Galvanic isolated octal high side smart power solid state relay with SPI interface #### **Features** - V_{CC} operating range: 10.5 V to 45 V - I_{OUT} operating range: ≤ 0.7 A (per channel) - $R_{DS(on)} = 0.120 \Omega$ (per channel) - · 20MHz SPI interface with daisy chaining - 5 V and 3.3 V TTL/CMOS and MCU compatible I/Os - · Common output enable/disable pin - Fast demagnetization of inductive loads (V_{DEMAG(TYP)} = V_{CC} 50 V - · Reset function for IC outputs disable - · Very low supply current - · Undervoltage shutdown with auto restart and hysteresis - Short-circuit protection - Per-channel overtemperature protection - · Thermal independence of separate channels - · Case overtemperature protection - · Loss of Ground and Supply protections - Overvoltage protection (V_{CC} clamping) - · Common OVT fault open drain output - · Power GOOD open drain output - · High common mode transient immunity - ESD protection - Designed to meet IEC 61000-4-2, IEC 61000- 4-4, IEC 61000-4-5 and IEC 61000-4-8 - UL1577 and UL508 certified ### Product status link ISO8200AQ | Product summary | | | | | | | |-----------------|-----------------------|-------|--|--|--|--| | Order code | ISO8200AQ ISO8200AQTF | | | | | | | Package | TFQ | FPN32 | | | | | | Packing | Tube Tape & Re | | | | | | ### Product label ### **Applications** - · Programmable logic control - · Industrial PC peripheral input/output - · Numerical control machines - Drivers for all type of loads (resistive, capacitive, inductive) ### 1 Description The ISO8200AQ is a galvanic isolated 8-channel driver featuring a very low supply current. It contains 2 independent galvanic isolated voltage domains (V_{CC} and V_{DD} for the Process and Control Logic stages, respectively). The IC is intended for driving any kind of load with one side connected to ground. The Control Logic Stage features an 8-bit Output Status Register (where the microcontroller sets the ON/OFF status of the output channels in the Process Stage) and an 8-bit Fault Register (where the OVT faults of each channel are stored). The two stages communicate through the galvanic isolation channel via an ST proprietary protocol. Active channel current limitation (OVL) combined with thermal shutdown (OVT), independent for each channel, protects the device against overload and overtemperature. Additional embedded functions include loss of ground protection, V_{CC} and V_{DD} UVLOs (with hysteresis), watchdog and V_{CC} Power GOOD. An internal circuit provides an OR-wired not latched common ($\overline{\text{FAULT}}$) indicator signaling the channel OVT. The ($\overline{\text{PGOOD}}$) diagnostic pin is activated if V_{CC} falls below the power good internal threshold. Both ($\overline{\text{FAULT}}$) and ($\overline{\text{PGOOD}}$) pins are open drain, active low, fault indication pins. DS12812 - Rev 7 page 2/42 # 2 Block diagram VDD UVLO_{cc} UVLODD VCC SS OUT1 CLK OUT2 SDI GATE DRIVERS CONTROL LOGIC STAGE SDO PROCESS STAGE Galvanic Isolation TX/RX OUT8 OUT_EN **FAULT** LOAD CURRENT LIMITATION (x8) THERMAL JUNCTION (x8) PGOOD THERMAL CASE GND_{cc} Figure 1. Block diagram DS12812 - Rev 7 page 3/42 # 3 Pin connection OUT1 18 0UT1 VDD 20 OUT2 OUT2 OUT_EN OUT3 $\overline{\text{SS}}$ OUT3 CLK OUT4 SDI OUT4 $\overline{\text{PGOOD}}$ OUT5 NC $TAB(V_{CC}) = VCC$ OUT5 NC OUT6 NC OUT6 NC OUT7 NC OUT7 SDO 31 OUT8 FAULT 32 OUT8 GND_{DD} GND_CC NC $TAB(GND_{cc}) = GND_{cc}$ Figure 2. Pin connection (top through view) Table 1. Pin description | Pin | Name | Description | |-----|-------------------|---| | 1 | GND _{DD} | Input Control Logic Stage ground, negative logic supply | | 2 | NC | Not connected | | 3 | GNDCC | Output power ground | | 4 | OUT8 | Channel 9 navior cutnut | | 5 | OUT8 | Channel 8 power output | | 6 | OUT7 | Channel 7 power output | | 7 | OUT7 | Chainer / power output | | 8 | OUT6 | Channel 6 power output | | 9 | OUT6 | Chainer o power output | | 10 | OUT5 | Channel 5 newer cutnut | | 11 | OUT5 | Channel 5 power output | | 12 | OUT4 | Channel 4 newer cutnut | | 13 | OUT4 | Channel 4 power output | | 14 | OUT3 | Channel 3 power output | DS12812 - Rev 7 page 4/42 | Pin | Name | Description | |-------------------------|-------------------|---| | 15 | OUT3 | Channel 3 power output | | 16 | OUT2 | Channel 2 power output | | 17 | OUT2 | Charmer 2 power output | | 18 | OUT1 | Channel 1 power output | | 19 | OUT1 | Chainlei i powei output | | 20 | VDD | Positive Control Logic Stage supply | | 21 | OUT_EN | Output enable | | 22 | SS | Chip select | | 23 | CLK | Serial Clock Digital Input | | 24 | SDI (MOSI) | SPI device Input | | 25 | PGOOD | Power Good diagnostic pin - active low | | 26 | NC | Not connected | | 27 | NC | Not connected | | 28 | NC | Not connected | | 29 | NC | Not connected | | 30 | NC | Not connected | | 31 | SDO (MISO) | SPI device Output | | 32 | FAULT | Common fault diagnostic pin - active low | | TAB(V _{CC}) | VCC | Exposed tab internally connected to V _{CC} , positive Process Stage supply voltage | | TAB(GND _{CC}) | GND _{CC} | Exposed tab internally connected to GNDcc (ground of Process Stage) | DS12812 - Rev 7 page 5/42 # 4 Absolute maximum ratings Table 2. Absolute maximum ratings | Symbol | Parameter | Min. | Max. | Unit | |---|--|------|------------------------|------| | V _{CC} | Process Stage supply voltage | -0.3 | +45 | V | | V _{DD} | Control Logic Stage supply voltage | -0.3 | +6.5 | V | | V _{IN} | DC Input pins voltage (INx, SS, CLK, SDI, OUT_EN) | -0.3 | +6.5 | ٧ | | V _{FAULT} , V _{PGOOD} | FAULT and PGOOD pins voltage | -0.3 | +6.5 | V | | I _{GNDdd} | DC digital ground reverse current | - | -25 | mA | | I _{OUT} | Channel Output Current (continuous) | - | Internally limited | Α | | I _{GNDcc} | DC power ground reverse current | - | -250 | mA | | I _{RX} | Single channel reverse output current (from OUTX pins to V _{CC}) | - | -5 | Α | | I _{RT} | Total reverse output current (from OUTX pins to V _{CC}) @ T _{AMB} 25°C | - | -12 | Α | | I _{IN} | DC Input pins current (INx, SS, CLK, SDI, OUT_EN) | -10 | +10 | mA | | I _{FAULT} , I _{PGODD} | FAULT and PGOOD pins current | -10 | +10 | mA | | V _{ESD} | Electrostatic discharge with Human Body Model (R = 1.5K Ω; C = 100 pF) | - | 2000 | V | | EAS | Single pulse avalanche energy per channel not simultaneously @ T_{AMB} = 125 °C, I_{OUT} = 0.5 A | - | 1.8 | J | | EAS | Single pulse avalanche energy per channel, all channels driven simultaneously @T _{AMB} = 125 °C, I _{OUT} = 0.5 A | - | 0.35 | J | | P _{TOT} | Power dissipation at T _c = 25 °C | - | Internally limited (1) | W | | T _J | Junction operating temperature | - | Internally limited (1) | °C | | T _{STG} | Storage temperature | - | -55 to 150 | °C | ^{1.} Protection functions are intended to avoid IC damage in fault conditions and are not intended for continuous operation. Continuous or repetitive operation of protection functions may reduce the IC lifetime. DS12812 - Rev 7 page 6/42 # 5 Thermal data Table 3. Thermal data | Symbol | Parameter | Max. value | Unit | |------------------------|---|------------|------| | R _{th j-case} | Thermal resistance, junction-to-case ⁽¹⁾ | 1 | | | R _{th j- amb} | Thermal resistance, junction-to-ambient (2) | 25 | °C/W | | R _{th j- amb} | Thermal resistance, junction-to-ambient (3) | 15 | | - 1. Rth between the die and the bottom case surface measured by cold plate as per JESD51. - 2. JESD51-7. - 3. IC mounted on the product evaluation board (FR4, 4 layers, 8 cm² for each layer, copper thickness 35 mm). DS12812 - Rev 7 page 7/42 # 6 Electrical characteristics 10.5 V < V $_{CC}$ < 36 V; -40 °C < T $_{J}$ < 125 °C, unless otherwise specified. Table 4. Power section | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |--------------------------|---|---|------|------|------|------| | V _{CC(THON)} | V _{CC} undervoltage turn-on threshold | | | 9.5 | 10.5 | V | | V _{CC(THOFF)} | V _{CC} undervoltage turn-off threshold | | 8 | 9 | | V | | V _{CC(HYS)} | V _{CC} undervoltage hysteresis | | 0.25 | 0.5 | | V | | V _{CCclamp} | Clamp on VCC pin | I _{clamp} = 20 mA | 45 | 50 | 52 | V | | V _{CC(PGON)} | V _{CC} Power Good turn-on threshold | V _{DD} = 3.3 V, VCC increasing | | 17.5 | 18.4 | V | | V _{CC(PGOFF)} | V _{CC} Power Good turn-off threshold | V _{DD} = 3.3 V, VCC decreasing | 15.2 | 16.5 | | V | | V _{CC(PG- HYS)} | V _{CC} Power Good hysteresis | | | 1 | | V | | D | ON state assistance | I _{OUT} = 0.5 A, T _J = 25 °C | | 0.12 | | | | R _{DS(ON)} | ON state resistance | I _{OUT} = 0.5 A, T _J = 125 °C | | | 0.24 | Ω | | R _{PD} | Output pull-down resistor | | | 210 | | kΩ | | I | Douger cumply current | All channels in OFF state | | 5 | | m 1 | | I _{CC} | Power supply current | All channels in ON state | | 9 | | mA | | I _{LGND} | Ground disconnection output current | V _{CC} = VGND = 0 V V _{OUT} = -24 V | | | 500 | μA | | V _{OUT(OFF)} | OFF state output voltage | Channel OFF and I _{OUT} = 0 A | | | 1 | V | | I _{OUT(OFF)} | OFF state output current | Channel OFF and V _{OUT} = 0 V | | | 5 | μA | Table 5. Digital supply voltage | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |------------------------|---|--|------|------|------|------| | V_{DD} | Operating voltage range | - | 2.75 | - | 5.5 | V | | V _{DD(THON)} | V _{DD} undervoltage turn-on threshold | - | 2.55 | - | 2.75 | V | | V _{DD(THOFF)} | V _{DD} undervoltage turn-off threshold | - | 2.45 | - | 2.65 | V | | V _{DD(HYS)} | V _{DD} undervoltage hysteresis | - | 0.04 | 0.1 | - | V | | l | V cumply current | V _{DD} = 5 V and SPI not transmitting | - | 4.5 | 6 | mA | | I _{DD} | V _{DD} supply current | V _{DD} = 3.3 V and SPI not transmitting | - | 4.4 | 5.9 | mA | Table 6. Diagnostic pin and output protection function | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |---------------------|---|---|------|------|------|------| | V _{FAULT} | FAULT pin open drain voltage output low | I _{FAULT} = 5 mA | | | 0.4 | V | | I _{LFAULT} | FAULT output leakage current | V _{FAULT} = 5 V | | | 1 | μA | | V _{PGOOD} | PGOOD pin open drain voltage output low | I _{PGOOD} = 5 mA | | | 0.4 | V | | I _{LPGOOD} | PGOOD output leakage current | V _{PGOOD} = 5 V | | | 1 | μA | | I _{PEAK} | Maximum DC output current before limitation | V_{CC} = 24 V R_{LOAD} = 0 Ω | | 1.6 | | Α | DS12812 - Rev 7 page 8/42 | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |--------------------|----------------------------------|---|---------------------|---------------------|---------------------|------| | I _{LIM} | Short-circuit current limitation | $V_{CC} = 24 \text{ V R}_{LOAD} = 0 \Omega$ | 0.7 | 1.3 | 1.9 | Α | | Hyst | ILIM tracking limits | TOC TITLEDAD TIT | | 0.3 | | Α | | T _{JSD} | Junction shutdown temperature | | 150 | 170 | | °C | | T _{JR} | Junction reset temperature | | | 150 | | °C | | T _{JHYST} | Junction thermal hysteresis | | | 20 | | °C | | T _{CSD} | Case shutdown temperature | | 115 | 130 | 145 | °C | | T _{CR} | Case reset temperature | | | 110 | | °C | | T _{CHYST} | Case thermal hysteresis | | | 20 | | °C | | V _{DEMAG} | Output voltage at turn-off | I _{OUT} = 0.5 A; I _{LOAD} >= 1 mH | V _{CC} -45 | V _{CC} -50 | V _{CC} -52 | V | Table 7. Power switching characteristics (V_{CC} = 24 V; -40°C < T_J < 125°C) | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |------------------------|---|---|------|------|------|------| | dV/dt(ON) | Turn-on voltage slope | I_{OUT} = 0.5 A, resistive load 48 Ω | - | 5.6 | - | V/µs | | dV/dt(OFF) | Turn-off voltage slope | I_{OUT} = 0.5 A, resistive load 48 Ω | - | 2.81 | - | V/µs | | td(ON) | Turn-on delay time (see Figure 5) | I_{OUT} = 0.5 A, resistive load 48 Ω | - | 17 | 22 | μs | | td(OFF) | Turn-off delay time (see Figure 5) | I_{OUT} = 0.5 A, resistive load 48 Ω | - | 22 | 40 | μs | | tf | Fall time (see Figure 4) | I_{OUT} = 0.5 A, resistive load 48 Ω | - | 5 | - | μs | | tr | Rise time (see Figure 4) | I_{OUT} = 0.5 A, resistive load 48 Ω | - | 5 | - | μs | | t _{w(OUT_EN)} | OUT_EN pulse width (see Figure 10, Figure 11) | I_{OUT} = 0.5 A, resistive load 48 Ω | 150 | - | - | ns | | t _{p(OUT_EN)} | OUT_EN propagation delay (see Figure 10, Figure 11) | I_{OUT} = 0.5 A, resistive load 48 Ω | - | 22 | 40 | μs | Figure 3. R_{DS(on)} measurement DS12812 - Rev 7 page 9/42 Figure 4. dV/dT definition Figure 5. td(ON)-td(OFF) definition Table 8. Logic inputs and output | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |-----------------|--|-----------------|-----------------------|------|-------------------------|------| | V _{IL} | SS, CLK, SDI and OUT_EN low level voltage | - | -0.3 | - | 0.3 x V _{DD} | V | | V _{IH} | SS, CLK, SDI and OUT_EN high level voltage | - | 0.7 x V _{DD} | - | V _{DD}
+0.3 | V | DS12812 - Rev 7 page 10/42 | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |----------------------|------------------------------------|--------------------------|----------------------|------|------|------| | V _{I(HYST)} | SS, CLK, SDI and OUT_EN hysteresis | V _{DD} = 5 V | - | 100 | - | mV | | I _{IN} | SS, CLK, SDI and OUT_EN current | V _{IN} = 5 V | 10 | - | - | μA | | V _{SDOH} | SDO high level voltage | I _{SDO} = -1 mA | V _{DD} -0.2 | - | - | V | | V _{SDOL} | SDO low level voltage | I _{SDO} = +2 mA | - | - | 0.2 | V | Table 9. Serial interface timings (V_{DD} = 5 V; V_{CC} = 24 V; -40°C < T_J < 125°C) | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |---------------------|--|--------------------------------|------|------|------|------| | fCLK | SPI clock frequency | - | - | - | 20 | MHz | | T _{CLK} | SPI clock period | - | 50 | - | - | ns | | tr(CLK) tf(CLK) | SPI clock rise/fall time (see Figure 7, Figure 8) | - | - | - | 5 | ns | | tsu(SS) | SS setup time (see Figure 7, Figure 8) | - | 80 | - | - | ns | | th(SS) | SS hold time (see Figure 7, Figure 8) | - | 80 | - | - | ns | | tc(SS) | SS disable time (see Figure 7, Figure 8) | - | 20 | - | - | μs | | tw(CLK) | CLK high time (see Figure 7, Figure 8) | - | 15 | - | - | ns | | tsu(SDI) | Data input setup time (see Figure 7, Figure 8) | - | 6 | - | - | ns | | th(SDI) | Data input hold time (see Figure 7, Figure 8) | - | 6 | - | - | ns | | ta(SDO) | Data output access time (see Figure 7, Figure 8) | R _{PULL-DOWN} = 300 Ω | - | - | 25 | ns | | tdis(SDO) | Data output disable time (see Figure 7, Figure 8) | $C_{I,OAD} = 50 \text{ pF}$ | - | - | 20 | ns | | tv(SDO) | Data output valid time (see Figure 7, Figure 8) | О СОДО – 30 рі | - | - | 20 | ns | | _ | Jitter on single channel t _{CYCLE (SS)} = 20 μs | - | - | - | 6 | μs | | t _{JITTER} | Jitter on single channel t _{CYCLE (SS)} < 20 μs | - | - | - | 20 | | Table 10. Internal communication timings (V_{DD} = 5 V; V_{CC} = 24 V; -40°C < T_J < 125°C) | Symbol | Parameter | Test condition | Min. | Тур. | Max. | Unit | |----------------------|---------------|----------------|------|------|------|------| | f _{refresh} | Refresh delay | - | - | 15 | - | kHz | | t _{WD} | Watchdog time | - | 272 | 320 | 400 | μs | Table 11. Insulation and safety-related specifications | Symbol | Parameter | Test conditions | Value | Unit | |--------|--|--|-------|------| | CLR | Clearance (minimum external air gap) | Measured from input terminals to output terminals, shortest distance through air | 3.3 | mm | | CPG | Creepage (minimum external tracking) | Measured from input terminals to output terminals, shortest distance path along body | 3.3 | mm | | СТІ | Comparative tracking index (tracking resistance) | DIN IEC 112/VDE 0303 part 1 | ≥600 | V | | | Isolation group | Material group (DIN VDE 0110, 1/89, Table 1) | I | - | DS12812 - Rev 7 page 11/42 Table 12. Insulation characteristics | Symbol | Parameter | Value | Unit | | |-----------------------|----------------------------------|--|------------------|-------------------------------------| | IEC 6074 | 7-5-5 | | | | | V _{IORM} | Maximum working isolation | - | 937 | V _{PEAK} | | V_{PR} | Input-to-output test voltage | Method a, type test, V _{PR} = V _{IORM} x 1.6, tm = 10s partial discharge < 5 pC | 1500 | V _{PEAK} | | -110 | input-to-output test voltage | Method b, 100% production test, $V_{PR} = V_{IORM} \times 1.875$, tm = 1s
