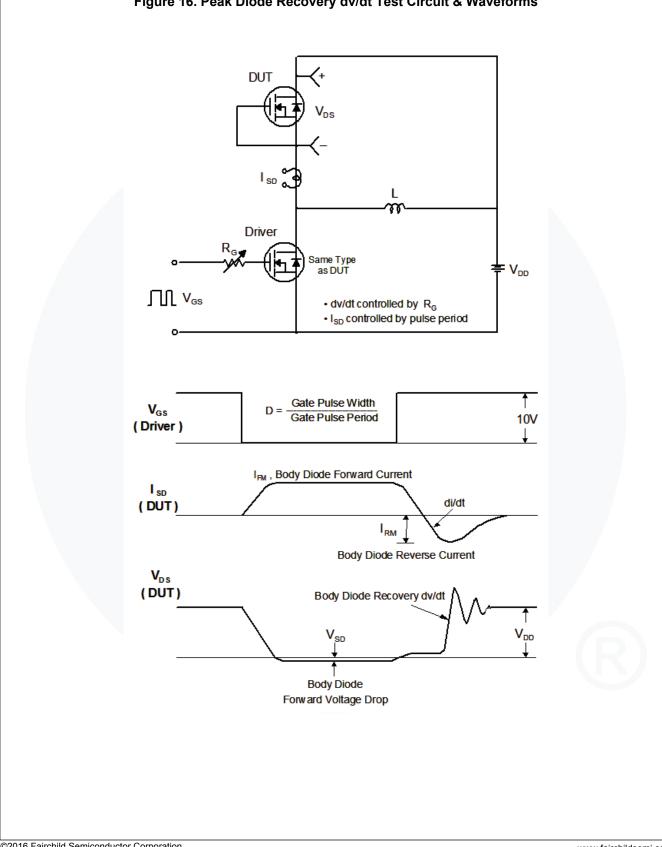
FCH085N80 — N-Channel SuperFET[®] II MOSFET

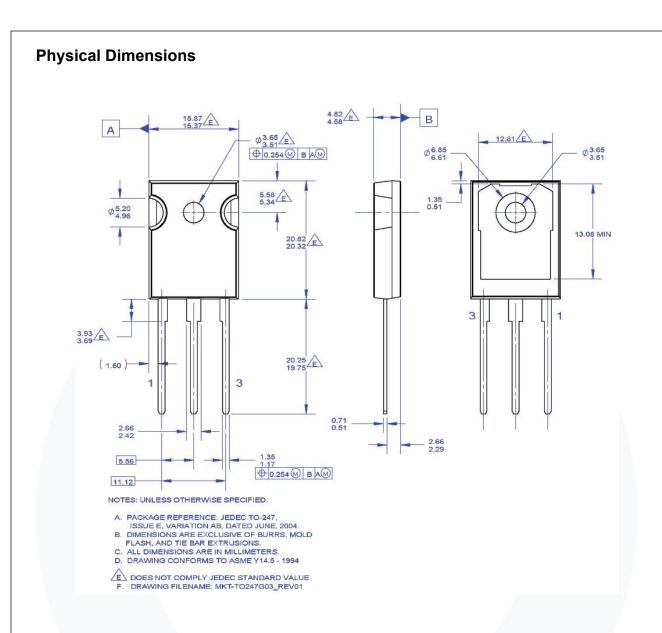


FCH085N80 — N-Channel SuperFET[®] II MOSFET


150


200


150



©2016 Fairchild Semiconductor Corporation FCH085N80 Rev. 1.0

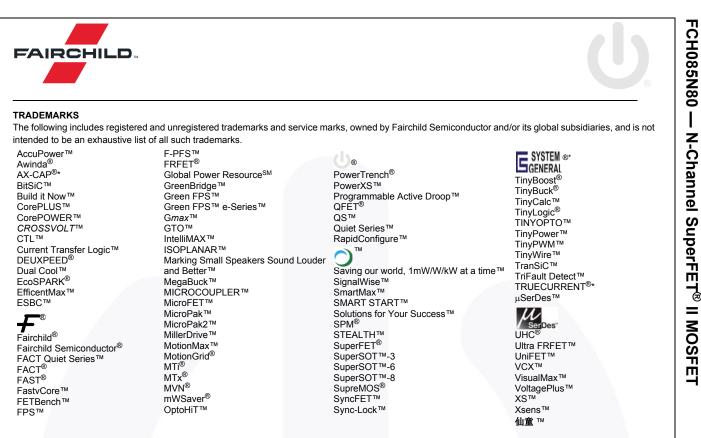


Figure 17. TO-247, MOLDED, 3 LEAD, JEDEC AB LONG LEADS (Active)

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TO247-0A3

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild directly or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts buying direct or from authorized distributors. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition			
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.			
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.			
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.			
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.			