partial discharge < 5 pC | 1758 | V _{PEAK} | | V _{IOTM} | Transient overvoltage | Type test; t _{ini} = 60 s | 4245 | V _{PEAK} | | V _{IOSM} | Maximum surge insulation voltage | Type test | 4245 | V _{PEAK} | | R _{IO} | Insulation resistance | V _{IO} = 500 V at ts | >10 ⁹ | Ω | | UL1577 | | | | | | V _{ISO} | Insulation withstand voltage | 1 min. type test | 2500/3536 | V _{rms} /V _{PEAK} | | V _{ISO} test | Insulation withstand test | 1 sec. 100% production | 3000/4245 | V _{rms} /V _{PEAK} | **Table 13. Safety limits** | Symbol | Parameter | Test conditions | | Unit | | | | |-----------------------------|------------------------------------|---|-----|------|--|--|--| | Input safe | Input safety, Logic side | | | | | | | | T_{SI} | Safety temperature of Logic side | - | 150 | °C | | | | | P _{SI} | Safety power of Logic side | $VDD \le 6.5V$, $V_{LOGIC(x)} \le 6.5V$, $I_{LOGIC(x)} \le 10$ mA, $T_J \le T_{SI}$ | 0.9 | W | | | | | Output safety, Process side | | | | | | | | | T_{SO} | Safety temperature of Process side | - | 150 | °C | | | | | P _{SO} | Safety power of Logic side | VCC ≤ 36V, I _{OUT(x)} ≤ 1.5mA, T _J ≤ T _{SO} | 5 | W | | | | The above limits are measured according to VDE 0884-11. Respecting the above limits prevents potential damage to the isolation barrier upon failure on logic or process side circuitry. The user should apply these values to protect the IC and ensure the safety of the embedded isolation barrier. LOGIC(x) stands for any pin on the logic side; OUT(x) stands for any of the 8 output pins on the process side. DS12812 - Rev 7 page 12/42 #### 7 Serial interface #### 7.1 Functional description An integrated SPI peripheral provides a fast communication interface between an external microcontroller and the IC to drive the Power Stage outputs and monitor the per-channel OVT diagnostic information of the device. Daisy chaining is supported. It follows the timing requirement established by the synchronous serial communication standard and works up to 20 MHz communication speed. The communication implemented expects 8-bit data communication; the frame sent by the microcontroller only contains the status of the channels (ON or OFF), while the frame received by the microcontroller contains information regarding channel fault status (bit "0" for a running channel represents normal operation; bit 1 represents a fault condition). Table 14. SDI frame | MSB | | | | | | | LSB | |-----|-----|-----|-----|-----|-----|-----|-----| | IN7 | IN6 | IN5 | IN4 | IN3 | IN2 | IN1 | IN0 | Table 15, SDO frame | MSB | | | | | | | LSB | |-----|----|----|----|----|----|----|-----| | F7 | F6 | F5 | F4 | F3 | F2 | F1 | F0 | #### 7.2 Serial data in (SDI) This pin is the IC input of the serial command frame (MOSI). SDI reads on CLK rising edges and so the microcontroller changes SDI state during CLK falling edges. The bits sent through the SDI line are shifted in the internal Output Status Register. In daisy chain communication, the microcontroller keeps the \overline{SS} low after the 8th bit to allow the shift of the Output Status Register to the SDO line. The bits in the Output Status Register are frozen by the internal logic when the \overline{SS} goes high. ### 7.3 Serial data out (SDO) This pin is the IC output of the serial fault frame (MISO). The information on SDO is updated on CLK falling edges, whereas the microcontroller reads the SDO frame on CLK rising edges, as established by standard. At communication startup, when the \overline{SS} falling edge is arriving, only the first bit of the frame is available. SDO pin is tri-stated when the \overline{SS} signal is high. In daisy chain communication and OUT_EN driven high, the SDO line transfers the content of the internal Output Status Register after the 8th CLK pulse. #### 7.4 Serial data clock (CLK) The CLK line is the IC input clock for serial data sampling. SDO is updated on CLK falling edges, and then sampled on the rising edge. The SDI line is sampled on SCK rising edges. When the \overline{SS} signal is high (slave not selected), the microcontroller should drive the CLK low (settings for MCU SPI port are CPHA = 0 and CPOL = 0). DS12812 - Rev 7 page 13/42 ### 7.5 Slave select (\overline{SS}) The slave select \overline{SS} signal is used to enable the ISO8200AQ serial communication shift register. Data is flushed in through the SDI pin and out from the SDO pin only when the \overline{SS} pin is low. On the \overline{SS} pin falling edge, the Fault Register (containing IC fault conditions) is frozen, so any change on the channel status is latched until the next \overline{SS} falling edge event, the SDO is enabled and the internal refresh is simultaneously disabled. On the \overline{SS} pin rising edge event, the 8 bits in the Output Status Register are frozen and the outputs of the Process Stage are driven accordingly. If more than 8 bits are flushed into the IC, only the last 8 are evaluated, the other bits are flushed out from the SDO pin after fault condition bits. This method allows proper communication even in daisy chain configuration. Figure 6. SPI mode diagram DS12812 - Rev 7 page 14/42 Figure 8. SPI output timing diagram ### 7.5.1 Watchdog The IC consists of two chips (Logic Stage and Process Stage) supplied by two independent and galvanic isolated sources (V_{DD}/GND_{DD} and V_{CC}/GND_{CC} pins, respectively). The IC provides a watchdog function in order to ensure a safe condition for the Process Stage when V_{DD} (or GND_{DD}) supply voltage is missing. At the end of each SPI communication, the channel status register on Logic Stage is ready to be transferred to the Process Stage: the IC resets the internal watchdog counter and turns ON/OFF the outputs accordingly only when the new output status configuration has been received at Process Stage. If the Logic Stage does not update the output status within t_{WD} , all the outputs of the Process Stage are disabled until a new update request is received (this also happens if \overline{SS} stays low for longer than t_{WD}). Independent of the SPI communication, the Logic Stage chip periodically sends a refresh signal to the Process Stage chip. The refresh signal is also considered a valid update signal to reset the timeout counter on the Process Stage, so the isolated side watchdog does not protect the system from a failure of the host controller (e.g., MCU freezing). Figure 9. Watchdog behavior #### 7.5.2 Output enable (OUT_EN) This pin provides a fast way to disable all the outputs simultaneously. When the OUT_EN pin is driven low for at least $t_{W \text{ (OUT_EN)}}$, all eight outputs are disabled. This timing execution is compatible with an external reset push from the operator and/or safety requirements. DS12812 - Rev 7 page 15/42 Note that the OUT_EN signal acts as a reset for the internal data register driving the output switches: when the OUT_EN is low, SDO is pulled down and the output stage is forced OFF. To re-enable SDO, it is necessary to raise the OUT_EN pin; to enable the output stage again, it is then necessary to raise the OUT_EN pin and send the desired output configuration by an SPI command. #### 7.6 FAULT and PGOOD indications The FAULT pin is an active low open drain output indicating fault conditions. This pin is activated when at least one of the following conditions occurs: - Junction overtemperature (TJX >TJSD) of one or more channels of the Process Stage. The MISO signal can be used to detect which channels are in thermal fault (per-channel OVT diagnostic) - No module-8 SPI communication (the number of bits sent through the SDI is not a multiple of 8) - Internal communication error. In fact, the IC is able to identify (and report to the microcontroller) if any errors occur in the data transmission between isolation. When it occurs, the output stage maintains the previous ON/OFF status. The PGOOD pin is an active low open drain output indicating whether the supply voltage of the Process Stage chip is lower than the internal threshold (see Figure 12). Note: When \overline{SS} signal is low the transmission between Control Logic Stage and Process Stage is inhibited and the status of \overline{PGOOD} is not refreshed (\overline{PGOOD} refresh time < 120 μ s). DS12812 - Rev 7 page 16/42 Figure 12. Power GOOD pin behavior ## 7.7 Truth table Table 16. Truth table | x = | maıntaın | the | previous | condition. | |-----|----------|-----|----------|------------| | Condition | Status register BIT _x | OUTx | Fault register BIT _x | FAULT | PGOOD | | |--|----------------------------------|------------|---------------------------------|-----------------|-----------------|--| | Normal aparation | 1 | ON | 0 | LL (not active) | LL (not active) | | | Normal operation | 0 | OFF | 0 | H (not active) | H (not active) | | | Thermal Junction (T _{JX} > T _{JSD}) | 1 | OFF | 1 | L (active) | Don't care | | | Thermal Junction (TJX2 TJSD) | 0 | OFF | 1 | H (not active) | Don't care | | | Thermal Case T _C > T _{CSD} | Sec | e Figure 2 | 20 | Don't care | Don't care | | | V _{CC} UVLO FAULT | 0 | OFF | × | X | L (active) | | | (Figure 12) | 1 | OFF | ^ | ^ | L (active) | | | POWER GOOD FAULT | 1 | ON | Don't care | Don't care | L (active) | | | (Figure 12) | 0 | OFF | Dont care | Dont cale | L (active) | | | V _{DD} UVLO
(Watchdog) | X | OFF | X | H (not active) | H (not active) | | | SPI FAULT
(module-8 violation) | Х | Х | Don't care | L (active) | Don't care | | | Internal communication error | X | Х | X | L (active) | Don't care | | DS12812 - Rev 7 page 17/42 #### 7.7.1 Junction overtemperature The thermal status of the device is updated during each transmission sequence between the two isolated stages. When \overline{SS} is low, the communication between the two stages is disabled. In this case, the thermal status of the device cannot be updated, and the \overline{FAULT} indication may be different to the actual status. In any case, the thermal protections of the channel outputs in the Process Stage are always operative. Thermal fault Internal refresh Tx/Rx Tx/Rx Tx/Rx t Figure 13. Thermal status update DS12812 - Rev 7 page 18/42 ### 8 Power section #### 8.1 Current limitation The current limitation process is activated when the current sense connected on the output stage measures a current value higher than a fixed threshold. When this condition is verified, the gate voltage is modulated to avoid output current increasing over the limitation value. The following figures (where BIT_X is intended as Xth bit of the Output Status Register) show typical output current waveforms with different load conditions. DS12812 - Rev 7 page 19/42 #### 8.2 Thermal protection The device is protected against overheating due to overload conditions. During driving period, if the output is overloaded, the device suffers two different thermal stresses, the first one related to the junction, and the second related to the case. The two faults have different trigger thresholds: the junction protection threshold (T_{JSD}) is higher than that of the case protection (T_{CSD}) . Generally, the first protection that is activated in thermal stress conditions is the junction thermal shutdown. The output is turned off when the temperature is higher than the related threshold and turned back on when it falls below the reset threshold (T_{JR}) . This behavior continues while the fault on the output is present. If the thermal protection is active and the temperature of the package increases over the fixed case protection threshold, the case protection is activated, and the output is switched off and back on when the junction temperature of each channel in fault and case temperature are below the respective reset thresholds. DS12812 - Rev 7 page 20/42 Figure 20. Thermal protection flowchart DS12812 - Rev 7 page 21/42 Figure 22. Thermal protection and fault behavior (T_{CSD} triggered before T_{JSD}) DS12812 - Rev 7 page 22/42 # 9 Reverse polarity protection Reverse polarity protection can be implemented on board using two different solutions (or both, which is recommended): - 1. Placing a resistor (R_{GND}) between IC GND pin and load GND - 2. Placing a diode in parallel to a resistor between IC GND pin and load GND If option 1 is selected, the minimum resistance value must be selected according to the following equation: $$R_{GND} \ge \frac{V_{CC}}{I_{GND_{CC}}} \tag{1}$$ where $I_{GND_{CC}}$ is the DC reverse ground pin current and can be found in Table 2. The power dissipated by R_{GND} during reverse polarity is: $$P_D = \frac{\left(V_{CC}\right)^2}{R_{GND}} \tag{2}$$ If option 2 is selected, the diode has to be chosen by taking into account VRRM > $|V_{CC}|$ and its power dissipation capability: $$P_D \ge I_S \times V_F \tag{3}$$ Note: In normal operation (no reverse polarity), there is a voltage drop (ΔV) between GND of the device and GND of the system. Using option 1, ΔV = Rgnd * Icc. Using option 2, ΔV = VF@(IF). +Vdd +Vcc Inputi GNDdd GNDcc RGND Diode Load Figure 23. Reverse polarity protection Note: Input(i) is intended as any input pin on logic side. This schematic can be used with any type of load. DS12812 - Rev 7 page 23/42 # 10 Reverse polarity on VDD The reverse polarity on V_{DD} can be implemented on board by placing a diode between the GND_{DD} pin and GND digital ground. The diode must be chosen by taking into account VRRM >|VDD| and its power dissipation capability: $$P_D \ge I_{DD} \times V_F \tag{4}$$ Note: In normal operation (no reverse polarity), there is a voltage drop ($\Delta V = VF@(Idd)$) between GND_{DD} of the device and digital ground of the system. In order to guarantee to proper triggering of the input signal, $\Delta V(max.)$ must result lower than $V_{IH(MIN)}$. +Vdd +Vcc Inputi GNDdd GNDcc RGND Diode Load Figure 24. V_{DD} reverse polarity protection Note: Input(i) is intended as any input pin on logic side. DS12812 - Rev 7 page 24/42 # 11 Demagnetization energy Figure 25. Single pulse demagnetization energy vs. load current (Typical values at T_{AMB} = 125°C) DS12812 - Rev 7 page 25/42 # 12 Conventions ## 12.1 Supply voltage and power output conventions Figure 26. Supply voltage and power output conventions - (1): intended as any input pin on logic side - (2): intended as any open drain pin on logic side DS12812 - Rev 7 page 26/42 # 13 Thermal information # 13.1 Thermal impedance Figure 27. Simplified thermal model of the process stage DS12812 - Rev 7 page 27/42 # 14 Daisy chaining The ISO8200AQ can be daisy-chained by connecting the MOSI port of the micro-controller to the SDI pin of the first IC of the chain; the SDO pin of the first IC of the chain to the SDI pin of the second (and similarly for the next ICs of chain); the SDO pin of the last IC of the chain to the MISO port of the micro-controller. See an example in figure Figure 28. Example of daisy chaining connection. The $t_{cycle(SS)}$ (Figure 7. SPI input timing diagram) must take into account of the internal communication timing ($f_{refresh}$ and $f_{refresh}$): it is recommended $f_{cycle(SS)}$ (max) < 136 μ s. The maximum number of ICs that can be daisy chained depends on the SPI clock frequency set by the micro-controller. Figure 28. Example of daisy chaining connection DS12812 - Rev 7 page 28/42 # 15 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. ### 15.1 TFQFPN32 package information Figure 29. TFQFPN32 package outline DS12812 - Rev 7 page 29/42 Figure 30. TFQFPN32 package detail outline Section A-A not in scale Table 17. TFQFPN32 package mechanical data | Dim | mm | | | | | | | |-------------------|-------|----------|-------|--|--|--|--| | Dim. | Min. | Тур. | Max. | | | | | | Α | 0.95 | 1.00 | 1.05 | | | | | | A1 | 0 | - | 0.05 | | | | | | A2 | - | 0.20 REF | - | | | | | | b ⁽¹⁾ | 0.20 | 0.25 | 0.30 | | | | | | b1 ⁽¹⁾ | 0.25 | 0.30 | 0.35 | | | | | | D | 10.90 | 11.0 | 11.10 | | | | | | E ⁽¹⁾ | 8.90 | 9.00 | 9.10 | | | | | | D2 | 4.30 | 4.40 | 4.50 | | | | | | E2 | 6.70 | 6.80 | 6.90 | | | | | | D3 | 1.40 | 1.50 | 1.60 | | | | | | E3 | 3.20 | 3.30 | 3.40 | | | | | | D4 | 1.13 | 1.23 | 1.33 | | | | | | E4 | 1.00 | 1.10 | 1.20 | | | | | | е | - | 0.65 | - | | | | | | e2 | - | 0.40 | - | | | | | | e3 | - | 1.05 | - | | | | | | e4 | - | 3.15 | - | | | | | | e5 | - | 4.85 | - | | | | | DS12812 - Rev 7 page 30/42 | Dim. | mm | | | | | | |------------------|------|------|------|--|--|--| | Dilli. | Min. | Тур. | Max. | | | | | k | 0 | 0.30 | - | | | | | z1 | - | 0.80 | - | | | | | z2 | - | 4.07 | - | | | | | z3 | - | 3.80 | - | | | | | z4 | - | 1.10 | - | | | | | z5 | - | 1.15 | - | | | | | z6 | - | 2.85 | - | | | | | L ⁽¹⁾ | 0.45 | 0.50 | 0.55 | | | | ^{1.} Dimensions "b" and "L" are measured on terminal plating surface. Table 18. Tolerance of form and position | Symbol | Tolerance of
form and
position | Definition | Notes | |--------|--------------------------------------|---|---| | Aaa | 0.15 | The bilateral profile tolerance that controls the position of the plastic body sides. The centers of the profile zones are defined by the basic dimensions D and E. | - | | Bbb | 0.10 | The tolerance that controls the position of the entire terminal pattern with respect to datums A and B. The center of the tolerance zone for each terminal is defined by the basic dimension "e" as related to datum's A and B. | - | | Ccc | 0.10 | The tolerance located parallel to the seating plane in which the top surface of the package must be located. | - | | ddd | 0.08 | The tolerance that controls the position of the terminals to each other. The centers of the profile zones are defined by basic dimension "e". | This tolerance is normally compounded with tolerance zone defined by bbb. | | eee | 0.08 | The unilateral tolerance located above the seating plane where in the bottom surface of all terminals must be located. | This tolerance is commonly known as the "coplanarity" of the package terminals. | | fff | 0.10 | Thetolerance that controls the position of the exposed metal heat feature. The center of the tolerance zone will be datum's defined by the centerlines of the package body. | - | | REF | - | - | No tolerance for A2 | DS12812 - Rev 7 page 31/42 Figure 31. TFQFPN32 suggested footprint (measured in mm) DS12812 - Rev 7 page 32/42 # 16 Packing information ### 16.1 TFQFPN32 packing information #### 16.1.1 TFQFPN32 packing method concept Packing Concept – Tape and Reel 13" in Dry Packing Desiccant Humidity Indicator Card Bag Bulk Label Plastic Reel opposite the label side of reel band Cover tape Carrier tape Enlongated Carrier tape Figure 32. TFQFPN32 packing method concept Figure 33. TFQFPN32 carrier tape DS12812 - Rev 7 page 33/42 Figure 34. TFQFPN32 reel Reel – 330 mm diameter x 101 mm hub x 24 mm width. ### 16.1.2 TFQFPN32 winding direction Top Cover Tape Sprocket Holes Carrier Tape Bar Code Label Area IC position Feeding direction Figure 35. TFQFPN32 winding direction DS12812 - Rev 7 page 34/42 #### 16.1.3 TFQFPN32 leader and trailer Figure 36. TFQFPN32 leader and trailer Note: Leader and trailer length as per EAI-481specification. DS12812 - Rev 7 page 35/42 # 17 Ordering information **Table 19. Ordering information** | Part number | Package | Packaging | |-------------|----------|---------------| | ISO8200AQ | TFQFPN32 | Tube | | ISO8200AQTR | TFQFPN32 | Tape and reel | DS12812 - Rev 7 page 36/42 # **Revision history** Table 20. Document revision history | Date | Version | Changes | |-------------|---------|--| | 31-Oct-2018 | 1 | Initial release. | | 3-Dec-2018 | 2 | Updated Figure 1 and Figure 28, amended Table 8 | | 2-Jun-2019 | 3 | Features updated. Table 1 & Table 2 modified. Figure replaced. | | 2-3011-2019 | | Small changes to the text. | | 23-Apr-2020 | 4 | Table 12 and 14 updated. Figure 29 replaced and Table 15 added. | | | | Throughout document: | | | | - Updated template, with minor content rearrangement and text edits | | 11-Oct-2020 | 5 | In Section 6 Electrical characteristics: | | | | - added Table 13. Safety limits | | | | Updated Section 7.2 Serial data in (SDI) | | 17-Dec-2020 | 6 | Updated Values in Table 7, 9, and 10 | | 30-Jul-2021 | 7 | Mentioned UL508 certification in the front page. Rephrased the logic and process stages synchronization in chapter Section 7.5.1 Watchdog. Rephrased chapter Section 14 Daisy chaining and added limitations on t _{cycle(SS)} . | DS12812 - Rev 7 page 37/42 # **Contents** | 1 | Description2 | | | | | |----|----------------------------|---------------------------|--|----|--| | 2 | Block diagram | | | | | | 3 | Pin connection | | | | | | 4 | Abso | Absolute maximum ratings6 | | | | | 5 | Ther | Thermal data7 | | | | | 6 | Electrical characteristics | | | | | | 7 | 7 Serial interface | | | 13 | | | | 7.1 | Function | onal description | 13 | | | | 7.2 | Serial | data in (SDI) | 13 | | | | 7.3 | Serial | data out (SDO) | 13 | | | | 7.4 | Serial | data clock (CLK) | 13 | | | | 7.5 | Slave | select (SS) | 14 | | | | | 7.5.1 | Watchdog | 15 | | | | | 7.5.2 | Output enable (OUT_EN) | 15 | | | | 7.6 | FAULT | Γ and PGOOD indications | 16 | | | | 7.7 | Truth t | table | 17 | | | | | 7.7.1 | Junction overtemperature | 18 | | | 8 | Pow | er secti | ion | | | | | 8.1 | Currer | nt limitation | 19 | | | | 8.2 | Therm | nal protection | 20 | | | 9 | Reve | erse po | larity protection | 23 | | | 10 | Reve | erse po | larity on VDD | 24 | | | 11 | Dem | agnetiz | zation energy | 25 | | | 12 | Conv | vention | ns | | | | | 12.1 | Supply | y voltage and power output conventions | 26 | | | 13 | Ther | mal inf | formation | | | | | 13.1 | Therm | nal impedance | 27 | | | 14 | Daisy chaining28 | | | | | | 15 | Package information29 | | | | | | | 15.1 | TFQFP | N32 package information | 29 | |------------------------|-------|----------|---------------------------------|----| | 16 Packing information | | | ormation | 33 | | | 16.1 | TFQFP | N32 packing information | 33 | | | | 16.1.1 | TFQFPN32 packing method concept | 33 | | | | 16.1.2 | TFQFPN32 winding direction | 34 | | | | 16.1.3 | TFQFPN32 leader and trailer | 35 | | 17 | Orde | ring inf | ormation | 36 | | Rev | ision | history | | 37 | # **List of figures** | rigure 1. | Block diagram | . ა | |------------|---|-----| | Figure 2. | Pin connection (top through view) | . 4 | | Figure 3. | R _{DS(on)} measurement | . 9 | | Figure 4. | dV/dT definition | 10 | | Figure 5. | td(ON)-td(OFF) definition | 10 | | Figure 6. | SPI mode diagram | 14 | | Figure 7. | SPI input timing diagram | 14 | | Figure 8. | SPI output timing diagram | 15 | | Figure 9. | Watchdog behavior | 15 | | Figure 10. | OUT_EN without effect on output | 16 | | Figure 11. | OUT_EN effective on output channel | 16 | | Figure 12. | Power GOOD pin behavior | 17 | | Figure 13. | Thermal status update | 18 | | Figure 14. | Switching on resistive load | 19 | | Figure 15. | Switching on bulb lamp | 19 | | Figure 16. | Switching on light inductive load | | | Figure 17. | Switching on heavy inductive load | 19 | | Figure 18. | Short-circuit (with OVT) during ON state | 20 | | Figure 19. | Switching on short-circuit (with OVT) | 20 | | Figure 20. | Thermal protection flowchart | | | Figure 21. | Thermal protection and fault behavior (T _{JSD} triggered before T _{CSD}) | 21 | | Figure 22. | Thermal protection and fault behavior (T _{CSD} triggered before T _{JSD}) | 22 | | Figure 23. | Reverse polarity protection | 23 | | Figure 24. | V _{DD} reverse polarity protection | 24 | | Figure 25. | Single pulse demagnetization energy vs. load current (Typical values at T _{AMB} = 125°C) | 25 | | Figure 26. | Supply voltage and power output conventions | 26 | | Figure 27. | Simplified thermal model of the process stage | 27 | | Figure 28. | Example of daisy chaining connection | 28 | | Figure 29. | TFQFPN32 package outline | 29 | | Figure 30. | TFQFPN32 package detail outline | 30 | | Figure 31. | TFQFPN32 suggested footprint (measured in mm) | 32 | | Figure 32. | TFQFPN32 packing method concept | 33 | | Figure 33. | TFQFPN32 carrier tape | 33 | | Figure 34. | TFQFPN32 reel | 34 | | Figure 35. | TFQFPN32 winding direction | 34 | | Figure 36. | TFOFPN32 leader and trailer | 35 | DS12812 - Rev 7 page 40/42 # **List of tables** | Table 1. | Pin description | 4 | |-----------|--|------| | Table 2. | Absolute maximum ratings | 6 | | Table 3. | Thermal data | 7 | | Table 4. | Power section | 8 | | Table 5. | Digital supply voltage | 8 | | Table 6. | Diagnostic pin and output protection function | 8 | | Table 7. | Power switching characteristics (V _{CC} = 24 V; -40°C < T _J < 125°C) | 9 | | Table 8. | Logic inputs and output | . 10 | | Table 9. | Serial interface timings (V _{DD} = 5 V; V _{CC} = 24 V; -40°C < T _J < 125°C) | . 11 | | Table 10. | Internal communication timings (V _{DD} = 5 V; V _{CC} = 24 V; -40°C < T _J < 125°C) | . 11 | | Table 11. | Insulation and safety-related specifications | . 11 | | Table 12. | Insulation characteristics | . 12 | | Table 13. | Safety limits | . 12 | | Table 14. | SDI frame | . 13 | | Table 15. | SDO frame | . 13 | | Table 16. | Truth table | . 17 | | Table 17. | TFQFPN32 package mechanical data | . 30 | | Table 18. | Tolerance of form and position | . 31 | | Table 19. | Ordering information | . 36 | | Table 20. | Document revision history | . 37 | #### **IMPORTANT NOTICE - PLEASE READ CAREFULLY** STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2021 STMicroelectronics - All rights reserved DS12812 - Rev 7 page 42/42